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1. Introduction

1.1. Introduction to Weil’s conjecture. In number theory, the Hasse principle is the idea that
one can find integer solutions to an equation by combining together solutions modulo prime powers.
This process is handled by considering the equation over all the completions of the rational num-
bers: the real numbers R and the p-adic numbers Qp. The adeles A of Q is a ring that combines
all these completions together, with the purpose that instead of trying to do analysis over each
completion separately, one should put them on an equal footing by simply working over the adeles.
For a first concrete indication of this phenomenon, the adeles lies inside the product R ×

∏
pQp

of all completions of Q. Many statements in number theory, such as class field theory, have more
enlightening adelic formulations than their classical accounts.

For a linear algebraic group G over Q (for example, SLn,GLn), one can study analysis on the
adelic points G(A) of G. In particular, we have a canonical Haar measure on G(A), called the
Tamagawa measure µG,Q.

As Q is a discrete subgroup of A, G(Q) is also a discrete subgroup of G(A). Hence, the Tamagawa
measure on G(A) induces a G(A)-invariant measure on G(Q) \ G(A). When G is semisimple (for
example, SLn or SOn), the volume

τQ(G) :=

∫
G(Q)\G(A)

µG,Q.

of G(Q) \G(A) with respect to this measure, called the Tamagawa number , is finite, and contains
interesting arithmetic information. For example, τQ(SL2) = 1 is equivalent to the Euler product
formula for the value of the Riemann zeta function ζ at 2. Tamagawa [Tam66] was the first one to
define τk(G) when G is the special orthogonal group of a quadratic form and k is any number field
(for example, k = Q). He showed that τk(SOn) = 2 and indicated that this is entirely equivalent to
Siegel’s famous mass formula in the theory of quadratic forms (we will try to motivate this idea of
Tamagawa in a later section). Weil [Wei95] pursued Tamagawa’s idea for more general groups and
conjectured

Theorem 1 (Weil’s conjecture on Tamagawa numbers). Let G be a simply connected semisimple
linear algebraic group over a number field or a function field k, then the Tamagawa number τk(G)
of G over k is 1.

1.2. History of Weil’s conjecture.

1.2.1. Proofs. In the number field case, Weil, Mars and Demazure (see [Wei82, p. 116] for the
precise references) have settled the conjecture for all classical groups and some exceptional groups.
Langlands [Lan66] proved the conjecture for split groups G over Q. Lai [Lai76] generalised Lang-
lands’ proof to the quasi-split case over any number field. Kottwitz [Kot88] completely proved the
conjecture by reducing to the quasi-split case via the Arthur-Selberg trace formula.

In the function field case, Harder [Har74] proved the conjecture for split groups following Lang-
lands’ method. Until much later, Gaitsgory and Lurie [GL19] proved the conjecture for the function
field case using a completely different method.

1.2.2. Beyond Weil’s conjecture. The Tamagawa measure and the Tamagawa number can be defined
more generally for any connected reductive or unipotent linear algebraic group G over a global field
k (see [Ono66]). Ono [Ono66] derived the Tamagawa number for tori and showed how the Tamagawa
numbers behave under isogenies. In particular, consider a connected semisimple algebraic group G
over a number field and let G̃ be its universal covering. Ono obtained a formula for τ(G)/τ(G̃),
called the relative Tamagawa number. This was then generalised to any connected reductive groups
over a number field by Sansuc [San81] and over a function field by [BD09]. In particular, Sansuc
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showed that for any connected reductive group G over a number field and G̃′ be the universal
covering of its derived subgroup, we find

τ(G)

τ(G̃′)
=
|PicG|
|X(G)|

.

Here Pic(G) is the Picard group of G and X(G) is the Tate-Shafarevich set of G. Assuming the
Weil’s conjecture, this implies

Theorem 2. For a connected reductive algebraic group G over a global field k, there holds

τk(G) =
|Pic(G)|
|X(G)|

.

When G is unipotent, the Tamagawa number of G over a number field is 1. Over function fields,
the Tamagawa number was computed in [Oes84].

In the other direction, Birch and Swinnerton-Dyer attempted to find analogues of Tamagawa
measure and Tamagawa number in the case of abelian varieties. This has led them to conjecture
about the integer values of certain L-functions of elliptic curves. In particular, Bloch [Blo80] showed
theorem

Theorem 3. Let A be an abelian variety over a number field. There exists an extension X of A
by a split torus such that one can define the Tamagawa measure and Tamagawa number for X.
Furthermore, the Birch and Swinnerton-Dyer conjecture for A is equivalent to the statement

τk(X) =
|Pic(X)tors|
|X(X)|

,

where Pic(X)tors is the torsion subgroup of Pic(X).

1.3. Motivation. We will motivate the Tamagawa numbers via the arithmetic theory of quadratic
forms, following [GL19].

A quadratic space (V, q) over Q is a finitely generated free Q-module V equipped with a quadratic
form, i.e. a map q : V → Q satisfying the following conditions:

(1) The map V × V → Q given by (v, w) 7→ q(v + w)− q(v)− q(w) is Q-bilinear.
(2) For every λ ∈ Q and every v ∈ V , we have q(λv) = λ2q(v).

A morphism between two quadratic spaces (V, q) and (V ′, q′) is a linear map f : V → V ′ such that
q′ ◦ f = q. The automorphism group of a quadratic space (V, q) over Q is denoted as Oq(Q), the
orthogonal group of (V, q).

If we fix a choice of basis {e1, . . . , en} for V , a quadratic form q on V then corresponds to a
matrix Bq defined by (Bq)ij = 1

2(q(ei + ej)− q(ei)− q(ej)). One can show that two quadratic forms
p, q on V are isomorphic if and only if Bp = T tBqT for some invertible matrix T ∈ GLn(Q).

One could then ask the question of classifying quadratic spaces over Q up to isomorphism; or
equivalently, classifying n×nmatrices over Q up to the equivalence relation A ∼ B ⇐⇒ A = T tBT
for some T ∈ GLn(Q). To achieve this, one first base changes the quadratic space (V, q) over Q to
create a quadratic space (V ⊗Q Qv, qQv) over Qv for each completion Qv of Q (we think of R as
Q∞). The Hasse principle for quadratic forms then states that two quadratic forms are equivalent
over Q if and only if they are equivalent over Qv’s. Over Qv’s, the classification of quadratic spaces
is easier to describe, giving us the classification over Q (see [Ser73, Chapter IV]).

If we now restrict our attention to quadratic spaces over Z then a similar statement to the Hasse
principle fails; i.e. even if s and q are two quadratic forms over Z such that they equivalent under
extension of scalars to Zp and R (this is to say that s and q have the same genus), it does not
necessarily follow that they are equivalent over Z.
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However, it is ‘almost true’ in the following sense: for a fixed positive-definite quadratic form q
over Z 1, there are only finitely many quadratic spaces of the same genus to q (up to isomorphism).
In fact, one obtains a bijection (or an equivalence of groupoids)

{genus of q} ←→ Oq(Q) \Oq(A)/Oq(Ẑ× R).

Furthermore, we can also define the following weight count of quadratic forms in the genus of g,
(called the mass of the genus of q)

m(q) =
∑
q′

1

|Oq′(Z)|

where the sum is over all quadratic forms of the same genus as q up to isomorphism. One can show
that

m(q) =
∑
q′

1

|Oq′(Z)|
= 2`−1µTam(SOq(Q) \ SOq(A))

µTam(SOq(Ẑ× R))
.

Here µTam is the Tamagawa measure on SOq(A), i.e. the group of automorphisms in Oq(A) having
determinant 1, ` is the number of primes p for which SOq(Zp) = Oq(Zp), and Ẑ :=

∏
p Zp. The

numerator is the Tamagawa number for SOq, and as one can also compute the denominator, this
gives an explicit mass formula, called the Smith-Minkowski-Siegel mass formula.

1.4. Outline for the thesis. The goal of our thesis is to study the Weil’s conjecture. In the
next five sections, we will present the prerequisite back ground material. We will then define the
Tamagawa measure in § 8 and compute the Tamagawa numbers for various groups in the next four
sections. In the last section, we give an equivalent formulation for the Tamagawa number in the
function field case. A more detailed outline for the thesis is given below.

In § 2, we discuss valuation theory, i.e. how to equip a field k with an absolute value and take
completions of k with respect to this absolute value. Our main example is k = Q with its completions
Qp and R, where p is a prime.

In § 3, first we review the theory of measures and integrations. We then focus on discussing Haar
measures on locally compact topological groups and establish some results that will be used to carry
out computations with Haar measures in later sections.

In § 4, we define the notion of a k-analytic manifold for any complete valued field k. When k
is a local field (e.g. R or Qp), we show that there is a theory of integration on such manifolds,
resembling the corresponding classical theory for smooth manifolds.

In § 5, we define the ring adeles A of Q and study its topology. We show that Q is a discrete
subgroup of A and that Q \ A is compact. We also describe a functorial way to give a topology on
G(A) for any linear algebraic group G over Q.

In § 6, we discuss Fourier analysis on locally compact abelian groups. In particular, we describe
the Pontryagin duals for R,Qp and A together with their quotients Z \ R,Zp \ Qp and Q \ A,
respectively. We then prove the Poisson summation formula with the focus on these groups.

In § 7, we discuss the structure theory of SL2. We determine its Lie algebra and its non-vanishing
left-invariant global top forms, and then show how to relate these two notions.

In § 8, we define the Tamagawa measure and the Tamagawa number for any connected semisimple
group over any global field.

In § 9, we compute the Tamagawa number of SL2 over Q by constructing a fundamental domain
for the quotient SL2(Q)\ SL2(A).

In § 10, § 11 and § 12, we will exhibit computations of the Tamagawa numbers of classical groups
over Q using Poisson summation formula.

1q being positive-definite means qR is positive-definite, i.e. qR(v) > 0 for every nonzero vector v
7



In § 13, we showed that the Tamagawa number over function field can be interpreted as certain
weight count on the moduli space of G-bundles.
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2. Absolute values, completions of Q

In this section, following [Mil, Sut19, Neu99], we will discuss the completion of a field that is
equipped with an absolute value. We focus on describing the completions Qp’s and R of Q.

2.1. Absolute values.

Definition 4. An absolute value of a field k is a map | · | : k → R≥0 such that for all x, y ∈ k:
(1) |x| = 0 iff x = 0,
(2) |xy| = |x||y|,
(3) |x+ y| ≤ |x|+ |y|.

The field k is then called a valued field. If the stronger condition
(4) |x+ y| ≤ max(|x|, |y|).

also holds, then the absolute value is nonarchimedean, otherwise it is archimedean.

The condition |x + y| ≤ max(|x|, |y|) for all x, y ∈ k is equivalent to | | being bounded on
{n1 : n ∈ Z}. In particular, this implies that if k is of positive characteristic then every absolute
value on k is nonarchimedean.

For valued field k with nonarchimedean absolute value | |, the set Ok := {x ∈ k : |x| ≤ 1} is a
subring of k with group of units U := {x ∈ k : |x| = 1} and unique maximal ideal m := {x ∈ k :
|x| < 1}.

Example 5. The map | | : k → R≥0 defined by |x| = 1 if x 6= 0 and |0| = 0, is the trivial absolute
value on k. It is nonarchimedean.

When k is equipped with an absolute value then k has a metric space topology. Two absolute
values | |1 and | |2 on k are called equivalent if they define the same topology on k. This is the
same as saying that there exists real number s > 0 such that |x|s1 = |x|2 for all x ∈ k. We call an
equivalence class of absolute values on k a place of k.

For Q, we have the usual absolute value | |∞, being an archimedean absolute value. For each
prime p, we can define an archimedean absolute value | |p on Q as follows.

Example 6. Let p be a prime number. Every element in Q× can be written as ±
∏
q q

eq where the
product ranges over the primes of Z and the exponents eq ∈ Z are uniquely determined. We have
a map (called the p-adic valuation) vp : Q× → Z, defined by

vp

(
±
∏
q

qeq

)
= ep,

and vp(0) :=∞. The p-adic absolute value on Q is defined by |xp| := p−vp(x), where |0|p = p−∞ is
understood to be 0.

Theorem 7 (Ostrowski). Every nontrivial absolute value on Q is equivalent to either | |∞ or | |p
for some prime p.

Sketch. For any m,n ∈ Z, we can write m = a0 +a1n+ · · ·+arn
r where ai ∈ Z, 0 ≤ ai < n, nr ≤ m.

Letting N := max{1, |n|}, we obtain a bound |m| ≤ N logm/ logn.
If for all n > 1, we have |n| > 1, then N = |n|. From the previous inequality, we find |m|1/ logm

is constant for all m ∈ Z>1. It follows |n| = |n|log c
∞ for all integer n > 1, hence | | is equivalent to

| |∞.
If there is n ∈ Z such that n > 1 but |n| ≤ 1, then N = 1 and hence |m| ≤ 1 for all m ∈ Z,

meaning the absolute value is nonarchimedean. Let O be the corresponding local ring and m be its
maximal ideal. We find Z ⊂ O and p ∩ Z is a nonzero prime ideal, hence this ideal is (p) for some

9



prime p. This implies |m| = 1 if m is not divisible by p, hence |apr| = |p|r if n is rational number
whose numerator and denominator are not divisible by p. If a ∈ R such that |p| = (1/p)a then
|x| = |x|ap for all x ∈ Q. �

For a number field k, i.e. a finite extension of Q, we can describe the places of k, i.e. equivalence
classes of absolute values on k, as follows.

Theorem 8. There exists exactly one place of k

(1) for each prime ideal p of Ok,
(2) for each real embedding of k (i.e. an injective field homomorphism k ↪→ R),
(3) for each conjugate pair of complex embeddings.

For a place v of k coming from an archimedean absolute value, we write v | ∞.

Example 9. When k = Q[x]/(x2 + 1), we have one conjugate pair of complex embeddings k ↪→ C
sending x 7→ ±i. This corresponds to the completion C of k. On the other hand, the ring of integers
O = Z[x]/(x2 + 1) of k has prime ideals

(1) (1 + i) = (1− i),
(2) (a+ ib) where a2 + b2 = p is a prime with p ≡ 1 (mod 4),
(3) (p) where p ∈ Z is a prime such that p ≡ 3 (mod 4).

The absolute value of k corresponding to each prime ideal is defined analogously as in the case of
p-adic absolute value for Q.

2.1.1. Nonarchimedean absolute values from discrete valuations. The class of nonarchimedean val-
ued fields that is of interest for us comes from discrete valuations.

Definition 10. A valuation on a field k is a group homomorphism k× → R such that for all
x, y ∈ k×

v(x+ y) ≥ min{v(x), v(y)}.

We may extend v to a map k → R ∪ {∞} by defining v(0) := ∞. For any 0 < c < 1, defining
|x|v := cv(x) yields the same nonarchimedean absolute value up to equivalence. We say v is a
(normalised) discrete valuation if v(k×) = Z. We call A := {x ∈ k : v(x) ≥ 0} the valuation ring
of k. A discrete valuation ring is an integral domain that is the valuation ring of its fraction field
with respect to a discrete valuation.

Example 11. For k = Q, the p-adic absolute value comes from the discrete valuation vp as in
Example 6.

For a discrete valuation ring A, there holds v(A) = Z≥0, so there exists elements π ∈ A such
that v(π) = 1, which we call them uniformisers of A. If we fix a uniformiser π then every element
x ∈ k× can be written uniquely as x = uπn, where n = v(x) and u = x/πv(x) ∈ A×. Every nonzero
ideal of A is equal to (πn) = {a ∈ A : v(a) ≥ n} for some integer n ≥ 0. Hence, A has a unique
maximal ideal m = (π) = {a ∈ A : v(a) ≥ 0}.

A discrete valuation ring enjoys many properties which gives it many equivalent definitions. At
the moment, we will direct the reader to [Sut19, Lecture 1], [Ser79], [Mil] for further discussions
about this.

Example 12. The p-adic valuation vp of Q as in Example 6 has valuation ring Z(p), which is the
localisation of Z at the multiplicative set Z \ (p). Concretely, it is a subring of Q, with elements of
the form a

b ∈ Q where p - b. The residue field is Z(p)/pZ(p)
∼= Z/pZ ∼= Fp.
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Example 13. For any field k, the valuation v : k((t))→ Z ∪ {∞} on the field of Laurent series over
k defined by

v

∑
n≥n0

ant
n

 := n0,

where an0 6= 0, has valuation ring k[[t]], the ring of power series with coefficients in k. For f ∈ k((t))×,
v(f) ∈ Z is the order of vanishing of f at 0.

2.2. Completions of global fields.

Definition 14. Let k be a field with nontrivial absolute value. A sequence (an) of elements in k
is called a Cauchy sequence if for every ε > 0, there is N > 0 such that |an − am| < ε for all
n,m > N . The field k is said to be complete if every Cauchy sequence has a limit in k.

Theorem 15. Let k be a field with absolute value | |. There exists a complete valued field (k̂, | |)
and a homomorphism k → k̂ of topological fields, preserving the absolute value, that is universal in
the following sense: every homomorphism k → l from k to a complete valued field (l, | |) preserving
the absolute value extends uniquely to a homomorphism k̂ → l.

Sketch. Construct k̂ to be the set of equivalence classes of Cauchy sequences in k̂, in the sense that
two Cauchy sequences (an) and (bn) are equivalent when limn→∞ |an−bn| = 0. One can then define
addition and multiplication in the obvious way and show that k̂ is a field. An element a ∈ k has
image (a, a, . . .) inside k̂. �

We are interested in completed valued fields that come from taking completions of a global field ,
i.e. a finite extension of Q or of Fq((t)). The resulting completed fields are called local fields, which
have the following equivalent but simple description.

Definition 16. A local field is a valued field k with nontrivial absolute value such that k is locally
compact.

Note that if k is locally compact then k is complete 2. All archimedean local fields are isomorphic
to either R or C.

2.2.1. Completions from discrete valuations. This section is about complete valued fields with dis-
crete valuation, which, in particular, is where all nonarchimedean local fields come from.

Let | | be a nonarchimedean absolute value on k obtained via a discrete valuation v. Let A,m, π
be the corresponding valuation ring, maximal ideal and uniformiser of k.

Proposition 17. (a) If k̂ is the completion of k with respect to | | then | | is also a discrete absolute
value on k̂. Its maximal ideal m̂ is generated by π. The residue field of k̂ is A/m ∼= Â/m̂.

(b) If S ⊂ A is a set of representatives of A/m then every element in k̂ has a unique representative
of the form

a−nπ
−n + · · ·+ a0 + a0π + · · ·+ amπ

m + . . . , ai ∈ S.
(c) Furthermore, we have an isomorphism of topological rings

Â ∼= lim←−
n→∞

A

πnA
.

2Let (xn)∞n=1 be a sequence in k that converges to x ∈ k̂. Let U ⊂ k be a compact neighborhood of x1 then xnx−1
1 U

is a compact neighborhood of xn. We should be able to find x ∈
⋃
n xnx

−1
1 U ⊂ k.
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Sketch. (a) Let a ∈ k̂× then a corresponds to a sequence (an) in k converging to a. Then |an| → |a|,
so |a| is a limit point of |k×|. But |k×| is discrete of R, hence closed, hence |a| ∈ |k×|. Thus | | is a
discrete absolute value on k̂ and also use v to denote the valuation on k̂ extending the one on k. It
follows that m̂ is generated by π.

(b) Let α ∈ k̂ then α = πnα0 for α0 unit in Â. There exists a0 ∈ S such that α0 − a0 ∈ m̂. Then
α0−a0
π ∈ Â so there exists a1 ∈ S such that α0−a0

π − a1 ∈ m̂. If we keep going then we can write
α0 = a0 + a1π + . . . and α = πnα0.

We refer to [Sut19, Lecture 8] for the proof of part (c). �

Example 18. Let k = Q, vp be the p-adic valuation of Q and |x|p := p−vp(x) be the corresponding
p-adic absolute value. The completion of Q with respect to | |p is the field Qp of p-adic numbers. For
x = amp

m + am+1p
m+1 · · · ∈ Qp where m ∈ Z, ai ∈ Fp, am 6= 0 then |x|p = p−m. From Example 12,

vp over Q has valuation ring Z(p), and we have Ẑ(p) = Zp, the p-adic integers. The basis of open
sets of 0 ∈ Qp are pkZp where k ∈ Z.

Example 19. Let k = k(t), let vt be the t-adic valuation on k(t), and let |x|t := q−vt(x) (for q > 1
any fixed real number) be the corresponding absolute value with π = t being the uniformiser. The
completion of k(t) with respect to | |t is isomorphic to field k((t)) of Laurent series over k. The
valuation ring of k(t) with respect to vt is k[t](t), ring of rational functions whose denominators have

nonzero constant term. With π = t as our uniformiser, we find k̂[t](t) = k[[t]], the power series over
k.

Proposition 20. k is locally compact if and only if it is complete and has finite residue field A/m.

Proof. If k is locally compact then k is complete. As {πnA}n∈Z is a fundamental system of closed
neighborhoods of 0, at least one of them is compact. Multiplying by π−n, which is a homeomorphism,
shows that A is compact. Let S be set of representatives for A/m, then the compact subset A is a
disjoint union of open sets s+ m for s ∈ S, implying S is finite.

Conversely, if A/m is finite then A/πnA is finite, hence from previous proposition, Â is a projective
limit of finite rings, hence is compact. If k is complete then A = Â is compact, meaning k is locally
compact. �

Example 21. 1) The completion Qp of Q with respect to p-adic valuation vp is locally compact,
hence a nonarchimedean local field.

2) Fq((t)) is locally compact as it is the completion of Fq(t) with respect to t-adic valuation and
residue field Fq.

12



3. Measures and integration

In this section we review the theory of measure spaces and integration on locally compact spaces,
in particular Haar measure on locally compact groups. We refer to [Fol16,VR99,Kna02,BSU96] for
the proofs of the results in this section.

Convention 22. From now on, all locally compact spaces are assumed to be Hausdorff.

3.1. Measure. Let X be a set, and let M be a collection of subsets of X.

Definition 23. M is a σ-algebra if M is closed under taking complements in X and countable
unions. Elements of M are called measurable sets.

Example 24. Let X be a topological space. The collection of Borel sets is the σ-algebra B(X)
generated by open subsets of X.

Definition 25. A function f : X → Y is called measurable if the preimage of any measurable
subset in Y is measurable in X.

Remark 26. Let f be a complex-valued function on a σ-algebra, where the measurable sets in C
are the Borel sets of C. For f to be measurable, it suffices to check f−1(S) is measurable for open
disks in C. When f is real-valued, f is measurable iff f−1(S) is measurable for any S = (a,∞) ⊂ R
where a ∈ R.

Definition 27. A measure on (X,M) is a function µ : M → [0,∞] such that µ (
⋃
Ai) =

∑
µ(Ai)

for any countable (or finite) collection of disjoint measurable sets Ai. In the special case where
M = B, a measure is called a Borel measure.

A set N ⊂ X is called a null set if N is contained in a measure-0 set. It is convenient to enlarge
M so that all null sets are measurable. We call f : X → C a null function if {x ∈ X : f(x) 6= 0} is
a null set.

Given a measure (X,µ) and a measurable map f : X → Y then the pushforward of µ is a measure
on Y where (f∗µ)(B) := µ(f−1(B)) for any measurable subset B of Y . We are not aware of any
reference discussing pullback of measures in general. However, if X,Y are smooth manifolds and f
is submersive, pullback of measures can be defined via fiber integrations.

3.2. Integration. We fix the notation (X,M, µ) where X is a set with σ-algebra M and measure
µ. We will briefly define integration with respect to this space. We refer to [BSU96] for a more
detailed discussion of this construction.

Given S ∈M with µ(S) <∞, let 1S : X → {0, 1} be the indicator function on S, i.e. it has value
1 on S and 0 outside of S, and define

∫
X 1Sdµ := µ(S). A simple function f is a function of the

form f =
∑n

i=1 ai1Si where ai ∈ R and Si’s are pairwise disjoint sets in M of finite measure. For
such a simple function f =

∑
ai1Si , define

∫
X fdµ :=

∑
i aiµ(Si). For any real-valued nonnegative

measurable function f on X, we define∫
X
f(x)dµ(x) := sup

φ

∫
X
φ(x)dµ(x),

where φ ranges over all simple functions on X with 0 ≤ φ ≤ f . We say that a measurable function
f : X → C is integrable if

∫
X |f(x)|dx <∞. If f is integrable, we can write f = (u+−u−)+i(v+−v−)

where u+(x) = max{Re(f(x)), 0}, u−(x) = −min{Ref(x), 0} and similarly for v+, v−. We then
define ∫

X
f(x)dµ(x) :=

∫
X
u+dµ−

∫
X
u−dµ+ i

∫
X
v+dµ− i

∫
X
v−dµ.

We define L1(X,µ) to be the Banach space of measurable functions f : X → C that have finite
L1-norm ‖f‖1 :=

∫
X |f |dµ.
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Proposition 28 (Change of variables formula). Given a measure (X,µ) and a measurable map
f : X → Y . Then, for a measurable function g : Y → C, g ◦ f is measurable and∫

Y
gd(f∗µ) =

∫
X
g ◦ fdµ.

3.3. Measures and integrals on locally compact Hausdorff space. Let X be a locally com-
pact topological space.

Definition 29. A function f : X → C has compact support if the closure of {x ∈ X : f(x) 6= 0}
is compact. Define Cc(X) to be space of continuous functions f : X → C of compact support.

Definition 30. An outer Radon measure on X is a Borel measure µ : B→ [0,∞] that is
• locally finite: every x ∈ X has an open neighborhood U such that µ(U) <∞
• outer regular: every S ∈ B satisfies µ(S) = inf µ(U) over all open U ⊃ S,
• inner regular on open sets: every open U ⊂ X satisfies µ(U) = supµ(K) over all compact
K ⊂ U .

A Radon integral on X is a C-linear map I : Cc(X)→ C such that I(f) ≥ 0 whenever f ≥ 0.

For a Radon measure space (X,µ), Cc(X) is a subspace of L1(X,µ).

Theorem 31 (Riesz representation theorem). Given an outer Radon measure µ, we define a linear
functional

Iµ : Cc(X)→ C

f 7→
∫
X
fdµ.

When X is locally compact Hausdorff, there is a bijection between outer Radon measures on X and
Radon integrals on X, where one direction is given by µ 7→ Iµ. The other direction is by sending
I : Cc(X)→ C to the measure µ on X defined by µ(S) = I(1S).

Example 32. Let X = Rn, the map sending f ∈ Cc(Rn) to the Riemann integral
∫
Rn f ∈ C is a

Radon integral. The Lebesgue measure µn is defined to be the corresponding outer Radon measure
on Rn. Note that we have µn(gA) = | det(g)|µn(A) for any g ∈ GLn(R) and A ∈ B(Rn).

3.4. Haar measure. Let G be a locally compact Hausdorff topological group. In this section, we
will define Haar measures on G and study some properties of this kind of measures.

Definition 33. A Borel measure µ on G is left-invariant if µ(gS) = µ(S) for all g ∈ G and S ∈ B.
A left Haar measure on G, denoted dlg, is a nonzero left-invariant outer Radon measure on G.
Right Haar measure drg is defined similarly.

Remark 34. In terms of Radon integrals, the condition µ(gS) = µ(S) for any measurable S is
equivalent to ∫

G
f(x)dµ(x) =

∫
G
f(g−1x)dµ(x)

for any f ∈ Cc(G). Indeed, it suffices to check this for f = 1S where S ⊂ G is measurable.

Convention 35. To be more precise, a left Haar measure µ is a map from Borel sets of G to [0,∞].
However, for convenience, we will usually denote a left Haar measure of G to be dlg and a right
Haar measure by drg, where g is understood to be an element of G. For example, the left-invariant
property is short-handed as dl(hg) = dl(g), where dl(hg) is understood to be the measure of G
obtained by pushforward dlg via left-multiplication by h−1, i.e. Ω 7→ µ(hΩ). Sometimes dl(hg)
would cause ambiguity, where it could mean either pushing forward dlg via left-multiplication by
h−1, i.e. Ω 7→ dl(hΩ), or pushing forward dlh via right-multiplication by g−1, i.e. Ω 7→ dl(Ωg),
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but we will try to be more precise when the situation arises. A better convention is d(Lh−1g) or
d(Rg−1h).

Theorem 36 (Existence and uniqueness of Haar measure). Let G be a locally compact topological
group. There exists a left Haar measure µ on G and every other left Haar measure on G is cµ for
some c ∈ R>0.

Example 37. On Rn, the Lebesgue measure is a Haar measure.

Remark 38. A left Haar measure need not be right-invariant. For example, consider

G =

{(
a b
0 1

)
: a ∈ R \ {0}, b ∈ R

}
then G has a left Haar measure given by µL(S) =

∫
S

1
a2
dadb and a right Haar measure given by

µR(S) =
∫
S

1
|a|dadb.

Let µ be a left Haar measure on G, then G is compact if and only if µ(G) <∞. The normalised
Haar measure on G is the unique Haar measure µ such that µ(G) = 1.

Example 39. Let k be a nonarchimedean local field with valuation ring O. Let m be the maximal
ideal of O and π be a uniformiser of O. There is a Haar measure µ on k satisfying µ(O) = 1.

For example, we will show µ(m) = (#O/m)−1 (here #O/m refers to number of elements of this
finite field). Indeed, as Ok is a disjoint union of a+m’s where a ∈ O/m and that µ is left-invariant,
we find

1 = µ(O) =
∑
a∈O/m

µ(a+ m) = (#O/m)µ(m).

Similarly, one can show that µ(πnO) = (#O/m)−n for n ∈ Z.
For another example of a computation with µ, we will show µ(aA) = |a|kµ(A) for any open A of

k and a ∈ k×. Indeed, let a = uπn where u ∈ O×, n ∈ Z and if A = O then

µ(aA) = µ(πnO) = (#O/m)−n = |a|kµ(A).

As πnO’s form a basis of open neighborhoods of 0 ∈ k so from the above computation, we are done.
In fact, µ(aA) = |a|kµ(A) holds for any choice of Haar measure on k.

3.4.1. Modular quasicharacter. Let drg be a right Haar measure on G. Then dr(hg) is also a
right Haar measure. Therefore, by uniqueness of right Haar measure, there exists a positive real
δG(h) so dr(hg) = δG(h)drg. We define the modular quasicharacter to be the corresponding group
homomorphism δG : G → R>0

3. Note that δG does not depend on the choice of a left/right Haar
measure on G.

Proposition 40. Let drg, dlg be right, left Haar measures of G, respectively. Then the following
are equivalent ways to define the modular quasicharacter:

(a) dr(hg) = δG(h)drg for all h ∈ G,
(b) dl(gh) = δG(h)−1dlg for all h ∈ G,
(c) dr(g−1) = δG(g)−1drg,
(d) dl(g−1) = δG(g)dlg.

Furthermore, if we given drg, we can choose dlg to be such that dlg = dr(g
−1), or equivalently,

drg = δG(g)dlg.
Finally, every left Haar measure is right Haar measure if and only if δG ≡ 1 on G. If this is the

case, we say G is unimodular.
3 Some authors define modular quasicharacter to be the multiplicative inverse of δG, such as in [Fol16]. Our choice
for the definition of δG is reflected in Proposition 115
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Sketch. We will prove (a) implies (c). Note that dr(g−1) is a left Haar measure. Next, we show
δG(g)−1drg is also a left Haar measure. We have∫

G
f(hg)δG(g)−1drg =

∫
G
f(g)δG(h−1g)−1dr(h

−1g),

=

∫
G
f(g)δG(h−1g)−1δG(h−1)drg,

=

∫
G
f(g)δG(g)−1drg.

By uniqueness of left Haar measure, we find dr(g−1) = cδG(g)−1drg for some constant c. Changing
g to g−1 (i.e. pushforward two measures under taking inversion, which should give us the same
equality), we find

dr(g) = cδG(g)dr(g
−1) = c2δG(g)δG(g−1)dr(g

−1) = c2dr(g
−1),

hence c = 1.
To show (c) implies (b). As dr(g−1) is a left Haar measure so we have dl(g) = cdr(g

−1) for some
c ∈ R>0. Then we have

dl(gh) = cdr(h
−1g−1) = δG(h−1)cdr(g

−1) = δG(h)−1dlg.

The other equivalences of (a), (b), (c), (d) can be done similarly.
Next, we show drg = δG(g)dl(g) implies dlg = dr(g

−1). Indeed, by (c) and (d), we find dr(g−1) =
δG(g)−1dr(g) = dl(g).

Finally, we show if every left Haar measure is right Haar measure then δG = 1. Let dr = cdl,
then from (a), as we fix h, we find

cδG(h)dlg = δG(h)drg = dr(hg) = c−1dl(hg) = c−1dlg.

This follows δG(h) = c−2, a constant. As δG is a group homomorphism, we find δG ≡ 1. �

3.4.2. Haar measure on a homogeneous space. In this section, let G be a locally compact group
with closed subgroup H. Then G acts on G/H by left-multiplication. We say a measure µ on G/H
is G-invariant if µ(A) = µ(xA) for any x ∈ G and measurable A ⊂ G/H.

Theorem 41. Let H be a closed subgroup of G with corresponding modular quasicharacters δH , δG.
A necessary and sufficient condition for G/H to have nonzero G-invariant Borel measure µG/H is
that the restriction to H of δG equals δH . In this case, such a measure is unique up to positive
scalar, and it can be normalised so that for any f ∈ Cc(G), we have∫

G/H
fHdµG/H =

∫
G
fdµG

where fH ∈ Cc(G/H) is defined by

fH(x) =

∫
H
f(xh)dµH .

Sketch. We sketch the proof when G,H are unimodular. We denote the projection p : G→ G/H.
In fact, the map Cc(G) → Cc(G/H) sending f 7→ fH is onto, which we will not prove here

but refer to [Fol16, p.62]. To show µG/H can be defined as in the theorem, we need to show
fH 7→

∫
G fdµG is a well-defined G-invariant positive linear functional on Cc(G/H). By surjectivity

of Cc(G) → Cc(G/H), it suffices to show that if f ∈ Cc(G) and fH = 0 then
∫
G fdµG = 0. Let
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ϕ ∈ Cc(G/H) such that ϕ = 1 on p(supp f), then there exists g ∈ Cc(G) so gH = ϕ. Assuming
fH = 0, we find

0 =

∫
G
g(x)fH(x)dx =

∫
G

∫
H
g(x)f(xh)dhdx,

=

∫
H

∫
G
g(x)f(xh)dxdh =

∫
H

∫
G
g(xh)f(x)dxdh,

=

∫
G

∫
H
g(xh)f(x)dhdx =

∫
G
f(x)gH(x)dx,

=

∫
G
f(x)dx.

We are done. �

Remark 42. One can consider the space of right cosets H\G and modify the above theorem accord-
ingly.

In general, one can a define left G-invariant measure on a space under a continuous transitive
action of G as follows.

Definition 43. Let S be a locally compact topological space then S is a G-space if there is a
continuous left action of G on S, i.e. a continuous map from G × S to S such that s 7→ xs is a
homeomorphism of S, and x(ys) = (xy)s for all x, y ∈ G, s ∈ S. A G-space is called transitive if
for every s, t ∈ S there exists x ∈ G such that xs = t.

If S is a transitive G-space then for any s0 ∈ S, the isotropy/stabiliser group H = {x ∈ G : xs0 =
s0} of s0 is a closed subgroup of G and φ : G→ S by x 7→ xs0 is a continuous surjection of G onto
S. This induces a continuous bijection Φ : G/H → S such that Φ◦p = φ where p : G→ G/H is the
quotient map. Note that it is generally not the case that Φ has continuous inverse. For example,
consider G = R with the discrete topology, acting by translation on S = R with the usual topology.
We call S a homogeneous space if Φ is a homeomorphism. With this, we can identify S with G/H
and a G-invariant measure on G/H with a G-invariant measure on S.

3.4.3. Haar measure from a fundamental domain. When H is a discrete subgroup of G, one can
determine µG/H by integrating with respect to µG over a fundamental domain F of G.

Definition 44. Given a locally compact topological group G and a discrete subgroup H, a measurable
set F ⊂ G is a strict fundamental domain for H \G if the projection π : F → H \G is a bijection.
A measurable set F ⊂ G is a fundamental domain for H \G if F differs from a strict fundamental
domain by a set of Haar measure 0.

When we have such a fundamental domain F , we can define a G-invariant measure on H \G by
integrating over F .

Proposition 45. Let G be a locally compact topological group with a left Haar measure dµG, let H
be a countable discrete subgroup of G, and let F ⊂ G be a fundamental domain for H \ G. Then
the quotient measure H \G can be given by∫

H\G
f(Hg)dµH\G(Hg) =

∫
F
f(g)dµG(g).

Proof. By uniqueness of G-invariant measure on H \G, it suffices to check that∫
G
f(g)dg =

∫
F

∑
h∈H

f(hg)dg
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for all f ∈ Cc(G). As G =
⋃
h∈H hF , we find∫

G
f(g)dg =

∑
h∈H

∫
hF
f(g)dg =

∑
h∈H

∫
F
f(hg)dg =

∫
F

∑
h∈H

f(hg)dg

by left-invariance of G and the fact that we can exchange the sum and the integral by Fubini’s
theorem. �

3.4.4. Haar measure from closed subgroups. We have the following useful proposition that describes
a Haar measure on G = ST in terms of Haar measures on its closed subgroups S and T .

Proposition 46 (Theorem 8.32 of [Kna02]). Suppose S and T are closed subgroups of G with
compact intersection and the product map S × T → G is open with image exhausting G except
possibly for a set of Haar measure 0. Then one can normalise the left and right Haar measures on
S and T , respectively, so that∫

G
f(g)dlg =

∫
S×T

f(st)
δT (t)

δG(t)
dlsdrt =

∫
S×T

f(st)

δG(t)
dlsdrt.

In particular, if G is unimodular, then∫
G
f(g)dg =

∫
S×T

f(st)dlsdrt.

Proof. The group S × T acts continuously on ST ⊂ G by (s, t)w = swt−1, and the isotropy group
at 1 is K×K where K = S ∩T . Thus, we have a bijective continuous map Φ : (S×T )/(K×K)→
ST sending (s, t) 7→ st−1. This map is a homeomorphism (i.e. has continuous inverse) since
multiplication S × T → G is an open map. Hence, a left Haar measure dlg of G restricts to a
Borel measure on ST , and hence obtaining a Borel measure dµ on (S × T )/(K ×K) via change of
variables formula Proposition 28 for measures:∫

(S×T )/(K×K)
f(Φ(s, t))dµ =

∫
(S×T )/(K×K)

f(st−1)dµ =

∫
ST
f(g)dlg.

We denote Lg, Rg : G → G to be left/right translation maps. From Proposition 40, we have
dl(Ls0Rt−1

0
g) = δG(t0)dlg, which gives∫

(S×T )/(K×K)
f(s, t)dµ(L(s0,t0)(s, t)) =

∫
(S×T )/(K×K)

f(s−1
0 s, t−1

0 t)dµ,

=

∫
(S×T )/(K×K)

(f ◦ Φ−1 ◦ Ls0R−1
t0
◦ Φ)(s, t)dµ,

=

∫
ST

(f ◦ Φ−1)(Ls−1
0
Rt0g)dlg,

=

∫
ST

(f ◦ Φ−1)(s−1
0 gt0)dlg,

=

∫
ST

(f ◦ Φ−1)(g)dl(s0gt
−1
0 ),

=

∫
ST

(f ◦ Φ−1)(g)δG(t0)dl(g),

= δG(t0)

∫
(S×T )/(K×K)

f(s, t)dµ,

or in our convention,

(1) dµ(L(s0,t0)x) = δG(t0)dµ(x)
18



on (S × T )/(K ×K). We define measure dµ̃(s, t) on S × T by∫
S×T

f(s, t)dµ̃(s, t) =

∫
(S×T )/(K×K)

[∫
K
f(sk, tk)dk

]
dµ((s, t)K),

where dk is Haar measure on compact K normalised to have volume 1. From (1), we have
dµ̃(s0s, t0t) = δG(t0)dµ̃(s, t). Note that δG(t)dlsdrt also satisfies this condition. Therefore, dµ̃(s, t) =
δG(t)dlsdrt for suitable normalisation of dlsdrt (to see this, mimic the proof that a left Haar measure
is unique up to scalar, see [Kna02, Theorem 8.23]). Hence, we find∫

ST
f(g)dlg =

∫
S×T

f(st−1)δG(t)dlsdrt

for all f ∈ Cc(ST ). Changing t by t−1 on the right hand side via Proposition 40 and replacing ST
by G on the left hand side, we are done. �

3.4.5. Haar measure on restricted product. In this section, we will construct certain Haar measure
on restricted products, which will be required later in defining Haar measure of adelic points of
linear algebraic groups. We first define restricted products of a family of topological spaces.

Definition 47. Let (Xi) be a family of topological spaces indexed by i ∈ I, and let (Ui) be a family
of open sets Ui ⊂ Xi. The restricted product

∏′
i∈I Xi with respect to Ui’s is the topological space

X =
∏
i∈I

′(Xi, Ui) :=
{

(xi) ∈
∏

Xi : xi ∈ U for almost all i ∈ I
}
.

with the basis of open sets{∏
Vi : Vi ⊂ Xi is open for all i ∈ IandVi = Ui for almost all i

}
,

where almost all means all but finitely many.

Remark 48. We refer to [Sut19] for the proofs of the following remarks about restricted products:
(1) In general, the restricted product X is not the subspace topology from

∏
Xi as the former

has more open sets 4.
(2) For a finite set S ⊂ I then by letting

XS :=
∏
i∈S

Xi ×
∏
i 6∈S

Ui

then XS is an open set of X whose subspace topology is precisely the product topology of
the Xi’s and Ui’s. As

∏′Xi =
⋃
S XS over all finite sets S ⊂ I, this gives another way to

define the restricted product as the direct limit of XS ’s.
(3) If Xi’s are locally compact and almost all of the Ui’s are compact then the restricted product∏′Xi is locally compact.

Proposition 49 (p. 185 of [VR99]). Let G =
∏
v∈J Gv be the restricted direct product of locally

compact groups Gv with respect to family of compact subgroups Hv ⊂ Gv (except for some finite set
of places J∞). Let µv be a left Haar measure on Gv normalised so that

∏
v 6∈J∞ µv(Hv) converges.

Then there is a unique Haar measure µ on G such that for each finite set of indices S containing
J∞, the restriction µS of µ to

GS =
∏
v∈S

Gv ×
∏
v 6∈S

Hv

is the product measure.
4recall the product topology on

∏
i Vi of topological spaces Vi is the coarsest topology for which all the projections

are continuous
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Proof. The finiteness of
∏
v-∞

∫
Hv
dgv guarantees that the product measure µS on GS is a Haar

measure, i.e. is finite on compact subsets
∏
v-∞Hv.

Next, we will show the existence of such a Haar measure on G. As G is locally compact, we can
choose a left Haar measure µ on G such that for some fixed finite set of S of indices containing
J∞, the restriction of µ to GS is the product measure µS . This measure µ is independent of the
choice of S because if we consider another finite set S′ of indices containing J∞, again because of
uniqueness of Haar measure on GS∪S′ whose restriction to GS is µS , µ restricted to GS∪S′ must
also be a product measure. Hence, µ restricted to GS′ is also a product measure. �
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4. Analytic manifolds and integrations

Over a complete valued field k with respect to a nontrivial absolute value, one can develop a
theory of k-analytic functions and k-analytic manifolds that closely resembles the classical setting
of real analytic functions and real analytic manifolds. Furthermore, when k is a local field, one can
also define integration of differential forms on k-analytic manifolds. In this section, we will describe
this process, following [Igu00].

On a different note, unlike most references we find about differential geometry, we will discuss
manifolds and its related objects in the language of sheaf theory. One reason is that this language
is also used in algebraic geometry, so in our naive view, it seems to be a more universal language
than describing manifolds via compatible charts. For example, such point of view is also taken in
[Ram05], [Wed16].

4.1. Analytic functions. For every a = (a1, . . . , ad) ∈ kd and every r ∈ R>0, we denote the closed
and open polydisks of radius r centered at a in kd to be

D(a, r) = {x ∈ kd : |xi − ai| ≤ r ∀i},

D0(a, r) = {x ∈ kd : |xi − ai| < r ∀i}.
We consider power series f(T ) =

∑
n∈Zd≥0

fnT
n ∈ k[[T1, . . . , Td]] of d variables with coefficients

in k, where we denote Tn := Tn1
1 · · ·T

nd
d and |n| = n1 + · · ·+ nd.

A power series f =
∑

n∈Zd≥0
fnT

n ∈ k[[T ]] is said to be convergent if its radius of convergence,

defined by ρ(f) =
(

lim sup|n|→∞ |fn|1/|n|
)−1

is positive. We have that for any 0 < r < ρ(f), the
series

∑
n fnT

n converges in k for all T ∈ D0(0, r).
Let U be an open subset of kd. We say a function f : U → k is k-analytic in U if for each a ∈ U ,

there is a real number r > 0 and a convergent power series fa ∈ k[[T ]] such that f(x) = fa(x − a)
for all x ∈ D(a, r) ⊂ U . Every k-analytic function is continuous. If a k-analytic function on U does
not vanish anywhere, then its inverse is k-analytic as well.

For a positive integer m, a function f : U → km defined by u 7→ (f1(u), . . . , fm(u)) is k-analytic
if each fi is analytic for 1 ≤ i ≤ n. Composition of k-analytic functions is k-analytic.

For a k-analytic function f : U → k on an open set U of kd, one can define its partial derivatives
at a ∈ U to be

∂f

∂xi
(a) := lim

t→0

f(a+ tεi)− f(a)

t
,

for i ∈ {1, . . . , d}, where εi = (0, . . . , 1, . . . , 0) which has 1 in the i-th place and 0 everywhere else.
We also know that ∂f/∂xi’s are k-analytic. We define the Jacobian matrix of a k-analytic map
f : U → kd as Df(a) = (∂fi/∂xj(a)), where f = (f1, . . . , fd). The determinant of Df(a) defines an
analytic map Jf on U , called the Jacobian determinant of f .

The inverse function theorem and implicit function theorem also hold over any complete valued
field k.

Theorem 50 (Inverse function theorem). Let f : U → kd be a k-analytic function where U is an
open subset of kd. Let a ∈ U be such that the Jacobian matrix Df(a) of f at a does not vanish.
Then there exist an open neighborhood Ua of a such that f(Ua) is an open neighborhood of f(a) in
kd and a k-analytic function g : f(Ua)→ Ua such that g ◦ f = idUa and f ◦ g = idf(Ua).

Theorem 51 (Implicit function theorem). Let F = (F1, . . . , Fm) where F1, . . . , Fm ∈ k[[x1, . . . , xn,
y1, . . . , ym]] are k-analytic functions on a neighborhood of (0, 0) such that Fi(x, y) = 0 for all 1 ≤
i ≤ m. If det(∂Fi/∂yj(0, 0)) 6= 0 then there exist k-analytic functions f1, . . . , fm ∈ k[[x1, . . . , xn]]
on some open neighborhood U of 0 ∈ kn such that for f = (f1, . . . , fm), f(0) = 0 and F (x, f(x)) = 0
for all x ∈ U .
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For the proofs of these two theorems, we refer to [Igu00, Section 2.1].

4.2. Locally ringed space. In this section, we would like to introduce the notion of locally ringed
spaces, which we will later use to define a k-analytic manifold.

Definition 52. A ringed space is a pair (X,OX) consisting of a topological space X and a sheaf
of rings OX . A k-ringed space is a ringed space (X,OX) where OX is a sheaf of k-algebras. A
morphism of ringed spaces f : (X,OX) → (Y,OY ) is given by a continuous map f : X → Y and a
morphism of sheaves f# : OY → f∗OX over Y .

A locally ringed space (X,OX) is a ringed space (X,OX) whose stalks are local rings. Given the
stalk OX,x at x with its unique maximal ideal mx, the residue field of X at x is κ(x) := OX,x/mx. A
morphism of locally ringed spaces f : (X,OX) → (Y,OY ) is a morphism of ringed spaces such that
the induced ring map OY,f(x) → OX,x is a local ring map.

We say a ringed space (X,OX) is locally isomorphic to (Y,OY ) if for each x ∈ X, there exists an
open neighborhood U of x and an isomorphism (U,OX |U ) ∼= (V,OY |V ) of sheaves where V is some
open subset of Y .

Remark 53. For a locally ringed space (X,OX), given f ∈ OX(U), we can talk about the value of
f at x ∈ U as the image of f in κ(x). Hence, one would like to think of sections of OX as functions
on X.

Example 54. Let M be a real C∞-manifold. Then we can define a structure sheaf OM for M where
OM (U) is the ring of smooth functions f : U → R. (M,OM ) is then a locally R-ringed space, as
for x ∈ M , OM,x is the ring of germs of smooth functions at x, which is a local ring with maximal
ideal being functions that vanish at x. The value of f ∈ OM (U) at x ∈ U , by definition above,
is precisely f(x). Furthermore, (M,OM ) is locally isomorphic to (Rn,ORn) with its sheaf of C∞-
functions. Indeed, for any x ∈ M , we can choose a chart (U,ϕ : U → Rn) of x, then (U,OM |U ) is
isomorphic to (ϕ(U),ORn |ϕ(U)) by sending a smooth function f : U → R on U to a smooth function
f ◦ ϕ−1 on ϕ(U) ⊂ Rn.

Combined with the previous example, the following proposition indicates that saying M is a
real C∞-manifold is the same as saying that M is a R-ringed space that is locally isomorphic to
(Rn,ORn) with its sheaf of C∞-functions.

Theorem 55. Let (M,OM ) be a R-ringed space that is locally isomorphic to (R,ORd) with its sheaf
of C∞-functions. Then M can be equipped with a structure of a real C∞-manifold, with OM being
the sheaf of smooth functions on M .

Proof. We can cover M by open sets U ’s such that for each U , there is an isomorphism ϕU :
(U,OM |U )

∼−→ (V,ORd |V ), where V is open in Rd. We say (U,ϕU ) is a chart of M . The R-algebra
of R-analytic functions on U is OM (U). If we are given another chart (U ′, ϕU ′) for M , we have an
isomorphism of locally R-ringed spaces

ϕU ′ |U∩U ′ ◦ ϕ−1
U |ϕ−1(U∩U ′) : (ϕU (U ∩ U ′),ORd |ϕU (U∩U ′))→ (ϕU ′(U ∩ U ′),ORd |ϕU′ (U∩U ′)).

The following lemma implies that the above morphism is precisely the chart-compatibility condition
in the classical definition of manifolds via charts and atlas.

Lemma 56. Let (Rn,ORn) be the sheaf of C∞-functions on Rn. Let U ⊂ Rn, V ⊂ Rm be open
subsets with the induced structures of locally R-ringed spaces OU ,OV from Rn,Rm, respectively.
Then every morphism f : (U,OU )→ (U,OV ) of locally R-ringed spaces is k-analytic. Furthermore,
the morphism of sheaves is given by sending g ∈ OV (V ′) to g ◦f ∈ OU (f−1(V ′)) for any open subset
V ′ of V .

Conversely, any R-analytic map f : U → V induces a morphism of locally R-ringed spaces via
taking compositions.
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Sketch of proof of lemma. Let V ′ be an open subset in V and a ∈ f−1(V ′). We have the following
commutative diagram

OV (V ′) OV,f(a) OV,f(a)/mV,f(a) R

OU (f−1(V ′)) OU,a OU,a/mU,a R

f(V ′) fa

∼

fa id

∼

In this diagram, the first row corresponds to the evaluation of elements in OV (V ′) at f(a) and
similarly for the second row. We have fa : OV,f(a) → OU,a is a local ring map so it induces fa
which corresponds to the identity map on R because f(V ′) is a morphism of R-algebras. The
commutativity of the diagram implies that f(V ′)(g)(a) = g(f(a)) for g ∈ OV (V ′), as desired. �

We are done. �

Example 57. Let A be a commutative ring with unity. Let X = SpecA to be the set of all prime
ideals of A. In this example, we show that X can be equipped with a structure of a ringed space.
X is then called an affine scheme.

First, X is a topological space with closed sets being V (S) = {p ∈ SpecA : S ⊂ p} for all subsets
S of A. One can also show that X has basis of open sets D(f) = {p ∈ SpecA : f 6∈ p} where f ∈ A.

To define the structure sheaf OX of X, it suffices to define this on the basis of open sets of X,
i.e. we let OX(D(f)) = Af , the localisation of A at the set {f, f2, . . .}.

In this case, for f ∈ OX(X) = A, the value of f at p ∈ X is the image of f in Ap/pAp, which is
f (mod p). A scheme is a ringed space that is locally isomorphic to affine schemes.

4.3. Analytic manifolds. Theorem 55 suggests that we define k-analytic manifolds as follows.

Definition 58. A k-analytic manifold of dimension d is a k-ringed space (M,OM ) which is locally
isomorphic to (kd,Okd) with its sheaf of k-analytic functions. This follows that (M,OM ) is a locally
k-ringed space. A morphism φ : M → N of two k-analytic manifolds is a morphism of locally
k-ringed spaces.

Remark 59. With the same argument as in Theorem 55, one can show that our definition of k-
analytic manifolds is the same as the definition of k-analytic manifolds via charts and atlas.

Remark 60. In most situations,M is assumed to be paracompact and Hausdorff. For example, these
conditions give the existence of a continuous partition of unity on coverings of M (see [Cra11]), and
we will later use this to define integration of top-forms on M .

Next, we will define (co)tangent bundles/vectors of a k-analytic manifolds as derivations. In
fact, the following definitions work for any locally k-ringed space (M,OM ), but we will restrict our
attention to M being a k-analytic manifold.

Definition 61 (Tangent bundle). Let (M,OM ) be a k-analytic manifold. A k-derivation of OM is
a k-linear homomorphism D : OM → OM of sheaves such that DU (fg) = fDU (g) + gDU (f) for all
U ⊂M open, f, g ∈ OM (U). Denote by Derk(OM ) the k-vector space of k-derivations of OM . It is
also an OM (M)-module via

(g ·D)U (f) := gUDU (f), D ∈ Derk(OM ), g ∈ OM (M), f ∈ OM (U).

We define the tangent bundle TM to be the sheaf of OM -modules via TM(U) := Derk(OM |U ). A
section of tangent bundle over U is called a vector field. The tangent space TpM ofM at p is the stalk
of TM at p, which is a k-vector space of k-derivations Derk(OM,p). Equivalently, by composing with
OM,p → κ(p) = OM,p/mp

∼= k, we can describe TpM as the k-vector space of k-derivations OM,p → k
at p, i.e. D ∈ TpM then D : OM,p → k such that D(fg) = f(a)D(g) + g(a)D(f).
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Remark 62. Let (x, U) be a chart of a k-analytic manifold M with coordinate functions x1, . . . , xd
then ∂

∂xi
: OM |U → OM |U sends f ∈ OM (V ) to ∂f

∂xi
∈ OM (V ) where V ⊂ U is open. Here

∂f
∂xi
∈ OM (V ) is a k-valued function on V , sending p ∈ V to ∂f◦x−1

∂xi
(x(p)). And

(
∂
∂x1

, . . . , ∂
∂xd

)
form

a basis of the free OM (U)-module Derk(OM |U ).

Definition 63. The cotangent bundle Ω1
M of an analytic manifold (M,OM ) is the sheaf of OM -

modules Hom(TM,OM ). Concretely, a section over U is a morphism of sheaves f : TM |U → OM |U ,
called a differential 1-form over U . Furthermore, we can define Ωp

M =
∧p Ω1

M , whose section over
U ⊂M is called a differential p-form over U .

We define a morphism d : OM → Ω1
M of sheaves of k-vector spaces as follows:

d : OM →Ω1
M ,

f ∈ OM (U) 7→(df : D ∈ TMU = Derk(OM |U ) 7→ D(f) ∈ OM |U ).

In particular, we have d(fg) = fdg + gdf .

Remark 64. Let (x, U) be a chart of M with coordinate functions x1, . . . , xd : U → k. Then
dxi ∈ Ω1

M (U) and (dx1, . . . , dxd) is a basis of Ω1
M (U). This basis is dual to the basis

(
∂
∂xi

)
of

TM(U). For f ∈ OM (U) then

df =
d∑
i=1

∂f

∂xi
dxi.

If r ≥ 1 then Ωi
M |U is a free OM |U -module with basis

dxi1 ∧ · · · ∧ dxir , 1 ≤ i1 < · · · < ir ≤ d.

Remark 65. The cotangent bundle satisfies the following universal property: it is a sheaf of OM -
modules equipped with differential d : OM → Ω1

M , i.e. a morphism of sheaves of k-vector spaces
satisfying d(fg) = fdg + gdf where f, g ∈ OM (U), that is universal among sheaves of OM -modules
X equipped with differential d : OM → X. The universal property implies that given a chart (U, x)
M with coordinate functions x1, . . . , xd, Ω1

M (U) is a free OM (U)-module with basis dxi.

A morphism of k-analytic manifolds φ : (M,OM )→ (N,ON ) will induce a morphism φ∗ : Ω1
N →

Ω1
M of OM -modules. Concretely, if f ∈ ON (U) then dNf ∈ Ω1

N (U) is sent to dM (f ◦ φ) where
f ◦ φ ∈ OM (f−1(U)).

Remark 66. In terms of coordinates, let f : M → N be a morphism of k-analytic manifolds, and let
(V, y), (U, x) be charts ofM,N respectively with coordinate functions x1, . . . , xd for x and y1, . . . , ye
for y. Then ω ∈ Ωp

N (U) can be written as

ω =
∑

1≤i1<···<ip≤d
ωIdxi1 ∧ · · · ∧ dxip ,

where I = (i1, . . . , ip) and the ωI ’s are k-analytic functions on U . The morphism f : M → N of
k-analytic manifolds will induce a differential p-form f∗ω ∈ Ωp

M (f−1(U) ∩ V ) on f−1(U) ∩ V ⊂M
defined by

f∗ω =
∑
I

(ωI ◦ φ)d(xi ◦ φ),

=
∑

1≤i1<···<ip≤d

∑
1≤j1<···<jp≤e

(ωI ◦ φ) det

(
∂xim ◦ φ
∂yjn

)
1≤m≤d,1≤n≤e

dyj1 ∧ · · · ∧ dyjp .

24



4.4. Integration of differential forms. In this section, we assume that k is a local field with a
Haar measure µ. Let M be a k-analytic manifold of dimension d and let ω be a global differential
d-form on M . We will define a measure on M by defining integration of the d-form ω 5.

First, we consider the case when M = kd. We then can form a product measure dµ on M from
the given Haar measure on the local field k. Suppose that over an open U of M , ω can be written
as h(x)dx1 ∧ · · · ∧ dxd where h is a k-analytic function on U . With this, we define the measure |ω|
on U to be ∫

U
ϕ|ω| :=

∫
U
ϕ(x)|h(x)|kdµ

for any complex-valued ϕ ∈ Cc(M) with compact support in U . To see what happen to this measure
under k-bianalytic map f : V → V , we first need the change of variables formula for kd:

Theorem 67. Let U be open set in kd and f : U → kd be an injective k-analytic map whose
Jacobian Jf does not vanish on U . Then for any measurable positive (resp. integrable) function
ϕ : f(U)→ R, we have ∫

f(U)
ϕ(y)dµ(y) =

∫
U
ϕ(f(x))|Jf (x)|kdµ(x).

Proof. We refer to [Igu00, Theorem 7.4.1] for the proof when k is a nonarchimedean local field. �

Now, consider a k-bianalytic map f : V → U , where U, V ⊂ kd are open with coordinates
x1, . . . , xd on U and y1, . . . , yd on V . Then Jf (x) = det (∂(xi ◦ f)/∂yj). As

f∗ω = h(f(x))Jf (x)dy1 ∧ · · · ∧ dyd,
we have, by the change of variable formula∫

V
(ϕ ◦ f)|f∗ω| =

∫
V

(ϕ ◦ f)|h(f(x))|k|Jf (x)|kdy1 ∧ · · · ∧ dyd,

=

∫
U
ϕ|h(x)|kdx1 ∧ · · · ∧ dxd,

=

∫
U
ϕ|ω|.

Next, we consider the case when M is any k-analytic manifold of dimension d.

Proposition 68. There exists a unique measure |ω| such that for every chart (U, f) of M and every
measurable positive (resp. integrable) function ϕ supported in U ,∫

M
ϕ|ω| =

∫
f(U)

(ϕ ◦ f−1)|(f−1)∗ω|.

Sketch. To construct ω, by Riesz’s representation theorem, it suffices to do this for ϕ with compact
support. One can consider charts (Ui, fi) of M covering support of ϕ and consider continuous
partition of unity subordinated for these charts, i.e. a family (λi) of continuous real-valued functions
on M such that supp λi ⊂ Ui and

∑
λi = 1 on supp ϕ. We then have∫

M
ϕ|ω| :=

∑
i

∫
fi(Ui)

(λi ◦ f−1
i )(ϕ ◦ f−1

i )|(f−1
i )∗ω|.

We show the independence of charts. Suppose we have another chart (U, g) with same U ⊂ M .
Then f ◦ g−1 : g(U)→ f(U) is k-bianalytic map on kd, so∫

f(U)
|(f−1)∗ω| =

∫
g(U)
|(f ◦ g−1)∗(f−1)∗ω| =

∫
g(U)
|(g−1)∗ω|.

5or to be more precise, we are integrating a density |ω|
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It is not difficult to show that our definition does not depend on the choice of a partition of unity
of M . �
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5. Adeles

In this section, we will define the ring of adeles Ak associated to a global field k and study its
topology. We then describe a functorial way to give a topology on G(Ak) for any linear algebraic
group G. We also show that G(kv) is a kv-analytic manifold for smooth G.

5.1. Adeles of Q. We will review the construction of adeles A for k = Q. Let S be always a finite
nonempty set of places of Q, including the infinite place. For convenience, we sometimes refer to R
as Q∞.

Definition 69. The adeles A = AQ of Q is the restricted product of the locally compact spaces Qp

with respect to the compact open subspace Zp of Qp. In other words, A is a topological space whose
elements are

AQ =
∏
p≤∞

′Qp :=

(ap)p ∈
∏
p≤∞

Qp : ap ∈ Zp for almost all p

 ,

here “almost all" means “all but finitely many". A has a basis of open sets given by

US ×
∏
v 6∈S

Zv,

where S is a finite set of places of Q, and US is an open set of

QS :=
∏
v∈S

Qv

under the product topology.

Let
QS =

∏
v∈S

Qv, ẐS =
∏
v 6∈S

Zv.

We find QS × ẐS is an open subring of A with the induced topology being the product topology 6.
Indeed, the open sets of A restricted to QS × ẐS are of the form

∏
v∈S Uv ×

∏
v 6∈S Vv where Uv is

open in Qv, Vv is open in Zv and Vv = Zv for almost all v 6∈ S. This is precisely the open basis of
the product topology of AS := QS × ẐS . Furthermore,

A =
⋃
S

QS × ẐS

where S ranges over all finite sets of places of Q. Also note that for S ⊂ T , we have an inclusion
continuous map from QS × ẐS to QT × ẐT of topological rings. In other words, we find AK =

lim−→S
QS× ẐS . With this, A is a topological ring, under componentwise addition and multiplication.

Proposition 70. The adeles ring A is a locally compact Hausdorff topological ring.

Proof. We first show A is locally compact. Note that by Tychonoff’s theorem,
∏
v 6∈S Zv is compact

as each Zv is compact. It follows that QS × ẐS is a finite product of locally compact spaces, hence
locally compact. As each point x ∈ A lies in one of these spaces, we find A is locally compact.

Next, we show A is Hausdorff. Note that
∏
v Qv is Hausdorff as Qv is Hausdorff. It follows that

A with the subspace topology of
∏
v Qv is Hausdorff. In particular, for any two distinct points

x, y ∈ A, there exists two disjoint open sets
∏
v∈S Uv ×

∏
v 6∈S Qv and

∏
v∈T Vv ×

∏
v 6∈T Qv of

∏
v Qv

that contain x, y, respectively; here S, T are finite sets of places of Q. Because x, y ∈ A, one
can enlarge S, T so that

∏
v∈S Uv ×

∏
v 6∈S Zv and

∏
v∈T Vv ×

∏
v 6∈T Zv are disjoint open sets of A

containing x, y, respectively. Thus, we conclude that A is Hausdorff. �

6this notation of ẐS is motivated from the fact that it is the profinite completion of ZS = {x ∈ k|x ∈ Ov ∀v 6∈ S}
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For each place v of Q, we have a continuous embedding

Qv ↪→ A : xv 7→ (0, . . . , 0, xv, 0, . . . , 0).

Indeed, the preimage of a basis open set
∏
v∈S Uv ×

∏
v 6∈S Zv of A is either: ∅ if 0 6∈ Ut for some

place t ∈ S, t 6= v; or Uv if 0 ∈ Ut for all t ∈ S \ {v} and v ∈ S; or Zv if 0 ∈ Ut for all t ∈ S and
v 6∈ S.

We have a diagonal embedding

Q ↪→ A : x 7→ (x, x, . . . , x).

This map is well-defined as x ∈ Zv for almost all places v where x ∈ Qv. The image of Q under this
embedding is called the principal adeles, which we will also denote Q for convenience.

Proposition 71. Q is a discrete subgroup of A.

Proof. It suffices to show that 0 ∈ Q has an open neighborhood U in A that does not intersect
Q\{0}. Let U = {(xv) ∈ A : |xv|v < 1 if v =∞ and |xv|v ≤ 1 if v 6=∞} then U is open and 0 ∈ U .
By prime factorisation in k = Q, we find U ∩ (Q \ {0}) = ∅, as desired. �

Let
AS =

∏
v 6∈S

′Qv.

Then we can identify QS ×AS with A via QS ×AS ↪→ A×A→ A where the latter map is addition
on A. It follows that QS × AS is isomorphic to A as topological rings, with the product topology
on QS and the restricted product topology on AS .

5.1.1. Approximation theorem for adeles.

Theorem 72. For any finite nonempty set S of places of Q,
(a) (Weak approximation property) Q is dense in QS via the diagonal embedding, and
(b) (Strong approximation property) Q is dense in AS via the diagonal embedding.

Proof. (a) Without loss of generality, we assume S contains the infinite place. We need to show that
any open set in QS contains a nonzero element in Q. Indeed, a basis of open sets of QS consists
of open sets U ×

∏
p∈S,p<∞(ap + pkpZp) where U is open in R and kp ∈ Z, ap ∈ Q. We choose

x ∈ U ∩Q. Then by the Chinese Remainder Theorem, there exists y ∈ Q, z ∈ Z \ {0, 1} such that
y ≡ ap − x (mod pkp) and z ≡ 1 (mod pkp) for all p ∈ S \ {∞}. Hence, for sufficiently small ` < 0,
x+ yz` is our desired element in Q.

(b) We first consider the case where S does contain the infinite place. A basis of open sets of AS
consists of open sets

∏
p∈T (ap+pkpZp)×

∏
p6∈S∪T Zp where T is a finite set of places of Q, T ∩S = ∅,

ap ∈ Q for all p ∈ T . By the Chinese Remainder Theorem, there exists x ∈ Q such that x ≡ ap
(mod pkp) where the denominator of x only has prime powers of primes p ∈ T . It follows x lies in
the open set.

If S does not contain the infinite place, then there exists a prime q ∈ S. An open set of AS
consists of open sets U ×

∏
p∈T (ap + pkpZp) ×

∏
p 6∈S∪T Zp where T is a finite set of places of Q,

T ∩ S = ∅, ap ∈ Q for all p ∈ T , U is open in R.
There exists ` ∈ Z>0, x ∈ Z such that x

q`
∈ U . Indeed, pick any y ∈ U and let ` be sufficiently

large such that (y− q−`, y+ q−`) ⊂ U . As
[
q`y − 1

2 , q
`y + 1

2

]
has length 1, there exists an integer x

lying inside that interval, giving xq−` ∈ U .
By the Chinese Remainder theorem, there exists z ∈ Q, t ∈ Z>1 such that z ≡ ap − xq−`

(mod pkp) and qt ≡ 1 (mod pkp) for all p ∈ T , where the denominator of z only has prime powers
of primes p ∈ T . It follows xq−` + zqtk ∈ Q lies in the desired open set. �
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Corollary 73. Let S = {∞} be the set of all infinite places of Q then
(a) |Q \ A∞/Ẑ| = 1

(b) We have an isomorphism Q \ A/Ẑ ∼= Z \ R of topological spaces.

Proof. (a) It suffices to prove that A∞ = Q + Ẑ. Consider x ∈ A∞. Then x + Ẑ is an open
neighborhood of x as Ẑ is open subgroup in A∞. From strong approximation theorem for adeles,
we know Q is dense in A∞. Hence, there exists ` ∈ Q so that ` ∈ x+ Ẑ, implying x ∈ Q + Ẑ.

(b) We identify A with R× A∞. Consider the map

φ : Z \ R→ Q \ A/Ẑ
Z + x 7→ [x, 0]

where we denote [x, y] for (x, y) ∈ R× A∞ to be the double coset Q + (x, y) + Ẑ. Note that Ẑ and
Q are embedded diagonally into R and A, respectively.

We first show that φ is injective. If x ∈ R so [x, 0] = 0 then (x, 0) = (`, ` + y) for y ∈ Ẑ and
` ∈ Q. It follows ` = −y ∈ Ẑ so ` ∈ Q ∩ Ẑ = Z. Hence, x = ` ∈ Z, as desired.

To show φ is surjective. From (a), we find A∞ = Q + Ẑ. Hence, A = Q + R + Ẑ and surjectivity
follows.

To show φ is continuous. Consider U ⊂ R to be representatives of an open subset U ′ in Q \A/Ẑ
with 0 ∈ U . Then Q + (U, Ẑ) is open in A. As A = R × A∞, we can cover Q + (U, Ẑ) by open
subsets (Xi, Yi) where Xi and Yi are open in R and A∞, respectively. As 0 ∈ U and Ẑ is open in
A∞, we find Q + (Xi, Ẑ) is also open in Q + (U, Ẑ) and these subsets cover Q + (U, Ẑ).

On the other hand, as Z = Q ∩ Ẑ, Q + (U, Ẑ) is disjoint union of `+ (Z + U, Ẑ) for ` ∈ Q, ` 6∈ Z.
Combining with the previous argument, we find (Z+U, Ẑ) must be obtained from taking the union
of (Xi, Ẑ), where Xi are open subsets of R. It follows U +Z is open in R, meaning inverse image of
U ′ under φ is open in Z \ R.

To show φ has continuous inverse, it suffices to show φ is open map. Consider U ⊂ R so Z + U

is open in R and we need to show Q + U + Ẑ is open in A. This holds because Q + U + Ẑ is the
union of open sets `+ (Z + U, Ẑ) where ` ∈ Q. �

Corollary 74. The quotient Q \ A is compact.

Proof. From the previous corollary, we obtain a homeomorphism of topological spaces

Q \ A ∼= Z \ R× Ẑ.

Note that Ẑ is compact. As Z is a lattice in R, Z \ R is compact. Thus, Q \ A is compact. �

5.2. Topology of adelic points. Let X be an affine k-scheme of finite type. For a k-algebra R
which is also a topological ring, we can endow X(R) with a canonical topology. When k = Q and
R = A, X(A) is homeomorphic to the restricted product of X(Qv) over all places v of Q.

Proposition 75. Let R be a topological ring. There exists a unique way to topologise X(R) for all
affine schemes X of finite type over R such that

(1) the topology is functorial in X; that is, if X → Y is a morphism of affine schemes of finite
type of R, then the induced map on points X(R)→ Y (R) is continuous;

(2) the topology is compatible with fiber products: this means if X → Y and Y → Z are mor-
phisms of affine schemes of finite type over R, then the topology on (X×Z Y )(R) is the fiber
product topology;

(3) closed immersion of affine schemes X ↪→ Y (i.e. the map of coordinate rings O(Y )→ O(X)
is surjective) induces topological embeddings X(R) ↪→ Y (R) (i.e. a continuous map that is
homeomorphic onto its image);
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(4) if X = SpecR[t] then X(R) is homeomorphic with R under the natural identification X(R) ∼=
R.

If R is Hausdorff or locally compact, then so is X(R). Moreover, if R is Hausdorff then the closed
immersion X → Y induces a closed embedding X(R)→ Y (R).

Sketch of proof. We refer to [Con12] for the proofs of these two propositions. Essentially, the topol-
ogy of X(R) is constructed by choosing an R-algebra isomorphism O(X) ∼= R[t1, . . . , tn]/I for the
coordinate ring of X, for any ideal I. The set X(R) can then be identified with the sets of ele-
ments in Rn on which the elements in I (we view elements of I as R-valued functions on Rn) all
vanish. We have an injection X(R) ↪→ Rn which we equip X(R) with the subspace topology of
Rn. One then has to check that the defined topology does not depend on the choice of isomorphism
O(X) ∼= R[t1, . . . , tn]/I and satisfies all the functorial properties as above. �

Proposition 76. Let R → R′ be a continuous map of topological rings and let X be an affine
scheme of finite type over R. Then X(R)→ X(R′) is continuous. Moreover, if R→ R′ is a

(1) a topological embedding,
(2) a open topological embedding,
(3) a closed topological embedding,
(4) a topological embedding onto a discrete subset,

then so is X(R)→ X(R′).

Proof. The proposition follows from the commutative diagram

X(R) Rn

X(R′) R′n

i

f g

i′

where i and i′ are topological embeddings. For example, we find f−1(U) = X(R) ∩ g−1(U) for any
U ⊂ X(R′) so f is continuous. If g is a topological embedding then so is g ◦ i, hence f is also a
topological embedding. If g is open or closed then so is f . �

Example 77 (Topology of adeles and ideles). When k = Q and R = A, we have Ga(R) = A. From
§ 5, we know that A has the topology generated by the basis of open sets

US ×
∏
v 6∈S

Zv

where S is a finite set of places of k and US is open in QS =
∏
v∈S Qv.

Next, we consider the ideles Gm(A) = A×. We have a closed immersion Gm ↪→ Ga ×Ga sending
t 7→ (t, t−1). Therefore, we have a topological embedding A× ↪→ A × A, giving Gm(A) = A× the
topology generated by the basis of open sets

US ×
∏
v 6∈S

Z×v

where S is a finite set of places of k and US is open in Q×S =
∏
v∈S Q×v under the product topology

7. Note that this is not the same topology as giving A× ⊂ A the subspace topology. In particular,∏
p<∞ Z×p is an open set in A× but it is not open under the subspace topology from A. Indeed,

if
∏
p<∞ Z×p is open under the subspace topology from A, it is a union of A× ∩ U ’s where U =

US ×
∏
v 6∈S Zv is open in A. One can then choose a sufficiently large prime p such that a = (av)v

7To see this, consider open set U × V in A× A. For a = (av) ∈ A, if (a, a−1) ∈ U × V then a±1
v ∈ Zv for almost all

v, meaning av ∈ Z×v for almost all v; finally, note that Q×v has the subspace topology from Qv for all places v
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satisfies (av)v∈S ∈ US ∩ Q×S , ap = p and av = 1 for v 6∈ S ∪ {p}. It follows a 6∈
∏
v<∞ Z×p but

a ∈ A× ∩ U , a contradiction.
Thus, we have a homeomorphism

Gm(A) ∼=
∏
v

′Gm(Qv).

Example 78 (Topology of GL2(A)). The map GL2 ↪→ M2 × Ga sending x 7→ (x,det−1 x) is a
closed immersion of affine schemes since the associated k-algebra map k[x11, x12, x21, x22]⊗k k[t]→
k[x11, x12, x21, x22,det−1] sending t to det−1 := (x11x22 − x12x21)−1 is surjective. Hence, we have a
topological embedding GL2(R) ↪→M2(R)×Ga(R).

With the above embedding, we will describe the topology of GL2(AQ). It suffices to describe a
basis of open neighborhoods of the identity of GL2(A).

We first describe the topology of GL2(AT ) where AT := QT × ẐT =
∏
v∈T Qv×

∏
v 6∈T Zv for some

fixed finite set T of places of Q containing the infinite place. We know that (I2 + pkMn(Zp))× (1 +

pkZp) for k ∈ Z≥1 forms a basis of open neighborhoods of (I2, 1) ∈ M2(Qp) × Qp. Therefore, for
any finite set S of places of Q containing the infinite place, and k ∈ Z≥1, the collection∏

p∈S∩T

(
(I2 + pkM2(Zp))× (1 + pkZp)

)
×

∏
p 6∈S∪T

(M2(Zp)× Zp)

forms a basis of open neighborhoods of (I2, 1) inM2(AT )×AT (by definition of the product topology).
Intersecting these sets with the image of GL2(AT ) from the embedding, we obtain∏

p∈S∩T
(I2 + pkM2(Zp))×

∏
p 6∈S∪T

GL2(Zp)

as a basis of open neighborhoods of I2 in GL2(A). Thus, we have a homeomorphism

GL2(AT ) ∼=
∏
v∈T

GL2(Qv)×
∏
v 6∈T

GL2(Zv).

Now, AT ↪→ A is an open embedding, so GL2(AT ) ↪→ GL2(A) is also an open topological embedding.
Furthermore, as GL2(A) =

⋃
S GL2(AS) over all finite set S of places of Q containing the infinite

place, we conclude that the collection ∏
v∈S

Uv ×
∏
v 6∈S

GL2(Zv)

forms a basis of open sets of GL2(A), where S is a finite set of places of Q containing the infinite
place and Uv is open in GL2(Qv).Thus, we have a homeomorphism

GL2(A) ∼=
∏
v

′GL2(Qv).

The argument in the previous example holds for general GLn, giving a homeomorphism GLn(A) ∼=∏′
v GLn(Qv). Hence, we have the following result.

Proposition 79. For a linear algebraic group G over Q and a faithful representation G → GLn,
one has an isomorphism of topological groups

G(A) ∼=
∏
v

′G(Qv)

where the restricted product on the right is defined with respect to the compact open subgroup G(Qv)∩
GLn(Zv) of G(Qv), where v -∞.
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Example 80 (Topology of SL2(A)). We have a closed immersion SL2 ↪→ GL2 of affine schemes as
O(SL2) = O(GL2)/(x11x22 − x12x11 − 1), giving a topological embedding SL2(R) ↪→ GL2(R) for
any topological ring R.

Since Q is a discrete subgroup of AQ, SL2(Q) is a discrete subgroup of SL2(A).

We refer to [Con12] for more discussions on describing the adelic topology of X(Ak) for any
separated scheme X of finite type over k. For example, on [Con12, p. 10], when removing the
affineness assumption of X, X(k) may not be a discrete closed subset of X(Ak).

5.3. Analytic manifolds from smooth schemes. Continuing from Proposition 75, we restrict
X to be a smooth affine scheme of finite type over k, where k is a complete valued field. In this
section, we show that one can endow X(k) with a canonical structure of a k-analytic manifold. Here
smoothness of X means the following (see [GW20, §6.8])

Definition 81. Let X be an affine scheme of finite type over k. We say X is smooth of dimension
d over k if X can be covered by affine open sets Spec k[t1, . . . , tn]/(f1, . . . , fn−d) for suitable n and
fi, such that the Jacobian matrix (∂fi/∂tj)(x) ∈ M(n−d)×n(κ(x)) has rank n − d. Equivalently,
the ideal in k[t1, . . . , tn] generated by the fi’s and all the (n − d) × (n − d) minors of the Jacobian
(∂fi/∂tj) is the whole ring k[t1, . . . , tn].

Example 82. GL2 = Spec k[x11, x12, x21, x22, t]/(t(x11x22 − x21x12)− 1) is a smooth scheme over k
of dimension 4.

Example 83. SL2 = Spec k[x11, x12, x21, x22]/(x11x22 − x21x12 − 1) is a smooth scheme over k of
dimension 3.

Proposition 84. There is a canonical structure of a k-analytic manifold on X(k), which is char-
acterised as follows:

(1) Functorial in X: morphism of smooth k-schemes induce morphism of k-analytic manifolds;
open (resp. closed) immersions induce open (resp. closed) immersions of k-analytic mani-
folds.

(2) When X = Spec k[x1, . . . , xd], the structure of k-analytic manifold on X(k) ∼= kd is the
natural one.

(3) Etale morphisms of smooth k-schemes induce k-analytic local isomorphisms.

Sketch of proof. Defining a structure of a k-analytic manifold on X(k) amounts to describing which
continuous functions are k-analytic, such that the induced locally ringed space is locally isomorphic
to kn with its sheaf of k-analytic functions. Let U be an open set of X(k). A continuous function
f : U → k is k-analytic at x ∈ U if there exists an immersion of k-schemes i : V → Spec k[t1, . . . , tn]
on a Zariski-open neighborhood V of x in X and a k-analytic function g : W → k on an open
neighborhood of x such that f = g ◦ i on some open neighborhood of x in U . We say f is analytic
if it is analytic at every point in U .

We refer to [CLNS18, Chapter 0, §1.6] for the verification of the functorial conditions with the
above analytic structure. �

Example 85. If k = Qp or k = R then GL2(k), SL2(k) are k-analytic manifolds.

5.4. Weil measure on the integral points of nonarchimedean local fields. From the previous
section, for a smooth schemeX of finite type over a nonarchimedean local field k,X(k) is a k-analytic
manifold. In this section, we show that ifX a smooth scheme over Ok, there is a very natural measure
on X(Ok), called the Weil measure, that does not depend on the choice of a volume form, i.e. a
nowhere vanishing differential form of top degree. Furthermore, if we can construct any measure
on X(k) by integrating a volume form on X(k) (see § 4.4), the Weil measure is then the restriction
measured on X(Ok) ⊂ X(k). In this section, we will also prove a theorem of Weil that links point
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counting over finite fields with integration over local fields. We will mainly follow two references
[CLNS18, Chapter 0] and [Mag16].

Let k be a nonarchimedean local field, Ok be its ring of integers, Fq be the residue field where
q is a prime power of a prime p. Let X be a smooth scheme of relative dimension n over Ok and
ΩX/Ok be the sheaf of differentials.

We will define a canonical measure on X(Ok), called the Weil measure. Because X is smooth
over Ok and Ωn

X/Ok
is a locally free sheaf of OX -modules of rank 1, there exists an affine open cover

{Ui} of Ok-schemes of X such that we have a trivialisation Ωn
X/Ok

|Ui ∼= OX |Ui over each Ui. A
trivialisation of Ωn

X/Ok
|Ui corresponds to a nowhere-vanishing differential form ωi ∈ Γ(Ui,Ω

n
X/Ok

).
From this, we can define a (Radon) measure d|ωi| on Ui(Ok) by integrating with respect to ωi. We
also have X(Ok) =

⋃
i Ui(Ok), so in order to define a (Radon) measure on X(Ok), the measures d|ωi|

must agree on overlaps. This is true because for two nowhere-vanishing differential forms ωi|Ui∩Uj
and ωj |Ui∩Uj on Ui ∩Uj , there exists a nowhere-vanishing function f ∈ OX |Ui∩Uj (hence invertible)
so that ωi = fωj on Ui ∩ Uj . This gives us the relation d|ωi|(x) = |f(x)|kd|ωj |(x) of measures on
Uj(Ok) ∩ Ui(Ok) = (Ui ∩ Uj)(Ok). However, as f : (Ui ∩ Uj)(Ok)→ Ok is invertible, |f(x)|k = 1 for
all x ∈ (Ui ∩ Uj)(Ok), meaning d|ωi| = d|ωj | on (Ui ∩ Uj)(Ok).

Remark 86. The Weil measure is canonical in the sense that its construction does not depend on
the existence of a global differential form. The main reason for this is that our scheme X is over
Ok, hence any invertible function f , defined on an open set U of X, must have |f(x)|k = 1 for
all x ∈ U(Ok). This also means that one may not be able to repeat this construction to define a
measure on X(k). However, if we have a global differential form ω ∈ Γ(X,Ωn

X/Ok
), we can define a

measure on X(k) whose restriction to X(Ok) is the Weil measure.
In the literature (see [Bat99]), it seems that the name Weil measure is given when X has a global

nowhere-vanishing differential form, and the measure we have constructed is called the canonical
measure. In fact, the two measures are the same if the Weil measure (as defined in the literature)
exists. Thus, for convenience, we will stick with our definition of Weil measure.

Theorem 87 (Weil). Let X be a smooth scheme of dimension n over Ok. Let µ be the Weil measure
on X(Ok), then ∫

X(Ok)
dµ =

|X(Fq)|
qn

.

Sketch. Because X is smooth over Ok, the reduction map ϕ : X(Ok) → X(Fq) sending x 7→ x is
surjective, giving ∫

X(Ok)
dµ =

∑
x∈X(Fq)

∫
ϕ−1(x)

dµ.

It suffices to show
∫
ϕ−1(x) dµ = q−n for all x ∈ X(Fq). We view x ∈ X(Fq) as an element of X

by taking the value x(η) at the generic point η ∈ SpecFq. Because X is smooth and ΩX/Ok is
locally free, there exists an affine open set U ∼= SpecOk[x1, . . . , xn+m]/(f1, . . . , fm) of x such that
ΩX/Ok |U is trivialised and the Jacobian matrix (∂fi/∂xn+j)1≤i,j≤m is invertible at ϕ−1(x) ⊂ U(Ok)

(ϕ−1(x) ⊂ U as any open set of x contains x ∈ ϕ−1(x), viewed an element of X by evaluating at the
generic point η ∈ SpecOk). We consider the map g : U(Ok)→ An+m

Ok
defined by g(x1, . . . , xn+m) =

(x1, . . . , xn, f1(x), . . . , fm(x)). Observe that the Jacobian of g at ϕ−1(x) is a unit in Ok. Therefore,
by forgetting the last m coordinates, g induces an etale morphism h : U → AnOk , which induces a
k-analytic isomorphism from ϕ−1(x) to pn by Hensel’s lemma, where p is the maximal ideal of Ok.
Furthermore, because ΩX/Ok |U ∼= OnX |U , we can find a global nowhere-vanishing differential form
ω ∈ Γ

(
U,
∧n ΩX/Ok |U

)
. We then have h∗(dt1∧dt2∧· · ·∧dtn) = fω, where f is invertible in U , hence
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f(x) p-adic norm for x ∈ U(Ok). By definition, fω defines a Weil measure on the neighborhood
U(Ok). Thus, we find ∫

ϕ−1(x)
dµ =

∫
pn
dt1 ∧ · · · dtn = q−n

by the change of variables formula. �

Proposition 88. Let X be a smooth scheme over Ok, Y be a reduced closed subscheme of codimen-
sion at least 1 in X. Then Y (Ok) has measure 0 in X(Ok) with respect to the Weil measure.

Sketch. By using affine cover of X, we can reduce the problem to the case where X is an affine
smooth scheme. By considering some hypersurface containing Y , we can also reduce to the case
of principal divisor, i.e. Y is defined by f = 0 for irreducible f ∈ Γ(X,OX). By the Noether
normalisation theorem, we can then further assume that X = SpecOk[x1, . . . , xn] and f = x1.

To show µ(Y (Ok)) where µ is the Weil measure, for m ∈ Z≥1, we set

Ym(Ok) := {(x1, . . . , xn) ∈ Onk : x1 ∈ mm}.
We then find

Y (Ok) =

∞⋂
m=1

Ym(Ok).

We also have

µ(Ym(Ok)) =

∫
mm
|dx1|

m∏
i=2

∫
Ok

|dxi| = q−m.

Therefore, we find
µ(Y (Ok)) = lim

m→∞
µ(Ym(Ok)) = 0.

�

5.5. Measure on the adelic points. Let k be a global field, X be a smooth affine scheme of
relative dimension n over k, ω ∈ Γ(X,Ωn

X/ Spec k) be a global nowhere vanishing algebraic differential
form over k, called a volume form. Our goal in this section is to associate a measure on X(Ak).

5.5.1. Measures on local points. We first normalise the Haar measures on each local field kv as
follows:

(1) If kv = R then we use the Lebesgue measure.
(2) If kv = C then we use twice the standard Lebesgue measure on C ∼= R2, i.e. if z = x + iy

with x, y ∈ R then this Haar measure is |dz ∧ dz| = 2dx ∧ dy where dx and dy are the
Lebesgue measure on R.

(3) If kv is nonarchimedean, we normalise the Haar measure on kv so that Ov has volume 1.
By arguing similarly as in § 4.4 and § 5.4, for each place v of k, we can construct a (Radon)

measure |ω|v on X(kv) as follows:
(1) Cover X by affine schemes Ui’s with chart (Ui,OX |Ui)

∼−→ (V ⊂ knv ,Oknv |V ). When taking
kv-points, there holds X(kv) =

⋃
i Ui(kv). On Ui(kv), with local coordinates x1, . . . , xn

coming from the isomorphism (Ui,OX |Ui)
∼−→ (V ⊂ knv ,Oknv |V ), ω can then be written as

fdx1 ∧ · · · ∧ dxn where f is k-analytic on Ui(kv).
(2) We can define a measure |f |vdx1dx2 · · · dxn on each U(kv). To define a measure on X(kv),

we use partition of unity. One then shows that the resulting measure |ω|v on X(kv) does
not depend on the choice of local coordinates or on the choice of partitions of unity.

Example 89. For SL2 over Q, as we did in the proof of Proposition 112, we can choose U11 =
SpecO(SL2)x11 and U12 = SpecO(SL2)x12 to cover SpecO(SL2). Hence, ω over U11(Qv) = {(x11, x12, x21) ∈
Q3
v : x11 6= 0} can be written as 1

x11
dx11 ∧ dx12 ∧ dx21, and indeed x−1

11 is Qv-analytic on U11(Qv).
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5.5.2. Local finiteness of the measure on X(Ak). We would like to construct a Radon measure on
our locally compact space X(Ak) roughly as a product of measures |ω|v on X(kv). In particular,
we require our measure to have finite volume on compact sets. In order to address this issue, we
will describe a family of compact sets of X(Ak) via taking certain integral model of X, and then
use this information to give criteria that ensures the existence of a Radon measure on X(A).

For each place v of k, let kv be the completion of k with respect to v and Ov be its ring of integers
and κ(v) be the corresponding residue field. Let S be a nonempty finite set of places of k containing
all archimedean places and let OS := {x ∈ k : x ∈ Ov∀v 6∈ S}. For example, if k = Q, S = {2, 3}
then OS = Z[1

6 ].
By the principle of “spreading out" (see [Poo17, §3.2]), by enlarging S if necessary, there exists

a smooth scheme X of finite type over OS such that X ×SpecOS Spec k = X 8 and ω extends to a
volume form ω on X. As SpecOv → SpecOS for v 6∈ S, we can regard X(Ov) as a compact open
subset of X(kv) = X(kv), and

(2)
∏
v 6∈S′

X(Ov)×
∏
v∈S′

X(kv)

as an open subset of X(Ak) for any finite set S′ of places of k containing S.
Furthermore, from Theorem 87, we know |ω|v(X(Ov)) = |ω|v(X(Ov)) = |X(κ(v))|

|κ(v)|n .
As every point in X(Ak) lies in the open subset (2), if the infinite product∏

v 6∈S

|X(κ(v))|
|κ(v)|n

converges absolutely, we can define a Radon measure µX =
∏
v
′|ω|v on X(Ak) whose restriction to

(2) is the product measure. If X satisfies this condition, we say X admits an adelic measure.
Note that this definition of µX (if it exists) does not depend on the chosen subset S of places of

k, or on the choice of integral model X (because two choices of integral models become isomorphic
after enlarging S).

5.5.3. Weil restriction of scalars. If X admits a Tamagawa measure, we normalise the measure on
X(A) to

µX = ρ− dimX
k

∏
v

′|ω|v,

where
(1) if k is a number field, ρk = |∆k|1/2 where ∆k is the discriminant of the field k, and
(2) if k is the function field of a curve X over Fq, ρk = qg−1 where f is the genus of X.
There are two main reasons why we do this. The first reason is that in some sense, this normal-

isation makes the measure depend only on the scheme X rather than the choice of global field k.
More precisely, we have the following

Proposition 90. Let k′ be a finite separable extension of a global field k, let X ′ be a smooth scheme
of finite type over k′ that admits an adelic measure, then its Weil restriction of scalars X = Resk

′
k X

′,
i.e. a scheme over k defined by X(R) := X ′(R⊗kk′) for any k-algebra R, is a smooth scheme of finite
type over k which also admits an adelic measure. Furthermore, we have a canonical homeomorphism

X(Ak) ∼= X ′(Ak′)

8A rough sketch of this idea over Q: We first consider smooth affine scheme and choose equations for this scheme.
Then there exists large enough n so that the coefficients are in Z[ 1

n
]. This gives us an integral model over Z[ 1

n
]. Next,

consider any smooth scheme by gluing along affine opens. One needs to check smoothness along the way.
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that is a measure-preserving morphism if we equip both sides with the normalised measures as dis-
cussed before.

For the proof of this proposition, we refer to [Wei82, p. 22]. We delay the second reason for this
choice of normalisation to the section § 8.1 (after introducing Fourier analysis on adeles).
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6. Fourier analysis on locally compact abelian groups

In this section, we study Fourier analysis on locally compact abelian groups, in particular for the
cases of R,Qp and A. Our goal is to establish the Poisson summation formula. The references we
use for this section are [Fol16, §4] and [Poo15].

Throughout the section, let G be always a locally compact Hausdorff abelian topological group.
For example, S1 = {z ∈ C : |z| = 1} is a locally compact Hausdorff abelian group.

6.1. Pontryagin dual. In this subsection, we will define the Pontryagin dual Ĝ of a locally compact
abelian group G. The Pontryagin duality then claims that G is isomorphic to ̂̂G as topological
groups. Furthermore, when G is a local field or G is the adeles, we also have an isomorphism G ∼= Ĝ
of topological groups.

Definition 91. A character of G is a continuous homomorphism χ : G→ C×. A unitary character
of G is a continuous homomorphism χ : G → S1. The Pontryagin dual Ĝ of G is the group of
unitary characters of G, with the group operation being pointwise multiplication. We can equip Ĝ
with the compact-open topology, i.e. the topology generated by {χ ∈ Ĝ : χ(K) ⊂ U} for every
compact K ⊂ G and open U ⊂ S1.

In fact, Ĝ is also a locally compact abelian group. Any continuous homomorphism φ : G→ H of
locally compact abelian groups induces a continuous homomorphism Ĥ → Ĝ taking χ to χ ◦ φ. In
fact, taking the Pontryagin dual is a contravariant and exact functor from the category of locally
compact abelian groups to itself.

Example 92. If G is discrete then Ĝ is compact. Indeed, the compact-open topology on Ĝ is precisely
the topology of pointwise convergence of all maps from G to S1. With respect to the latter topology,
Ĝ is a closed subset of the space of all maps from G to S1. The latter space is compact as it is
homeomorphic to (S1)|G|, therefore Ĝ is also compact.

We will assume the following result (see [Fol16, p. 110] for the proof):

Theorem 93 (Pontryagin duality). We have a canonical isomorphism of topological groups

G→ ̂̂
G,

g 7→ (χ 7→ χ(g)).

In the next subsections, we will explain the following table:

G Ĝ
R R
Qp Qp

A A
Z R/Z
Zp Qp/Zp
Q Q \ A

6.1.1. Pontryagin duals of local fields. Let k be a local field.

Proposition 94. For a local field k and a nontrivial unitary character ψ of (k,+), we have an
isomorphism Ψ : k → k̂ of locally compact abelian groups, sending a 7→ ψa, where ψa(x) := ψ(ax).

Proof. We check Ψ is injective. If ψa = ψb for a, b ∈ k then ψ(ax) = ψ(bx) for all x ∈ k, or
ψ((a− b)x) = 1 for all x ∈ k. As ψ is nontrivial, we find a = b.
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We show that Ψ is a homeomorphism onto its image. From the topology of k̂, it suffices to
show that k has C(K,U) = {a ∈ k : ψa(K) ⊂ U} = {a ∈ k : aK ⊂ ψ−1(U)} as basis of open
neighborhoods of 0, where K ⊂ k is compact and 1 ∈ U ⊂ S1 is open.

For any compact set K of k and open set U of S1 containing 1, as ψ−1(U) contains an open disk
around 0 and K is bounded, there exists δ > 0 such that if a ∈ k, |a| < δ then aK ⊂ ψ−1(U). This
shows C(K,U) is open in k, as given a0 ∈ C(K,U), we know for all a ∈ k such that |a − a0| < δ
then (a− a0)K ⊂ ψ−1(U), implying a ∈ C(K,U).

For any δ > 0, we show that there exists a compact K of k and an open set U of S1 containing 1
such that the open disk |a| < δ contains C(K,U). Indeed, we can choose b ∈ k such that ψ(b) 6= 1
(ψ is nontrivial) and choose open U ⊂ S1 containing 1 such that ψ(b) 6∈ U . Hence, b 6∈ ψ−1(U). We
choose K to be a closed disk centered at 0 of radius at least |b|/δ. Hence, aK ⊂ ψ−1(U) implies
b 6∈ aK, meaning |b| > |a| · |b|/δ, so |a| < δ.

Finally, we show Ψ is surjective. From the pairing 〈, 〉 : k × k̂ → S1, we have an order-reversing
bijection between closed subgroups of k̂ and closed subgroups of k by taking orthogonal comple-
ments. Hence, to show Ψ(k) = k̂, it suffices to show Ψ(k)⊥ = {0}. If x ∈ Ψ(k)⊥ then ψa(x) = 1 for
all a ∈ k, implying x = 0. �

Remark 95. There is a standard nontrivial unitary character ψ for each local field k:
(1) If k = R, we let ψ(x) := e−2πix.
(2) If k = Qp, ψ is defined by ψ(Zp) = 1 and ψ(p−n) = e2πip−n for all n ≥ 1.
(3) If k = Fp((t)), define ψ

(∑
ait

i
)

:= e2πia−1/p (here we choose a lift of a−1 from Fp to Z).
(4) If k0 is either R,Qp or Fp((t)) with the corresponding character ψ0 as above, and k is a finite

separable extension of k0 then let ψ : k → S1 defined by the composition k
Trk/k0−−−−→ k0

ψ0−→ S1.

Corollary 96. We have R̂/Z ∼= Z and Q̂p/Zp ∼= Zp for prime p.

Proof. It suffices to show that the image of the map R̂/Z → R̂ ∼−→ R is Z. A nontrivial unitary
character f : R/Z → S1 induces a nontrivial unitary character f ′ : R → S1 of R whose kernel
contains Z. From previous proposition, it must be of the form f ′(x) = e2πiax for some a ∈ R.
Because f ′|Z = 1 so a ∈ Z. Hence, we can define a bijection R̂/Z→ Z sending f to a.

Similarly, the image of Q̂p/Zp → Q̂p
∼−→ Qp is Zp because for the standard character ψ of Qp

defined in Remark 95, ψ(ax) = 1 for all x ∈ Zp iff a ∈ Zp. �

6.1.2. Pontryagin dual of adeles. Recall that the adeles A of Q is a locally compact abelian group
under addition. From previous propositions, we have the following result

Proposition 97. We have an isomorphism of topological groups

Â→
∏
v

′(Q̂v, Q̂v/Zv),

ψ 7→ (ψ|Qv),∏
v

ψv 7→(ψv).

In other words, to give a unitary character ψ of A, it suffices to give a collection (ψv) of unitary
characters of Qv so that ψv|Zv = 1 for almost all places v of Q.

Furthermore, we can construct a nontrivial unitary character expA on A by letting expA |Qv to be
the standard characters on Qv as in Remark 95. Then

Ψ : A→ Â
a 7→ (expA,a : x 7→ ψ(ax)).
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is an isomorphism of topological groups.

Sketch. The first isomorphism holds for any restricted product, i.e. if Gv are locally compact abelian
groups and Hv is open compact subgroup of Gv then

̂∏
′(Gv, Hv) ∼=

∏
′
(
Ĝv, Ĝv/Hv

)
with the similar map as defined in the proposition. One can easily show that this map is a bijective
group homomorphism. To show it is a homeomorphism requires more work.

For the second isomorphism, the standard character ψv on Qv induces an isomorphism Ψv : Qv →
Q̂v that sends Zv to Q̂v/Zv, as shown in corollary 96. Hence, Ψ is precisely the map

A =
∏
v

′(Qv,Zv)
∏

Ψv−−−→
∏
v

′(Q̂v, Q̂v/Zv)
∼−→ Â.

�

Remark 98. For a general global field k, one can choose a standard character expAk on Ak as follows:
(1) If k is a number field, we choose the standard character ψv on each kv as in Remark 95, and

choose expAk =
∏
v ψv as the standard character on Ak.

(2) If k is the function field of a curve X over Fq. Let ΩX/Fq be the cotangent sheaf, i.e. the
sheaf of 1-forms. Let Ωk be the fiber at the generic point, so Ωk is a 1-dimensional k-vector
space. Define Ωv := Ωk ⊗k kv. There is a residue map Resv : Ωv → kv defined as follows: if
u is a uniformiser of the closed point v, the residue map is

Resv : Ωv = κ(v)((u))du→ κ(v)∑
i∈Z

aiu
idu 7→ a−1.

Here κ(v) is the residue field at the closed point v. This definition is independent of the
choice of uniformiser 9. A choice of a global 1-form ω ∈ Ωk gives rise to a unitary character
on kv

ψv(x) := exp

(
2πi

q
Trκ(v)/FqRes(xω)

)
for each closed point v of X. Let expA =

∏
v ψv be the standard unitary character on Ak.

Corollary 99. Let ψ be the standard character on A as in the previous proposition. Then ψ is
trivial on Q and the isomorphism A ∼= Â defined via ψ gives rise to an isomorphism of topological
groups Q ∼= Q̂ \ A.

Proof. We first recall the definition of ψ =
∏
v ψv. Here ψ∞ : R → S1 is defined as ψ∞(x) =

e−2πix and for prime p, if x = upn ∈ Qp where u ∈ Z×p , then ψp(x) = 0 if n ≥ 0 and ψp(x) =

e2πipn(xp−n mod p−n) if n < 0. Hence, to show ψ(x) = 1 for x ∈ Q, it suffices to show that if
x = pk11 · · · p

k`
` ∈ Q then x−

∑
pi s.t. ki<0 p

ki
i (xp−ki mod p−ki) ∈ Z, which is true. Thus, ψ is trivial

on Q.
Next, we will show Q ∼= Q̂ \ A. Since Q\A is compact, Q̂ \ A is discrete. Under the identification

ψ : Â ∼= A, Q \Ψ(Q̂ \ A) is a discrete subgroup of the compact group Q \A, implying Q \Ψ(Q̂ \ A)
is finite 10.
9For formal Laurent series f, g with ord(f) ≥ 1 then Res((g ◦ f)f ′) = ord(f)Res(g)
10We show that a discrete subgroup H of a compact group G has to be finite. Indeed, as H is discrete, there exists
an open neighborhood U of 1 so H ∩U = {1}. This follows aU ∩H is either empty if a 6∈ H or {a} if a ∈ H. Because
G is compact, G is a finite union of aU ’s for a ∈ G, implying H is finite.

39



On the other hand, Ψ(Q̂ \ A) is a Q-subspace of A, as if ψa|Q = 1 then ψqa|Q = 1 for all q ∈ Q.
This means Q\Ψ(Q̂ \ A) is a finite Q-vector space. As Q is infinite so Q = Ψ(Q̂ \ A), as desired. �

Remark 100. For an arbitrary global field k, one can also show that the standard character expAk
(as defined in Remark 98) is trivial on k, hence inducing an isomorphism k ∼= k̂\Ak of topological
spaces.

6.2. Fourier transform. In this subsection, we will discuss Fourier transform on G, in particular
when G is Qp,R or AQ.

If f ∈ L1(G), we can define the Fourier transform f̂ : Ĝ→ C by

f̂(χ) :=

∫
G
f(g)χ(g)dg.

One can show f̂ : Ĝ→ C is always continuous. 11

Under the condition that the function on G is nice enough, we have the following Fourier inversion
formula

Theorem 101 (Fourier inversion formula). Let G be a locally compact abelian group. Let dg be
a Haar measure on G. Then there exists a unique Haar measure dχ on Ĝ, called the Plancherel
measure, such that if f ∈ L1(G) is such that f̂ ∈ L1(Ĝ) then

(3) f(g) :=

∫
Ĝ
f̂(χ)χ(g)dχ

for almost everywhere g, i.e. there exists a null-set N ⊂ G such that the above formula holds for all
g ∈ G \N .

We refer to [Fol16, p. 111] for the proof of this theorem. Note that under Pontryagin duality, the
Fourier inversion formula can be written as ˆ̂

f(x) = f(−x).

Example 102. If G is discrete with the counting measure, the Plancherel measure on the compact
group Ĝ is the normalised Haar measure so that Ĝ has volume 1. Indeed, consider f ∈ L1(G)
defined as f(x) = 1 if x = 1 in G and 0 everywhere else. Hence, we find

f̂(χ) =
∑
g∈G

f(g)χ(g) = χ(1) = 1.

By the Fourier inversion formula,

1 = f(1) =

∫
Ĝ
f̂(χ)χ(1)dχ = dχ(Ĝ).

In Theorem 101, the Fourier inversion formula depends on the condition that f̂ ∈ L1(Ĝ). One can
define the space of Schwartz-Bruhat functions on a locally compact abelian group so that Fourier
transform is an isomorphism on these spaces. In the next subsections, we will focus on defining
such functions when G is a local field or G is the adeles. Furthermore, in such cases of G, there is
a natural Haar measure on G such that its pushforward via G ∼= Ĝ (as discussed in the previous
section) is the Plancherel measure on Ĝ in the Fourier inversion formula.

11Some authors, such as [Fol16], define f̂ by taking complex conjugate of χ(g).
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6.2.1. Fourier transform for local fields.

Definition 103. For a local field k, a function f : k → C is called a Schwartz-Bruhat function if
• When k = Rn, f is a C∞-function whose derivatives are rapidly decreasing 12, i.e. for any
α, β ∈ Zn≥0, let x

α := xα1
1 · · ·xαnn and Dβf := ∂β1x1 · · · ∂

βn
xnf , we have

sup
x∈Rn

∣∣∣xαDβf(x)
∣∣∣ <∞.

• When k = Cn, f is viewed as a function on R2n with rapidly decreasing derivatives.
• When k is a nonarchimedean local field, f is a locally constant function of compact support.

We denote S(k) to be the complex vector space of Schwartz-Bruhat functions on k.

Example 104. If f(x) ∈ R[x1, . . . , xn] then f(x)e−a|x|
2 ∈ S(Rn). All compactly supported real

C∞-functions are Schwartz functions.

Example 105. Every Schwartz-Bruhat function f ∈ S(Qp) can be written as f =
∑n

i=1 ci1ai+pkiZp
where ai ∈ Qp, ki ∈ Z and ci ∈ C. Indeed, because every open set in Qp is a disjoint union of open
balls a+ pkZp (for some a ∈ Qp and k ∈ Z) and that f is compactly supported, the support of f is
a finite disjoint union of such open balls. As f is also locally constant, we are done.

Upon identifying k with k̂ via a choice of a standard unitary character as in Remark 95, we can
rewrite the Fourier inversion formula as follows

Theorem 106. Let k be a local field and ψ be the standard unitary character on k as in Remark 95.
Under the identification k ∼= k̂ via ψ, the Fourier transform

f̂(y) :=

∫
k
f(x)ψ(xy)dx

defines an automorphism of vector spaces on S(k).
There is a unique Haar measure dx on k such that its pushforward via k ∼= k̂ is the Plancherel

measure on k̂. We call dx the self-dual Haar measure on k. Under such choice of measure, we have
the Fourier inversion formula

f(x) =

∫
k
f̂(y)ψ(xy)dy.

In particular, the self-dual Haar measure on k can be described explicitly as follows:
(1) If k = R then dx is the Lebesgue measure.
(2) If k = C then dx is twice the Lebesgue measure.
(3) If k is nonarchimedean then dx is the Haar measure for which its ring of integers O has

measure (#O/D)−1/2, where D is the different of the field extension k/Qp or k/Fp((t)).

Proof. We will defer the proof of this proposition for the final version of our thesis. At the moment,
we will refer to [VR99, p. 300] for further discussions. �

6.2.2. Fourier transform for adeles. In this section, we work with the adeles of Q, but the statement
will hold for the adeles of any global field k.

Definition 107. Let k be a global field, a Schwartz-Bruhat function f : Ak → C is a finite C-linear
combination of

∏
v fv : A → C, where fv ∈ S(Qv) and fv|Okv = 1 for almost all places v of k. We

denote S(Ak) to the space of Schwartz-Bruhat functions on Ak.

We can describe the Fourier transform on A in the same way as how we have done for local fields.

12in the case where k = Rn, such f is also called Schwartz function
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Theorem 108. We fix a standard unitary character expA for Ak as given in Remark 98 and let dx
to be the self-dual measure on A with respect to ψ. For f ∈ S(A), the Fourier transform

f̂(y) :=

∫
A
f(x) expA(xy)dx

defines an isomorphism on S(Ak). We also have the Fourier inversion formula ˆ̂
f(x) = f(−x) for

all x ∈ Ak. In particular, the self-dual Haar measure on Ak is the restricted product of the self-dual
Haar measure on kv as described in proposition Theorem 106.

6.3. Poisson summation formula. Consider an exact sequence of locally compact Hausdorff
abelian groups

0 A B C 0

where A,B,C are equipped with Haar measures dµA, dµB, dµC that make the following equation
holds: ∫

B
f(b)dµB(b) =

∫
A

∫
C
f(c+ a)dµA(a)dµC(c)

for all f ∈ Cc(B).
The Poisson summation formula is essentially the special case of the following result:

Theorem 109. For any Schwartz-Bruhat function f : B → C, we have∫
A
f(a)dµA(a) =

∫
Ĉ
f̂(ĉ)dµ

Ĉ

where f̂ : B̂ → C is the Fourier dual of f , dµ
Ĉ
is the dual Haar measure on Ĉ.

Sketch of proof. Define F (x) =
∫
A f(x + a)dµA as a function on C. By Fourier inversion formula,

we have

F̂ (χC) =

∫
C
F (c)χC(c)dµC(c),

=

∫
C

∫
A
f(c+ a)χC(c)dµC(c)dµA(a),

=

∫
B
f(b)χC(b)dµB(b),

= f̂(χC).

Again, by Fourier inversion formula, we find

F (c) =

∫
Ĉ
F̂ (χC)χC(c)dµ

Ĉ
(χC)

which may be written as ∫
A
f(c+ a)dµA(a) =

∫
Ĉ
f̂(χC)χC(c)dµC(χC).

By letting c = 0, we get the desired identity. �

In the special case where L is a lattice in B (i.e. L is discrete and B/L is compact) then the dual
space L⊥ = B̂/L is a lattice inside B̂. From Example 102, the counting measure on B̂/L is dual to
the normalised Haar measure on B/L, giving∑

x∈L
f(x) =

1

µB(B/L)

∑
y∈L⊥

f̂(y)

The measure on B is often chosen so that µ(B/L) = 1.
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Example 110. From the exact sequence 0→ Z→ R→ Z \ R→ 0 and that Ẑ \ R ∼= Z, we find∑
x∈Z

f(x) =
1

µR(Z \ R)

∑
x∈Z

f̂(x).

Applying the above equality to f̂ yields∑
x∈Z

f̂(x) =
1

µR(Z \ R)

∑
x∈Z

f(x).

Combining these two identities, we find µR(Z \ R) = 1.
The same exact argument for 0→ Q→ A→ Q \ A→ 0 shows µA(Q \ A) = 1.
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7. SL2

In this section, we will describe SL2 as a linear algebraic group over a field k. We will then define
and derive a nonvanishing, left-invariant global top form for SL2.

7.1. Affine algebraic group SL2. The affine algebraic group SL2 over a field k is the morphism
of affine schemes SpecO(SL2)→ Spec k where

O(SL2) = k[x11, x12, x21, x22]/(x11x22 − x21x12 − 1).

The k-algebra O(SL2) is equal to the ideal generated by x11, x12 as for any f ∈ O(SL2) then
f = f(x11x22 − x21x12) ∈ (x11, x12). Therefore, SpecO(SL2) = D(x11) ∪ D(x12) where for f ∈
O(SL2), D(f) := {p ∈ SpecO(SL2) : f 6∈ p} is the distinguished open set of SpecO(SL2).

For a k-algebra R, the R-points of SL2, denoted by SL2(R) is the group Homk−alg(O(SL2), R),

which can be identified with
{(

x11 x12

x21 x22

)
: xij ∈ R, x11x22 − x12x21 = 1

}
with the usual group

structure.
For a ring R, we use SL2,R to denote SL2 over R.

7.2. Lie algebra. In this section, we define the Lie algebra of SL2. We have a projection k[ε]/(ε2)→
k sending a+ εb to a. For k-algebra R, we define the Lie algebra of SL2 over R to be

(4) Lie(SL2)(R) := ker(SL2(R[ε]/(ε2))→ SL2(R))

In particular, one can describe elements in Lie(SL2)(k) as 2-by-2 matrices of determinant 1, with
entries over k[ε]/(ε2), such that by letting ε 7→ 0, we get the identity matrix. Concretely, elements

of Lie(SL2) are of the form
(

1 + εa11 εa12

εa21 1 + εa22

)
= I2 + ε

(
a11 a12

a21 a22

)
such that a11 + a22 = 0,

which we can identify with sl2(k), a k-vector space of 2-by-2 matrices having trace 0.
In general, for an affine algebraic group G, it is more subtle to see the Lie algebra structure

from the definition (4) of tangent space. However, we can embed G into GLn and the Lie algebra
structure of Lie(G) is induced from this embedding.

We find that for a k-algebra R, Lie(SL2,R) ∼= R⊗k Lie(SL2) as R-modules.
The dual Lie(SL2)∗ is a k-module generated by dxij , for 1 ≤ i, j ≤ 2, modulo the relation

dx11 + dx22 = 0.

7.3. Differential forms. To define the cotangent sheaf of SL2 over k, we first need to define
the module of relative differentials ΩO(SL2)/k. It is a O(SL2)-module equipped with a k-derivation
d : O(SL2)→ ΩO(SL2)/k that is universal as initial object among O(SL2)-modules M equipped with
k-derivation d : O(SL2) → M . Concretely, ΩO(SL2)/k is a O(SL2)-module generated by dxij for
xij ∈ O(SL2), 1 ≤ i, j ≤ 2 quotient out by the relation x11dx22 + x22dx11 − x12dx21 − x21dx12. The
map d : O(SL2)→ ΩO(SL2)/k is the obvious one, as suggested by the notation.

We define the cotangent sheaf ΩSL2 /k
13 to be the sheaf of OSL2-modules associated to O(SL2)-

module ΩO(SL2)/k. Concretely, for f ∈ O(SL2), its section over distinguished open D(f) = {p ∈
SpecO(SL2) : f 6∈ p} in SpecO(SL2) is the localisation of ΩO(SL2)/k at f . Note also that the global
section of ΩSL2 /k is precisely ΩO(SL2)/k.

Proposition 111. (a) The cotangent sheaf ΩSL2,k is a vector bundle of rank 3, hence a cotangent
bundle.

(b) The fiber of ΩSL2,k at a point p ∈ SpecO(SL2) is ΩO(SL2)/k ⊗O(SL2) κ(p), where κ(p) =
O(SL2)p/m ∼= k and m is the maximal ideal of the local ring O(SL2)p. The fiber of ΩSL2 /k at p is
isomorphic as k-vector space to the cotangent space m/m2.

13notice that there is a subtlety in our choice of notations, where ΩO(SL2)/k is different from ΩSL2 /k
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A differential 1-form over open U in SL2 is a section of ΩSL2 /k over U . For example, in
Γ(ΩSL2 /k, D(x11)) =

(
ΩO(SL2)/k

)
x11

, we have

(5) dx22 =
x11dx22

x11
=

1

x11
(x12dx21 + x21dx12 − x22dx11).

Therefore, any differential 1-form over D(x11) can be written as
1

xk11

(f12dx12 + f21dx21 + f11dx11),

where fij ∈ O(SL2).
We define the canonical sheaf ωSL2 to be ωSL2 =

∧3 ΩSL2 /k. Its sections over open U of
SpecO(SL2) are called top (dimensional) forms of SL2 over U . For example, its sections over
D(x11) form a O(SL2)x11-module generated by dx11 ∧ dx12 ∧ dx21. If ω is a top form of SL2 over U
then we say ω is nowhere vanishing if ωx ∈ (ωSL2)x is nonzero for all x ∈ U .

7.4. Left-invariant differential form. We consider a k-algebra isomorphism

La : O(SL2)→ O(SL2),

xij 7→ ai1x1j + ai2x2j , 1 ≤ i, j ≤ 2.

corresponding to left-multiplication by a =

(
a11 a12

a21 a22

)
∈ SL2(k). This induces an isomorphism of

O(SL2)-modules

La : ΩO(SL2)/k → ΩO(SL2)/k

fdxij 7→ La(f)(ai1dx1j + ai2dx2j),

for any f ∈ O(SL2), hence, an isomorphism of sheaves of OSL2-modules La : ωSL2 → ωSL2 .
A top form ω over open set U is called left-invariant if Laω = ω for any a ∈ SL2(k).

Proposition 112. There is a unique, nowhere vanishing, left-invariant, global top form for SL2 up
to scalar over k×.

Proof. We first determine all left-invariant top forms ω11 over D(x11). From previous section, we
can write ω11 over D(x11) as fdx11 ∧ dx12 ∧ dx21 where f ∈ O(SL2)x11 . It follows that over D(x11),
we have

Laω11 = La(f)d(a11x11 + a12x21) ∧ d(a11x12 + a12x22) ∧ d(a21x11 + a22x21),

=
La(f)

x11
(a11x11 + a12x21)dx11 ∧ dx12 ∧ dx21.

Therefore, for ω11 to be left-invariant, we must have x11f = (a11x11 + a12x21)La(f) for any f ∈
O(SL2)x11 and any aij ∈ k such that a11a22 − a12a21 = 1. This implies f = Cx−1

11 for C ∈ k. Thus,
ω11 = Cx−1

11 dx11 ∧ dx12 ∧ dx21 for some C ∈ k×.
Similarly, we also can find a left-invariant top form ω12 over D(x12) to be ω12 = C ′x−1

12 dx11 ∧
dx12 ∧ dx22 for some C ′ ∈ k×.

As SpecO(SL2) = D(x11)∪D(x12), a global left-invariant top form ω ∈ Γ(ΩSL2 /k, SpecO(SL2)), if
exists, must correspond to ω11 and ω12 when restricting to D(x11) and D(x12), respectively. Hence,
to find such global top form, it suffices to find C,C ′ ∈ k× such that ω11 = ω12 on D(x11)∩D(x12) =

D(x11x12). Indeed, onD(x11x12), dx22 can be written as in (5), hence ω12 = C′x12
x11x12

dx11∧dx12∧dx21.
Therefore, ω11 = ω12 gives C = C ′. Thus, SL2 has a unique , nowhere-vanishing, left-invariant global
top form up to scalar over k×. �
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Next, we will identify left-invariant global top forms over k with
∧3 Lie(SL2)(k)∗, following

[BLR90, §4.2]. Indeed, the unit element in the group structure of SL2 corresponds to the k-algebra
morphism ε : O(SL2)→ k sending xij to 1 if 1 ≤ i = j ≤ 2 and 0 everywhere else. This then corre-
sponds to a morphism ε : Spec k → SpecO(SL2) of affine scheme. Therefore, one can pullback sheaf
ΩSL2 /k of OSL2-module via ε to get a sheaf ε∗ΩSL2 /k of OSpec k-modules, which is just a k-module
k ⊗O(SL2) ΩO(SL2)/k. We note that this k-module is isomorphic to Lie(SL2)(k)∗.

On the other hand, via the structural morphism p : SpecO(SL2) → Spec k, we have a canon-
ical isomorphism p∗ε∗ΩSL2 /k

∼−→ ΩSL2 /k that is obtained by extending sections in ε∗ΩSL2 /k =
Lie(SL2)(k)∗ to left-invariant sections in ΩSL2 /k (see [BLR90, page 102]). Thus, the k-module∧3 Lie(SL2)(k)∗ is identified with the k-module of left-invariant global top forms.

7.5. Adjoint map. Given a k-algebra R, an affine algebraic group G and its Lie algebra g :=
Lie(G), we define the adjoint representation Ad : G(R)→ Aut(g(R)) to be Ad(g)x = gxg−1 where
x ∈ Lie(G)(R) ⊂ G(R[ε]/(ε2)).

In particular, if ω ∈
∧3 g(R)∗ then

Ad(g)ω = det (Ad(g) : g(R)→ g(R))ω.
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8. The Tamagawa measure on algebraic groups

For an algebraic group G over a global field k, there exists a left-invariant (or right-invariant)
volume form ω over k 14 that is unique up to scalar over k×. Following § 5.5.1, one can construct a
Radon measure |ω|v onG(kv) for every place v of k. In particular, this is a left-invariant (respectively,
right-invariant) Haar measure if ω is left-invariant (respectively, right-invariant). In this section,
we will show that when G is connected semisimple, G admits an adelic Haar measure coming from
|ω|v’s (i.e. see § 5.5.2 for the definition). Furthermore, this is a canonical adelic Haar measure
on G(Ak), and we called it the Tamagawa measure of G(Ak). We will then define the Tamagawa
number of G and state the Weil’s conjecture on the Tamagawa numbers.

8.1. About normalisation of adelic measure and Tamagawa measure on An. For a nonar-
chimedean local field kv, we have chosen two normalisations for a Haar measure on kv, one in § 5.5.1
where we require Ov having volume 1, and one in Theorem 106 as a self-dual Haar measure with
respect to Fourier transform. In this section, we will would like to explain the relation between
these two normalisations in defining adelic measure on A.

Proposition 113. Let ρk be the normalisation in our definition of adelic measure as in § 5.5.3.
With respect to the Haar measures µv on nonarchimedean local fields kv such that Ov having volume 1
(and to the normal Haar measures µv on archimedean local fields), we obtain an adelic Haar measure
µk =

∏
v
′µv on Ak. This measure induces an Ak-invariant measure on k\Ak where µk(k\Ak) = ρk.

We refer to [Wei82, p. 12] for the proof of this proposition.
This proposition says that the normalised adelic measure ρ−nk

∏
v
′µv as in § 5.5.3 is the self-dual

Haar measure on Ank with respect to Fourier transform (see Theorem 108), as both give volume 1
for kn\Ank (with respect to self-dual Haar measure on Ak, the volume of k\Ak being 1 is proved
in § 6.3 using Poisson summation formula) and both are Haar measures on Ank . We call this the
Tamagawa measure µGna ,k on Ank and the volume of kn\Ank with respect to this measure is called
the Tamagawa number of Gn

a,k, denoted τk(Gn
a), and we know τk(Gn

a) = 1.
Furthermore, we can restate our normalised adelic measure for a smooth affine scheme X of finite

type over k as in § 5.5.3 in terms of self-dual Haar measures on each local field kv. This is done by
simply removing the normalisation ρ− dimX

k .

Example 114. When k = Q, our two normalisations of Haar measure on Qp coincide. Hence, the
volume of Q\A is 1 because the quotient Q\A has a fundamental domain

[0, 1)×
∏
p

Zp,

giving the volume µR([0, 1))×
∏
p µQp(Zp) = 1 for Q\A.

8.2. Tamagawa measure and Tamagawa number on semisimple groups. Let G be a con-
nected semisimple algebraic group over a global field k. In this section, we show that G admits an
adelic Haar measure There exists a left-invariant algebraic differential form ω of top degree (i.e. a
gauge form) of G over k. This induces a left-invariant Haar measure |ω|v on G(kv) with respect to
the self-dual Haar measure on kv. In this section, we show that G admits an adelic Haar measure.

Firstly, for semisimple G (or even for unipotent or reductive G), the Haar measure on G is
unimodular (i.e. both left and right invariance) due to the following proposition

Proposition 115. The modular quasicharacter of G(kv) is

δG(kv)(g) = |det (Ad(g) : g(kv)→ g(kv))|v .

14many references refer to this as a gauge form
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Proof. From § 7.5, we know Ad(g)ω = det (Ad(g) : g(kv)→ g(kv))ω. Therefore, by Change of
variables formula in Theorem 67, we find that Ad(g) : G(kv) → G(kv) induces a new left Haar
measure d|ω|v(ghg−1) on G(kv) so that

d|ω|v(ghg−1) = |det (Ad(g) : g(kv)→ g(kv))|v d|ω|v.
As d|ω|v is left Haar measure so from Proposition 40, we find

d|ω|v(ghg−1) = d|ω|v(hg−1) = δG(kv)(g)d|ω|v.
This gives δG(kv)(g) = |det (Ad(g) : g(kv)→ g(kv))|v, as desired. �

Proposition 116. G admits an adelic measure.

Sketch. We follow the proof of [Vos98, p. 136]. To show G admits an adelic measure, we need to
check the criteria in in § 5.5.2. Let S be a finite set of places of k containing the archimedean places
such that there is a smooth group scheme G over OS with generic fiber G. We want to show∏

v 6∈S

|G(κ(v))|
|κ(v)|n

,

converges absolutely, where κ(v) is the residue field of kv, n is the dimension of G.
Steinberg in [SR68, §11.16] gave a general formula for G(κ(v)) (see [Oes84, §I.1.6] for a nicer for-

mulation of this formula). The formula roughly says the following: Let G be a connected semisim-
ple algebraic group over Fq, let B be a Borel subgroup of G containing a maximal torus T . Let
T̂ := Hom(T,Gm). The Galois group Gal(Fq/Fq) acts on the Q-vector space E = T̂ (Fq) ⊗ Q
by σ(χ)(x) := σ(χ(σ−1(x))) for σ ∈ Gal(Fq/Fq), χ ∈ T̂ (Fq), x ∈ T (Fq). The Weyl group W =

NG(T (Fq))/T (Fq) acts on V via the conjugation action on T (Fq). Thus, we obtain an action of
Gal(Fq/Fq)nW on E, hence an action on the symmetric algebra S(E) of E. A theorem of Chevalley-
Shephard-Todd showed that the W -invariant algebra S(E)W is a polynomial algebra generated by
` = dimT homogeneous algebraically independent polynomials of degrees ai’s for 1 ≤ i ≤ `. The
Steinberg’s formula implies that

q−`
∏̀
i=1

(1− q−ai) ≤ |G(Fq)| ≤ q−`
∏̀
i=1

(1 + q−ai).

One can show that ai ≥ 2 by relating the ai’s with the Betti numbers bi of the maximal compact
subgroup of G(C) via the formula

∞∑
i=0

bit
i =

∏̀
i=1

(1 + t2ai−1)

and knowing that b1 = b2 = 0. �

From this proposition, we know that if ω is nowhere-vanishing, left-invariant global algebraic top
form (i.e. a gauge form) over k of G inducing Haar measures |ω|v on G(kv),

∏
v
′|ω|v defines a Haar

measure on G(Ak). We call this the Tamagawa measure µG,k on G(Ak). This measure satisfies the
following nice property

Proposition 117. The definition of the Tamagawa measure on G(A) does not depend on the choice
of a nowhere-vanishing, left-invariant global algebraic top form on G over k.

Proof. From Proposition 112, any left-invariant, nowhere vanishing global top form ω of G over k
is cω for some c ∈ k×.

Therefore, if ω′ = cω is another choice of a top form on G over k, from ??, the corresponding
Haar measure on G(kv) is |c|vµv for each place v of k, where µv the Haar measure on G(kv)
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corresponding to ω. By similar construction, we denote µ′Tam to be the restricted product measure
on G(A) corresponding to ω.

Let S be a finite set of places containing the archimedean places so that G is a smooth group
scheme over OS :=

∏
v 6∈S Ov with generic fiber G. Consider an open subset U =

∏
v∈S G(kv) ×∏

v 6∈S G(Ov) of G(A). By construction, the restriction of µTam and µ′Tam to U is the product
measure. On the other hand, by the product formula

∏
v |c|v = 1 so µTam = µ′Tam on U . By the

uniqueness of Haar measure, µTam = µ′Tam on G(A). �

As G(k) is a discrete subgroup of G(Ak), the Tamagawa measure induces a G(Ak)-invariant
measure on G(k)\G(Ak). Using reduction theory as in [PR94, §5.3], one can show that the volume
of G(k)\G(Ak) is finite, and we call it the Tamagawa number of G over k, denoted by τk(G).

Proposition 118. All groups below will be connected semisimple.
(1) For algebraic groups G1, G2 over k then τk(G1 × G2) = τk(G1)τk(G2) and τk(G1 n G2) =

τk(G1)τk(G2).
(2) Let G be an algebraic group over a finite separable extension l of k, then τl(G) = τk(ReslkG),

where Reslk is the Weil restriction of scalars.
(3) If G splits over k, for an isogeny (i.e. surjective map with finite kernel) f : G′ → G of G

then τk(G) = τk(G
′) · | ker f |.

Proof. For (1), we refer to [Wei82, p. 27] or [Igu78, p. 121].
For (2), this follows from § 5.5.3.
For (3), we refer to [Ono65, Theorem 2.1.1]. �

8.3. Weil’s conjecture on Tamagawa numbers. We restate Weil’s conjecture on Tamagawa
numbers.

Theorem 119 ([Wei95]). Let G be a connected simply connected semisimple linear algebraic group
over a global field k, then τk(G) = 1.
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9. Tamagawa number of SL2

In this section, we will give a detailed proof of the following theorem

Theorem 120. τ(SL2,Q) = 1.

9.1. Approximation theorem for SL2 over Q. For an affine algebraic group G over Q. We say
G satisfies strong approximation with respect to a finite set S of places of Q if G(Q) is dense in
G(AS). We then have the following results. We refer the reader to [Rap14] for more discussion.

Theorem 121 (Strong approximation theorem). Let G be a semisimple and simply connected linear
algebraic group G over Q. Then, for any nonempty finite set S of places of Q, G(A) is dense in
G(AS).

Corollary 122. If an affine algebraic group G over Q satisfies the strong approximation theorem
with respect to a finite set S = {∞} of places of Q then

(1) |G(Q) \G(A∞)/K∞| = 1 for any compact open subgroup K∞ of G(A∞).
(2) If Γ = G(Q) ∩K∞ then by embedding G(R) to the infinite component of G(A), we have a

homeomorphism
Γ \G(R)→ G(Q) \G(A)/K∞.

The proof of this corollary is similar to the proof of corollary 73 for Ga. We will give a proof of
strong approximation theorem for SL2 over Q.

Proposition 123 (Strong approximation theorem for SL2). For any non-empty finite set S of
places of Q, SL2(Q) is dense in SL2(AS).

Proof. If Z is the closure of SL2(k) in SL2(AS), then Z is a subgroup of SL2(AS). It suffices to
prove that Z contains SL2(Qv) for every v 6∈ S. Indeed, if such a condition holds then the subgroup
Z will contain

∏
v∈S′ SL2(Qv) ×

∏
v 6∈S∪S′ SL2(Zv) where S′ is any finite set of places of Q disjoint

from S. As this exhausts SL2(AS), we find Z = SL2(AS).

To show SL2(Qv) ⊂ Z, note that SL2(Qv) is generated by U+(Qv) =

{(
1 ∗
0 1

)}
and U−(Qv) ={(

1 0
∗ 1

)}
so it suffices to show Z contains U±(Qv). By definition, Z contains the closure of

U±(Q). As U+ ∼= Ga so by the strong approximation theorem for Ga, the closure of U+(Q) in
SL2(AS) is U+(AS), implying Z contains U+(Qv) for all v 6∈ S. �

Corollary 124. (a) We have SL2(A∞) = SL2(Q) SL2(Ẑ) and

SL2(A) = SL2(Q)

(
SL2(R)×

∏
p

SL2(Zp)

)
.

Note that SL2(Q) embeds diagonally into SL2(A) while for SL2(R) and SL2(Qp), each is embedded
into its p-component in SL2(A).

(b) We have
SL2(Z) \ SL2(R) ∼= SL2(Q) \ SL2(A)/ SL2(Ẑ)

so
(SL2(Z) \ SL2(R))×

∏
p

SL2(Zp) ∼= SL2(Q) \ SL2(A)

as topological spaces.

One can repeat the proof of corollary 73 to prove this corollary.
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9.2. Tamagawa number for SL2 over Q. Because SL2(A) is unimodular and SL2(Q) is a discrete
closed subgroup of SL2(A), from § 3.4.2, µTam induces a SL2(A)-invariant measure on the quotient
SL2(Q) \ SL2(A). The volume of SL2(Q) \ SL2(A) is then called the Tamagawa number of SL2 over
Q, denoted by τ(SL2,Q).

By the construction of the Tamagawa measure on SL2(A) and by corollary 124, we obtain

τ(SL2,Q) = µSL2(R),ω(SL2(Q) \ SL2(R))×
∏

SL2(Qp),ω

µp(SL2(Zp))

where ω is a choice of a volume form over Q of SL2; µSL2(Qv),ω is the corresponding measure on
SL2(Qv) defined via ω, as described in previous section.

In the next two sections, we will show that

µSL2(Qp),ω(SL2(Zp)) =
|SL2(Fp)|

p3
= 1− p−2

and

µSL2(R),ω(SL2(Z) \ SL2(R)) = ζ(2) =
π2

6
,

obtaining Theorem 120

9.3. Volume of SL2(Zp). In this section, we will use the Haar measure µSL2(Qp),ω induced by the
top form ω = 1

xdx ∧ dy ∧ dz (as defined in § 7.4) to compute the volume of SL2(Zp). Indeed, we
have a surjective map p : SL2(Zp)→ SL2(Fp) with kernel

N =

{(
a b
c d

)
: a, c ∈ 1 + pZp; b, d ∈ pZp

}
.

The surjectivity of p is shown in the following lemma:

Lemma 125. Let N ∈ Z>0. The group homomorphism SL2(Z)→ SL2(Z/NZ) is surjective.

Proof. Indeed, we want to show that for A =

(
a b
c d

)
∈ M2(Z) such that ad − bc − Nm = 1 for

some m ∈ Z then there exists B ∈ SL2(Z) such that B ≡ A (mod N). From ad− bc−Nm = 1, we
know gcd(d, c,N) = 1 so there exists n ∈ Z such that gcd(c, d+Nn) = 1 (for example, by Chinese
Remainder Theorem, we can choose n such that d+Nn ≡ 1 (mod p) for p|c, p - N and d+Nn ≡ d
(mod p) for p | c, p | N , i.e. p - d). By replacing d with d+Nn, we can assume that gcd(d, c) = 1.

We want to find B =

(
a+Ne b+Nf

c d

)
such that ad− bc+N(de− cf) = 1, or m = de− cf . As

gcd(c, d) = 1, there exists e, f ∈ Z such that m = de− cf , as desired. �

Because |SL2(Fp)| = p(p2 − 1) so by the left-invariance of the measure, we find

µSL2(Qp),ω(SL2(Zp)) = |SL2(Fp)|µSL2(Qp),ω(N) = p(p2 − 1)µSL2(Qp),ω(N).

We have

µSL2(Qp),ω(N) =

∫
N
|a−1|pdadbdc =

∫
N
dadbdc,

=

∫
a,c∈1+pZp,b∈pZp

dadbdc,

=

∫
pZp

∫
pZp

∫
pZp

dadbdc,

= (µp(pZp))3 = p−3.

Thus, µSL2(Qp),ω(SL2(Zp)) = (1− p−2).
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9.4. Volume of SL2(Z) \ SL2(R). In this section, we compute the volume of SL2(Z) \ SL2(R) by
determine its fundamental domain.

9.4.1. Volume form of SL2(R). From § 7.4, we know that SL2 over Q has a unique left-invariant

volume form ω up to scalar over Q×. In particular, over open set
{(

x y
z t

)
∈ SL2(R) : x 6= 0

}
of

SL2(R) then ω = x−1dx ∧ dy ∧ dz.
Over R, every element in SL2(R) is uniquely expressed as product(

cosϕ − sinϕ
sinϕ cosϕ

)(
α 0
0 α−1

)(
1 u
0 1

)
where ϕ ∈ [0, 2π), α > 0, u ∈ R. Hence, under change of coordinates x = α cosϕ, y = αu cosϕ −
α−1 sinϕ and z = α sinϕ, we find that ωR can be globally expressed as ωR = αdϕ ∧ dα ∧ du

9.4.2. Fundamental domain of SL2(Z) \ SL2(R). First, we denote the upper half-plane H = {z ∈

C : =(z) > 0}. For g =

(
a b
c d

)
∈ SL2(R), z ∈ C, we define gz := az+b

cz+d .

Proposition 126. We have a smooth action of SL2(R) on H via

Φ : SL2(R)×H→ H

(g, z) 7→ gz.

This action is transitive and the special orthogonal group

SO2(R) =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
is the stabiliser of i, inducing a homeomorphism

φ : SL2(R)/SO2(R)→ H

sending g 7→ gi. Furthermore, PSL2(R) = SL2(R)/{±1} acts faithfully on H.

Proof. As =(gz) = =(z)
|cz+d|2 > 0 so gz ∈ H, meaning each g ∈ SL2(R) induces a smooth map from

H to H (called linear fractional transformation) with inverse g−1. Furthermore, one can also check
g(g′z) = (gg′)z so we have an action of SL2(R) on H.

Next, we show this action φ is smooth. We first choose a chart for SL2(R). Without loss of

generality, let Ua =

{(
a b
c d

)
∈ SL2(R) : a 6= 0

}
be a open subset of SL2(R) with chart φ : Ua → V

where V = {(a, b, c) ∈ R3 : a 6= 0} sending
(
a b
c d

)
to (a, b, c). Under this chart, the map φ is(

a b
c d

)
× z 7→ az + b

cz + bc+1
a

,

which is smooth on Ua ×H because it is composition of smooth maps.

This action is transitive as for any z = x+ iy then y−1/2

(
y x
0 1

)
∈ SL2(R) maps i to z. One can

also check that
SO2(R) =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
.

is the stabiliser of i. Overall, we have a smooth and transitive action of the Lie group SL2(R) onto
the smooth manifold H, we obtain a diffeomorphism

SL2(R)/SO2(R) = G/Stab(i)→ H,
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sending g 7→ gi. �

Under the action of PSL2(Z), H has fundamental domain:

D = {z ∈ H : |z| > 1,Re(z) < 1/2}.
The action of PSL2(Z) on H commutes with the left action of PSL2(Z) on SL2(R)/ SO2(R). We
then find

Proposition 127. (a) The fundamental domain for the action of PSL2(Z) on SL2(R)/ SO2(R) is

φ−1(D) =

{(
α 0
0 α−1

)(
1 u
0 1

)
: |u| < 1/2, 0 < α <

1√
1− u2

}
(b) The fundamental domain for the left-action of SL2(Z) on SL2(R) is φ−1(D)K where

K =

{(
α 0
0 α−1

)(
1 ϕ
0 1

)
: ϕ ∈ [0, 2π), α > 0

}
∼= SO2(R)/{±1}.

Proof. (a) Indeed, as φ is homeomorphism, φ−1(D) is open connected. As no two points in D
belong to the same PSL2(Z)-orbit, no two points in φ−1(D) that belongs to the same PSL2(Z)-orbit.
We also have φ−1(D) = φ−1(D), hence, knowing H =

⋃
γ∈PSL2(Z) γD implies SL2(R)/ SO2(R) =⋃

γ∈PSL2(Z) γφ
−1(D). We are done.

(b) From (a), we have

SL2(R) =
⋃

γ∈PSL2(Z)

γφ−1(D) SO2(R),

=
⋃

γ∈SL2(Z)

γφ−1(D) SO2(R)/{±1},

=
⋃

γ∈SL2(Z)

γφ−1(D)K.

Also from (a), no two points in φ−1(D)K belong to the same SL2(Z)-orbit, else we can find two
points in φ−1(D) belong to the same PSL2(Z)-orbit. �

Thus, from this proposition, we find

µSL2(R),ω(SL2(Z) \ SL2(R)) =

∫
φ−1(D)K

αdαdudϕ,

=

∫ 1/2

u=−1/2

∫ (1−u2)−1/2

α=0

∫ π

ϕ=0
αdϕdαdu,

= π2/6.
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10. The Tamagawa number of special linear groups

In this section, we will prove the following theorem

Theorem 128. τQ(SLn) = 1.

We will induct on n. The case n = 2 was proved in the previous section.

10.1. The action of SLn on Gn
a . We study the action of SLn on V = Gn

a by right multiplication.
In particular, we determine the orbits and stabilisers of this action and describe measures on these
spaces.

One can prove the following

Proposition 129. If k is a division algebra, the orbits of SLn(k) acting on kn are {0} and kn−{0} =
e1 SLn(k), where e1 = (1, 0, . . . , 0) ∈ kn.

Let SLn,e1 be the stabiliser of e1 under this action. Then SLn,e1 is the semidirect product SLn−1 nGn−1
a .

In particular, every element in SLn,e1(k) has the form(
1 0
c d

)
where ct ∈ kn−1, d ∈ SLn−1(k).

10.1.1. Measures on orbits and stabilisers. The map SLn(k) → e1 SLn(k) sending g 7→ e1g gives
rise to a bijection SLn,e1(k)\ SLn(k)

∼−→ e1 · SLn(k). When k = Qv or k = A, this induces a
homeomorphism with respect to the topology of k. Because the map g 7→ e1g is also SLn-invariant,
the SLn-invariant volume form dv = dv1∧· · ·∧dvn on e1 ·SLn(k) (it is invariant because det(g) = 1
for g ∈ SLn(k)) induces an algebraic differential form θ on SLn, satisfying dh∧ θ = dg, where dh, dg
are invariant volume forms on SLn,e1 and SLn, respectively. This implies that for any continuous
function f on SLn(A) with compact support, we find

(6)
∫

SLn(A)
f(g)|dg|A =

∫
e1·SLn(A)

(∫
SLn,e1 (A)

f(hg)|dh|A

)
|d(e1 · g)|A

By the uniqueness of the SLn(A)-invariant measure on the quotient space SLn,e1(A)\SLn(A) induced
from |dh|A and |dg|A, from (6), we find∫

e1·SLn(A)
f(v)|dv|A =

∫
SLn,e1 (A)\SLn(A)

f(e1g)|dg|A,

where f is a continuous function on An with compact support and |dg|A is the SLn(A)-invariant
measure on SLn,e1(A) \ SLn(A).

On the other hand, we have the following proposition

Proposition 130. An − e1 SLn(A) has measure 0.

Proof. Note that if v = (v1, . . . , vn) ∈ A such that vi ∈ A× for some 1 ≤ i ≤ n then v ∈ e1 SLn(A).
Therefore, An − e1 SLn(A) ⊂ (A − A×)n. Furthermore, A − A× lies in the union of open sets of
the form US ×

∏
p 6∈S p

kpZp, where S is a finite set of places of Q containing the infinite place, US is
open in

∏
v∈S Qv, kp ≥ 1 for all p ∈ S. We also know that US ×

∏
p 6∈S p

kpZp has measure 0. Hence,
A−A× is a null set (see § 3), meaning it has measure 0 (after enlarging our measure space on A to
include give null sets as having measure 0). �

Thus, we can rewrite the above identity as

(7)
∫
An
f(v)|dv|A =

∫
SLn,e1 (A)\ SLn(A)

f(e1g)|dg|A.
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10.2. Using Poisson summation formula. For f ∈ S(An), we let

I(f) :=

∫
SLn(Q)\SLn(A)

∑
x∈Qn

f(xg)

 |dg|A.
Assuming for a moment the convergence of this integral for any f ∈ S(An), we will prove the
following

Proposition 131. For any f ∈ S(An), we have I(f) = I(f̂).

Proof. For g ∈ GLn(A), let fg(x) := f(xg), we find

f̂g(x) =

∫
An
f(yg) expA(yxt)|dy|A,

= | det(g)|−1
A

∫
An
f(y) expA(yg−1xt)|dy|A,

= | det(g)|−1
A

∫
An
f(y) expA(y(xg−t)t)|dy|A

= | det(g)|−1
A f̂(xg−t).

By applying the Poisson summation formula for fg, we find∑
x∈Qn

f(xg) = |det(g)|−1
A

∑
x∈Qn

f̂(xg−t).

Let g ∈ SLn(Q) and noting that g 7→ g−t is a measure-preserving homeomorphism on SLn(A), we
find I(f) = I(f̂). �

10.3. Write the integral over SLn(Q)\SLn(A) into orbits. Using the results in § 10.1, we have

I(f) :=

∫
SLn(Q)\SLn(A)

Ff (g)|dg|A,

=

∫
SLn(Q)\SLn(A)

f(0) +
∑

x∈e1·SLn(Q)

f(xg)

 |dg|A,
= f(0)τQ(SLn) +

∫
SLn(Q)\SLn(A)

∑
γ∈SLn,e1 (Q)\SLn(Q)

f(e1γg)|dgA,

= f(0)τQ(SLn) +

∫
SLn,e1 (Q)\SLn(A)

f(e1g)|dg|A,

= f(0)τQ(SLn) + τQ(SLn,e1)

∫
SLn,e1 (A)\SLn(A)

f(e1g)|dg|A,

= f(0)τQ(SLn) + τQ(SLn,e1)

∫
An
f(v)|dv|A,

= f(0)τQ(SLn) + τQ(SLn,e1)f̂(0),

= f(0)τQ(SLn) + f̂(0).

Replacing f by f̂ in the above and noting that f(0) =
ˆ̂
f(0) by Fourier inversion formula, we find

I(f̂) = f̂(0)τQ(SLn) + f(0).
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From Proposition 131, we find

(τQ(SLn)− 1)(f(0)− f̂(0)) = 0.

There exists f ∈ S(An) so f(0) 6= f̂(0). Thus, we find τQ(SLn) = 1.
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11. The Tamagawa number of symplectic groups

We first recall the definition of Sp2n. Let Jn =

(
0 In
−In 0

)
be a 2n-by-2n matrix. The symplectic

group is defined as
Sp2n(k) := {M ∈M2n×2n(k) : M tJnM = Jn}.

In this section, we will focus on proving the following theorem

Theorem 132. For all n ≥ 1 then τQ(Sp2n) = 1.

We will prove this theorem by induction on n. When n = 1 then Sp2 = SL2, hence τQ(Sp2) =
τQ(SL2) = 1.

11.1. The action of Sp2n on G2n
a . We study the action of Sp2n on G2n

a by right multiplication.

Proposition 133. If k is a division algebra then the orbits of Sp2n(k) acting on k2n is {0} and
k2n − {0} = e1 Sp2n(k), where e1 = (1, 0, . . . , 0).

Let Sp2n,e1 be the stabiliser of e1, then Sp2n,e1 is isomorphic to the semidirect product Sp2n−2 n(G2n−2
a n

Ga).

Proof. Let X =

(
A B
C D

)
where A,B,C,D ∈ Mn×n. For X to stabilise e means A =

(
1 0
∗ ∗

)
and

B =

(
0 0
∗ ∗

)
.

Furthermore, X ∈ Sp2n if and only if AtC−CtA = BtD−DtB = 0 and AtD−CtB = In. Thus,

X ∈ Sp2n,e1 if and only if X =

(
A B
C D

)
=


1 0 0 0
x1 a 0 c
x y1 1 y2

x2 b 0 d

 where
(
y1 y2

)
=
(
xt2 −x1

)(a c
b d

)

and
(
a c
b d

)
∈ Sp2n−2. Here xi are (n− 1)× 1 vectors, yi are 1× (n− 1) vectors. �

11.2. Computing the Tamagawa number of Sp2n. With the same argument as in the case of
SLn, one can show that for f ∈ S(A2n), we find∫

A2n

f(v)|dv|A =

∫
Sp2n,e1

(A)\Sp2n(A)
f(e1g)|dg|A.

Define

I(f) :=

∫
Sp2n(Q)\Sp2n(A)

∑
x∈Qn

f(xg)

 |dg|A.
By applying Poisson summation formula as in the case of SLn, we find I(f) = I(f̂).

Finally, similarly to the case of SLn, we have

I(f) = f(0)τQ(Sp2n) + τQ(Sp2n,e1)f̂(0) = f(0)τQ(Sp2n) + f̂(0).

Replacing f by f̂ in the above equation and noting that ˆ̂
f(0) = f(0) by Fourier inversion formula,

we find
I(f̂) = f̂(0)τQ(Sp2n) + f(0).

Thus, we obtain τQ(Sp2n) = 1.
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12. The Tamagawa number of special orthogonal groups

In this section, we will show that the Tamagawa number for the special orthogonal group SOq,Q
(with respect to a non-degenerate quadratic form q) is 2 (see Theorem 134). In this section, we
follow [Mar66], [Igu78, Chapter 4] and [Hid20].

12.1. Orthogonal groups. Let V be a vector space over Q of dimension n ≥ 3. A map q : V → Q
is called a quadratic form on V over Q if it satisfies the following conditions:

(1) The function b : V × V → Q, defined by

b(x, y) := q(x+ y)− q(x)− q(y),

is a symmetric bilinear form.
(2) For λ ∈ Q and x ∈ V , we have q(λx) = λ2q(x).

Throughout this section, we will always assume that q is nondegenerate, i.e. b is nondegenerate.
A morphism between two quadratic forms q, q′ is a linear map f : V → V such that q′ ◦ f = q.

The automorphism group of a quadratic form q over Q is denoted as Oq(Q), called the orthogonal
group of (V, q).

For any Q-algebra R, q induces a quadratic form qR : V ⊗QR→ R over R by extension of scalars.
Its automorphism group is denoted by Oq(R). Thus, we have defined an algebraic group Oq over Q
corresponding to the quadratic form q : V → Q.

Furthermore, Oq is an affine algebraic group. Indeed, we fix a choice of basis {e1, . . . , en} for
V , a quadratic form q on V then corresponds to a symmetric matrix Bq defined by (Bq)ij :=
1
2(q(ei + ej)− q(ei)− q(ej)). One can show that two quadratic forms q, q′′ on V are isomorphic over
Q if Bq′ = T tBqT for some T ∈ GLn(Q). Thus, for any Q-algebra R, we can describe Oq(R) as

Oq(R) = {x ∈ GLn(R) : Bq = xtBqx}.

Let SOq be the closed algebraic subgroup of Oq that consists of automorphisms of q having deter-
minant 1.

Our main result in this section is the following

Theorem 134. τQ(SOq) = 2.

To prove this, we induct on n = dim V . We will take for granted that τQ(SOq) = 2 for n = 3, 4.
The proof for these cases can be found at [Wei82, p. 65, Theorem 3.7.1]. To use induction, we first
start by studying the action of SOq on V = Gn

a .

12.2. Orbits and stabilisers of the action of SOq on Gn
a . We study the action of SOq on

V = Gn
a by right multiplication.

12.2.1. Orbits. The orbits under the action of SOq on V are described in the below proposition.

Proposition 135. Let k be an extension of Q. The orbits under the action of SO(k) on V (k) by
right-multiplication are U(i)k := q−1

k (i)− {0} for i ∈ k and {0} (note U(i)k can be empty for some
i).

This follows from Witt’s theorem.

Lemma 136 (Witt’s theorem). Let k be an extension of Q, then two nonzero points x, y ∈ V (k) =
kn belong to the same orbit under the action of SOq(k) by right-multiplication if and only if qk(x) =
qk(y).
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12.2.2. Stabilisers. For 0 6= v ∈ V (Q), let SOv,q be the stabiliser of v under the action of SOq on
V , i.e. for a Q-algebra R, we denote

SOv,q(R) = {g ∈ Oq(R) : vg = v}.

We will show that SOv,q is a linear algebraic group by the following proposition

Proposition 137. If q(v) 6= 0 then SOv,q is isomorphic to a special orthogonal group of dimension
n − 1. If q(v) = 0 then SOv,q is isomorphic to the semidirect product of Gn−2

a acting on a special
orthogonal group of dimension n− 2.

Proof. We will describe the structure of SOv,q(R) in the two cases where q(v) = 0 and q(v) 6= 0.
For convenience, we will restrict the discussion to SOv,q(Q), as the case SOv,q(R) for any Q-algebra
R is completely similar.

If q(v) 6= 0 then we will show SOv is a special orthogonal group of dimension n − 1. Let
Wv = (Qv)⊥ := {v′ ∈ V : q(v, v′) = 0} (for convenience, we refer to b(v, v′) as q(v, v′)) then
Wv is a Q-vector space of dimension n − 1. Indeed, we know q(v) 6= 0 so q(v, v) 6= 0. Hence,
for any basis v, v1, . . . , vn−1 of V , one can choose ci ∈ Q so that q(v, vi + civ) = 0. This means
Wv = spanQ{v1 + c1v, . . . , vn−1 + cn−1v}.

We note that if g ∈ SOv then g preserves Wv, as 0 = q(v, v′) = q(gv, gv′) = q(v, gv′) for v′ ∈Wv.
This means SOv ⊂ SOq|Wv . Conversely, given g ∈ SOq|Wv then we can extend g to action on V by
letting gv = v, as v 6∈Wv. Thus, SOv = SOq|Wv , i.e. SOv is the orthogonal group corresponding to
the quadratic form q|Wv .

If q(v) = 0 but v 6= 0, the restriction of q to Qv is trivial. Since q is nondegenerate, there exists
v′ ∈ V independent from v such that q(v, v′) = 1. Then q(v′−xv) = 1

2q(v
′−xv, v′−xv) = q(v′)−x

for x ∈ Q. Thus, by taking x = q(v′) and replacing v′ by v′ − xv, we may assume that q(v′) = 0.
It follows W = (Qv ⊕ Qv′)⊥ has dimension n − 2, as for any w ∈ W , we can find c, c′ ∈ Q so
q(w + cv + c′v′, v) = q(w + cv + c′v′, v′) = 0. Thus, under a choice of basis v, v1, . . . , vn−2, v

′ of V
where v1, . . . , vn−2 is a basis of W , q has the matrix form

Bq =

0 0 1
0 S 0
1 0 0


where S is a (n − 2) × (n − 2) symmetric matrix corresponding to q|W . From this, one can show
that SOv,q is the semidirect product SOq|W nGn−2

a , i.e. an element in SOv,q(Q) has the form 1 0 0
w A 0

−1
2w

tSw −wtS 1


where w ∈ Gn−2

a and A ∈ SOq|W . �

12.2.3. Measures on orbits and stabilisers. In this section, we will define a SOq-invariant volume
form on the orbits U(i). This volume form allows us to connects the Tamagawa measure on SOq

(see (9)) with the Tamagawa measure on the affine space V (see (8)).
Let dv = dv1∧ · · ·∧dvn be the volume form on V . As q is nondegenerate, we find q∗dx = d(q(v))

is a nowhere vanishing 1-form on V (Q)− {0} 15. Because we have a submersion q : V − {0} → Ga

15We know d(q(v)) =
∑n
k=1

∂q
∂vi

dvi. It suffices to prove that if for x ∈ V (Q) so that ∂q
∂vi

(x) = 0 for all 1 ≤ i ≤ n,
then x = 0. Indeed, because q is nondegenerate, there exists a non-singular matrix A such that q(v) = vTAv =

v1(Av)1 + . . . + vn(Av)n. We find ∂q
∂vi

= (Av)i + (vTA)i. Therefore, if there is x ∈ V (Q) so that ∂q
∂vi

(x) = 0 for all
1 ≤ i ≤ n then xTA = −(Ax)T = −xTAT or 2xTA = 0 since A is symmetric. This implies x = 0.
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so there exists an algebraic nowhere-vanishing differential form θ of degree n − 1 on V (Q) − {0}
such that

θ ∧ d(q(v)) = dv.

Observe that θ is SOq-invariant since q(vg) = q(v) and d(vg) = det(g)dv = dv.
By restricting θ to U(i) ⊂ V − {0}, we obtain a G-invariant volume form θi on U(i) over Q. For

a local field Qv of Q, θi defines G-invariant volume forms |θi|v on U(i)Qv for any i ∈ Qv, satisfying
the integration along fibers of the submersion qQv∫

V (Qv)−{0}
f |dx|v =

∫
Qv

(∫
U(i)Qv

f |θi|v

)
|di|v.

Over AQ, we also have a similar result

(8)
∫
V (A)

f |dx|A =

∫
A

(∫
U(i)A

f |θi|A

)
|di|A.

On the other hand, for i ∈ Q and if 0 6= vi ∈ U(i)k then by Witt’s theorem, for any extension k
of Q, the map SOq(k)→ U(i)k sending g 7→ vig give rise to a bijection SOq,vi(k)\SOq(k)

∼−→ U(i)k.
When k = Qp,R or A, this induces a homeomorphism with respect to the topology of k. Because
the map g 7→ vig is SOq-invariant, the algebraic differential form θi on U(i) induces an algebraic
differential form θ′i on SOq, satisfying dh∧θ′i = dg, where dh, dg are invariant volume forms on SOq,vi

and SOq, respectively. Thus, for any continuous function F on SOq(A) with compact support, we
find

(9)
∫

SOq(A)
F (g)|dg|A =

∫
U(i)A

(∫
SOq,vi (A)

F (hg)|dh|A

)
|θi(vi · g)|A.

Here, |dg|A and |dh|A are the Tamagawa measures on SOq(A) and SOq,vi(A), respectively.

12.2.4. Measure on the orbit of 0. For the purpose of the later section, we need a more detail study
of the measure |θ0|k on U(0)k, where k is either a local field k = Qv or k = AQ.

Recall from the proof of Proposition 137, if there is 0 6= v ∈ U(0)k, there exists v′ ∈ V so q(v′) = 0
and q(v, v′) = 1. We then let W = (kv⊕ kv′)⊥. One can then show that any v′′ ∈ U(0), i.e. 0 6= v′′

and q(v′′) = 0, is either in kv ⊕ q|−1
W (0) ∪ kv′ ⊕ q|−1

W (0) or can be written as

v′′ = −(2a)−1q(w)v + w + av′

for a ∈ k× and for any w ∈W −(q|W )−1(0). Because, kv⊕q|−1
W (0)∪kv′⊕q|−1

W (0) is a proper Zariski
closed subset of U(0)k (for example, kv ⊕ q|−1

W (0) contains all x ∈ U(0)k such that q(v, x) = 0, and
the polynomial q(v, ·) does not vanish on U(0)k), |θ0|k has measure 0 on this set. Hence, the map

i :
(
W − q|−1

W (0)
)
×Gm → U(0)k,

(w, a) 7→ −(2a)−1q(w)v + w + av′

has image being a Zariski dense open subset of U(0)k, and |θ0|k is determined by its restriction to
its open set

(
W − q|−1

W (0)
)
× Gm. Because i is translation W -invariant and Gm-invariant, i∗θ0, as

an algebraic differential from, must also be invariant under these actions. Hence, i∗θ0 is dx1 ∧ · · · ∧
dxn−2 ∧ da

a up to a constant multiple of Q×, where dx1 ∧ · · · ∧ dxn−2 is a W -invariant volume form
on W and da

a is a Gm-invariant volume form on Gm. This follows for a fixed a ∈ k×, we find

|θ0(au)| = |a|n−2
k |θ0(u)|

for u ∈ U(0)k.
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12.3. Writing the integral over SOq(Q)\SOq(A) into orbits. To calculate τQ(SOq) =
∫

SOq(Q)\ SOq(A) |dg|A
where |dg|A is the Tamagawa measure on SOq(A), we consider a general integral∫

SOq(Q)\SOq(A)
F (g)|dg|A

for some left SOq(Q)-invariant continuous function F on SOq(A) with compact support. We let
f : V (A)→ C be a Schwartz-Bruhat function and let Ff : SOq(A)→ C be defined by

Ff (g) :=
∑

x∈V (Q)

f(xg).

Note that Ff is left SOq(Q)-invariant, and we temporarily assume the convergence of the below
integral to find

I(f) :=

∫
SOq(Q)\SOq(A)

Ff (g)|dg|A,(10)

=

∫
SOq(Q)\SOq(A)

f(0) +
∑
i∈Q

U(i)Q 6=∅

∑
x∈U(i)Q

f(xg)

 |dg|A,(11)

= f(0)τQ(SOq) +

∫
SOq(Q)\SOq(A)

∑
i∈Q

U(i)Q 6=∅

∑
γ∈SOvi (Q)\SOq(Q)

f(viγg)|dg|A,(12)

= f(0)τQ(SOq) +
∑
i∈Q

U(i)Q 6=∅

∫
SOvi (Q)\SOq(A)

f(vig)|dg|A,(13)

= f(0)τQ(SOq) +
∑
i∈Q

U(i)Q 6=∅

∫
SOvi (Q)\SOvi (A)

(∫
U(i)A

f(vihg)|θ(vi · g)|A

)
|dh|A,(14)

= f(0)τQ(SOq) +
∑
i∈Q

U(i)Q 6=∅

τQ(SOvi)

∫
U(i)A

f(v)|θi|A,(15)

= f(0)τQ(SOq) + 2
∑
i∈Q

U(i)Q 6=∅

∫
U(i)A

f(v)|θi|A,(16)

= f(0)τQ(SOq) + 2
∑
i∈Q

∫
U(i)A

f(v)|θi|A.(17)

Some explanation for the above manipulations:
(11) Follows from knowing the orbits under the action of SOq(Q) on V (Q) (see Proposition 135).
(12) From § 12.2.3 where we have a bijection U(i)Q ∼= SOvi(Q) \ SOq(Q).
(13) Because SOq(Q) is discrete in SOq(A), one can take the integral over SOvi(Q) \ SOq(A).
(14) Follows from (9) in § 12.2.3.
(15) Because f(vig) is left SOvi(A)-invariant.
(16) From the description of SOvi in Proposition 137, by inductive hypothesis, we know τQ(SOvi) =

2 for all i ∈ Q and all 0 6= vi ∈ U(i)Q.
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(17) By the Hasse principle, if U(i)Q = ∅ then U(i)A = ∅. Hence, we can take the sum over all
i ∈ Q.

We know that τQ(SOq) is finite and we can also show that∑
i∈Q

∫
U(i)A

f(v)|θi|A

converges absolutely, meaning the integral∫
SOq(Q)\SOq(A)

Ff (g)|dg|A

is defined.

12.4. Using Fourier transform and Poisson summation formula. With the same notation
as in the previous subsection, in this subsection we will prove the following lemma

Lemma 138. For f ∈ S(V (A)), we have∑
x∈Q

∫
U(i)A

f(v)|θi|A =
∑
x∈Q

∫
V (A)

f(v) expA(q(v)x)|dv|A,

where |dv|A is the Tamagawa measure on V (A) = An.

Proof. We first define a continuous map φf on A by

φf (i) :=

∫
U(i)A

f |θi|A.

By using (8) from § 12.2.3, we find that the Fourier transform of φf is

φ̂f (x) =

∫
A
φf (y) expA(yx)|dy|A,

=

∫
A

(∫
U(i)A

f expA(ix)|dθi|A

)
|di|A,

=

∫
V (A)

f(v) expA(q(v)x)|dv|A.

From this, we can deduce Poisson summation formula for φf (one needs to check certain analytic
conditions of φf in order to have the Poisson summation formula, we refer to [Wei65, Proposition
1,2] or [Igu78, Chapter 4] for more details on this), giving∑

x∈Q
φf (x) =

∑
x∈Q

φ̂f (x).

This proves the lemma. �

Lemma 139. For t ∈ A×, we define ft(x) := f(xt). Then

I(ft) = |t|−nA I(f̂t−1).

In particular, letting t = 1, we obtain I(f) = I(f̂).

Proof. For f ∈ S(V (A)), let χ be a unitary character on A such that the bilinear map χ(q(x, y))
defines an isomorphism between V (A) and its Pontryagin dual and such that the discrete subgroup

62



V (Q) of V (A) is identified with the unitary characters on V (Q)\V (A) via x 7→ (y 7→ χ(q(x, y))).
With this choice, we can consider the ‘twisted’ Fourier transform of f to be

f̂(y) =

∫
V (A)

f(x)χ(q(x, y))|dx|A,

where |dx|A is the Tamagawa measure on V (A). With this respect to this Fourier transform, the
Tamagawa measure is self-dual, giving us the Fourier inversion formula

f(y) =

∫
V (A)

f̂(x)χ(q(x, y))|dx|A

and the Poisson summation formula. For any g ∈ GL(V (A)), we have q(xg, y) = q(x, ygt). There-
fore, letting fg(x) := f(xg), we find

f̂g(x) =

∫
V (A)

f(yg)χ(q(x, y))|dy|A,

= |det(g)|−1
A

∫
V (A)

f(y)χ(q(x, yg−1))|dy|A,

= |det(g)|−1
A

∫
V (A)

f(y)χ(q(xg−t, y))|dy|A

= |det(g)|−1
A f̂(xg−t).

By applying the Poisson summation formula for fg, we find∑
x∈V (Q)

f(xg) = |det(g)|−1
A

∑
x∈V (Q)

f̂(xg−t).

For t ∈ A×, we have

I(ft) =

∫
SOq(A)\ SOq(A)

 ∑
x∈V (Q)

f(xgt)

 |dg|A,
= |t|−nA

∫
SOq(A)\ SOq(A)

 ∑
x∈V (Q)

f̂(xgt−1)

 |dg|A,
= |t|−nA I(f̂t−1).

�

12.5. Final touch. From Lemma 138 and § 12.3, we obtain the following identity

I(f) :=

∫
SOq(Q)\SOq(A)

 ∑
x∈V (Q)

f(xg)

 |dg|A = f(0)τQ(SOq) + 2
∑
x∈Q

∫
V (A)

f(v) expA(q(v)x)|dv|A,

for any f ∈ S(V (A)). This is referred to as the Siegel formula for the orthogonal groups ([Wei65,
Igu78,Mar66]).
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From Lemma 139, we know I(ft) = |t|−nA I(f̂t−1), yielding

I(ft) = |t|−nA I(f̂t−1),

= |t|−nA f̂(0)τQ(SOq) + 2|t|−nA

∑
x∈Q

∫
V (A)

f̂(t−1v) expA(q(v)x)|dv|A,

= |t|−nA f̂(0)τQ(SOq) + 2
∑
x∈Q×

∫
V (A)

f̂(v) expA(q(v)t2x)|dv|A + 2f(0).

One can show that the sum over Q× converges to 0 if |t| → ∞. Hence, we find

lim
|t|→∞

I(ft) = 2f(0).

On the other hand, we also have

I(ft) = f(0)τQ(SOq) + 2
∑
x∈Q×

∫
U(i)A

ft(v)|θi|A + |t|2−n
∫
U(0)A

f(v)|θ0|A.

The above equality follows from § 12.3 and from our analysis of measure |θ0|A on U(0)A.
One can show that the sum over Q× in the above equation is O(|t|−N ) for any positive integer

N as |t| → ∞ (see [Mar66, p. 136]). Thus, we have

lim
|t|→∞

I(ft) = f(0)τQ(SOq).

This concludes the proof that τQ(SOq) = 2, as desired.
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13. Tamagawa number over function fields

The goal of this section is to describe the Tamagawa number of a simply connected semisimple
group G over function field of a curve over Fq as a weight count on BunG(X).

Throughout this section, we will denote by X to be a smooth projective curve over Fq and by G
a smooth affine group scheme over X.

13.1. Function fields. In this section, we aim to describe P1 over a field k as a smooth, projective,
geometrically connected algebraic curve. We then define the function field kP1 of P1 and completions
of kP1 .

The projective k-scheme P1
k := Proj k[x0, x1] can be described as follows:

(1) The points of P1 consist of homogeneous prime ideals of the Z-graded ring k[x0, x1] 16.
(2) For a homogeneous polynomial of positive degree f ∈ k[x1, x2], let D(f) be the set of

homogeneous prime ideals of k[x0, x1] not containing f . These sets form a basis of open
sets for P1. Furthermore, one can think of D(f) as Spec(k[x0, x1]f )0, the spectrum of the
algebra of elements in k[x0, x1]f having degree 0. For example, one can identify D(xi) with
the affine scheme Spec k[x0/i, x1/i]/(xi/i − 1), where xi/j is identified with xi/xj .

(3) The structure sheaf of P1 is obtained by giving D(f) the structure sheaf of Spec(k[x0, x1]f )0.
In particular, OP1(D(x0)) = k[x1/0],OP1(D(x1)) = k[x0/1] and the gluing of the structure
sheaves on D(x0) ∩D(x1) = D(x0x1) is obtained by sending x0/1 7→ x1/0.

Being an integral scheme (i.e. OP1(U) is an integral domain for every nonempty subset U of P1),
P1 has a generic point η (i.e. a point that is dense in P1), corresponding to the homogeneous prime
ideal (0) in k[x0, x1] (because every open set D(f) contains (0)). The stalk OP1,η of P1 at η, and
hence the residue field κ(η), is noncanonically isomorphic to k(T ) (i.e. if we view η as an element
of Spec k[x0/1] ↪→ P1, its stalk is then k[x0/1](0) = k(x0/1)). We denote this as kP1 and call it the
function field of P1 over k.

Proposition 140. Closed points of P1 are in bijection with completions of kP1 .

Proof. A point in P1 is closed if it is closed in each open set D(xi) of P1. Furthermore, a point
in an affine scheme SpecA is closed if it corresponds to a maximal ideal in A, and the maximal
ideals of k[x] are in bijection with monic irreducible polynomials in k[x]. Thus, closed points of P1

corresponds to homogeneous polynomials Q(x0, x1) ∈ k[x0, x1] so that either Q(x0/1, 1) is monic
irreducible in x0/1 or Q(1, x1/0) is monic irreducible in x1/0.

For a closed point x ∈ P1 corresponding to a homogeneous polynomial Q(x0, x1) ∈ k[x0, x1], the
stalk OP1,x of P1 at x is k[x0/1](Q(x0/1,1))

∼= k[x1/0](Q(1,x1/0)). The residue field κ(x) at x is then
noncanonically isomorphic to k[t]/(Q(t, 1)), which is a finite extension of k. We denote by Ox the
completion of the local ring OP1,x, then Ox is a complete discrete valuation ring with residue field
κ(x), noncanonically isomorphic to the power series ring κ(x)[[t]]. Let kx be the fraction field of
Ox. We find that kx is a completion of kP1 . �

13.2. Integral model. Let G0 be a linear algebraic group over kX .

Definition 141. An integral model of G0 is an affine and smooth group scheme π : G→ X whose
generic fiber 17 is isomorphic to G0.

Example 142. An integral model SL2 → P1 for SL2 can be obtained by base change SL2 =
SL2×SpecFqP1.

16an ideal of k[x0, x1] is homogeneous if it is generated by homogeneous polynomials
17i.e. let η be a generic point of X then we have a morphism Specκ(η)→ SpecOX,x → X, giving us the generic fiber
G×X Specκ(η) as a scheme over κ(η)
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Given such a group scheme, for every commutative ring R equipped with a map u : Spec(R)→ X,
we can associate a group G(R). If u factors through the generic point η of X, we can equip R with
the structure of kX -algebra via u, and G(R) can be identified with G0(R). A choice of integral
model gives additional structures:

(1) For each closed point x ∈ X, we have a morphism SpecOx → SpecOX,x → X 18, so we can
consider the group G(Ox) of Ox-valued points of G.

(2) For a closed point x ∈ X, we have a morphism Specκ(x) → SpecOX,x → X, so we
can consider the group G(κ(x)) of κ(x)-valued point of G. We have a surjective map
G(Ox)→ G(κ(x)) because G is smooth 19.

(3) For a finite set S of closed points ofX, we have a morphism SpecASX → X so we can consider
the group G(ASX) of ASX -valued point of G. It is an open subgroup of G(AX) = G0(AX)
and as SpecASX =

∏
x∈S Spec kx×

∏
x 6∈S SpecOx, G(ASX) is isomorphic to the direct product∏

x∈S G(kx)×
∏
x 6∈S G(Ox).

13.3. Adelic uniformation of G-bundles. In this section, we will describe the set of isomorphism
classes of G-bundles in terms of a double quotient space.

Definition 143. Let Y be a X-scheme. A G-bundle on Y is a Y -scheme P equipped with an action
of GY := G×X Y given by GY ×Y P ∼= G×X P → P which is locally trivial in the following sense:
there exists an open immersion U → Y and a GY -equivariant isomorphism U ×Y P ∼= U ×Y GY .

Let BunG(Y ) be the groupoid of G-bundles on Y whose morphism are isomorphims of G-bundles.

For a G-bundle P on X and an open covering U → X, we denote by P |U the pullback of P along
U → X.

Theorem 144 (Adelic uniformisation theorem). Let X be an algebraic curve over Fq and G be a
smooth affine group scheme over X. Assume that the fibers of G are connected and that the generic
fiber of G is semisimple and simply connected. Then

(a) There is a bijection between the double quotient

G(kX)\G(AX)/G(A∅X)

and the set of isomorphism classes of G-bundles on X, sending γ ∈ G(AX) to a G-bundle
Pγ.

(b) For γ ∈ G(AX) then the automorphism group of Pγ corresponds to elements in γ−1G(kX)γ∩
G(A∅X).

Following [GL19, §1.3.2], we attempt to give a sketch for the proof of this theorem. We first
remark that we have defined G-bundles in terms of the Zariski topology. However, as far as we are
aware, one needs G-bundles in flat/etale topology for this result to hold. Due to our ignorance in
this topic, we will pretend that we know what ‘flat/etale topology’ means and accept any results
about G-bundles in ‘flat/etale topology’ which are used in the below proof of the theorem.

Sketch. For convenience, for x ∈ X, we denote Dx = SpecOx and D∗x = Spec kx.
An element γ ∈ G(AX) can be identified with (γx ∈ G(kx))x∈X where γx ∈ G(Ox) for all but a

set S of finitely many closed points of X. Hence, by Beauville-Laszlo theorem on gluing G-bundles,
there exists a G-bundle Pγ on X such that

18For example, let X = SpecZ, a prime number in Z corresponds to a closed point of X, we find OX,p = Z(p) is a
local ring with maximal ideal mX,p = pZ(p). The completion of OX,p with respect to this maximal ideal is Op = Zp.
Thus, we have Z→ Z(p) → Zp, giving us SpecOx → SpecOX,x → X
19Smoothness implies a condition on the Jacobian of the local coordinates at a point, and by a generalisation of
Hensel’s lifting lemma, we have surjectivity. For more details, see p.20 of See Weil’s book Adeles and Algebraic
Groups
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(1) Pγ is trivialised over U = X − S via some φ : G×X U
∼−→ Pγ |U .

(2) For each x ∈ S, Pγ is trivialised over Dx via ψx : G×X Dx
∼−→ Pγ |Dx .

(3) As D∗x ↪→ Dx and D∗x ↪→ U , the two trivialisations are glued together on Spec kx by γx ∈
G(kx) for x ∈ S. In other words, the map

(18) G(kx)
φ|D∗x−−−→
∼

Γ(D∗x, P |D∗x)
ψ−1
x |D∗x−−−−−→
∼

G(kx)

is given by sending 1 7→ γx.
Note that the definition of Pγ is independent of the choice of S, as long as S contains all points x
so γx 6∈ G(Ox).

Conversely, considering a G-bundle E, we will show that there exists γ ∈ G(AX) such that
E = Pγ . Because the fibers of G are connected, by a theorem of Lang, for each closed point x ∈ X,
the bundle E is trivial over Spec(κ(x)). Because G is smooth over X, E is also smooth over X. By
Hensel’s lemma, any trivialisation of P over Spec(κ(x)) can be extended to a trivialisation of P
over Spec(Ox). This implies E is trivial over Spec(kx) for any x ∈ X. Therefore, by a theorem of
Harder, as the generic fiber of G is connected, semisimple and simply connected, E is trivial over
the generic point. By a direct limit argument, E is trivial over some open subset U ⊂ X.

Let S be the set of closed points of X that are not contained in U . We know that E is trivial
over U and over Dx for all x ∈ S. By the previous construction, the gluing data gives us an element
γ ∈ G(AX), so E = Pγ .

Thus, we have constructed a surjective map G(AX)→ |BunG(X)| sending γ 7→ Pγ .
Finally, we identify when Pγ is isomorphic to Pγ′ for γ, γ′ ∈ G(AX). Both are trivialised at

the generic point, implying the isomorphism Pγ |Spec kX
∼−→ Pγ′ |Spec kX corresponds to an element in

Aut(G×X Spec kX), corresponding to an element α ∈ G(kX). In particular, we have

Γ(Spec kX , Pγ)
φ−1
γ−−→
∼

G(kX)
×α−−→ G(kX)

φγ′−−→
∼

Γ(Spec kX , Pγ′),

where φγ : G×X Spec kX
∼−→ Pγ |Spec kX and φγ′ : G×X Spec kX

∼−→ Pγ′ |Spec kX are trivialisations of
Pγ and Pγ′ over Spec kX , respectively.

A trivialisation at the generic point induces a trivialisation over some open set U of X. Let S
be a set of closed points not contained in U . We know Pγ and Pγ′ are also trivialised over Dx for
x ∈ S. Arguing similarly, Pγ |Dx

∼−→ Pγ′ |Dx corresponds to an element βx ∈ G(Ox) for all x ∈ S. In
particular, for x ∈ S, we have

Γ(Dx, Pγ)
ψ−1
γ,x−−−→
∼

G(Ox)
×βx−−→ G(Ox)

ψγ′,x−−−→
∼

Γ(Dx, Pγ′)

Lastly, we know the gluing data of trivialisations of Pγ over U and over Dx for x ∈ S comes from
γx ∈ G(kx), i.e. (18). Similarly for γ′. Thus, by combining everything, we find

γ−1αγ′ =
∏
v∈S

β−1
x ∈ G(A∅X).

Thus, an element in γ−1G(kX)γ′ ∩ G(A∅X) defines an isomorphism between Pγ and Pγ′ uniquely.
We are done. �

13.4. Tamagawa number in terms of G-bundles. Let X be an algebraic curve over Fq and kX
be the function field of X. Let G0 be a connected semisimple simply connected linear algebraic
group. In this section, we will give a formula for the Tamagawa number of G0 in terms of G-bundles.

Let π : G→ X be an integral model of G0 (such an integral model always exists), let ΩG/X be the
relative cotangent bundle of π. Then Ωn

G/X :=
∧n ΩG/X is a line bundle on G, where n = dim(G0).

Let L be the pullback of Ωn
G/X along the identity section e : X → G. Sections of L can be
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identified with left-invariant differential forms on G via the canonical isomorphism π∗L ∼= Ωn
G/X

(see [BLR90, p. 100]). Let L0 := Spec kX ×X L be the generic fiber of L, whose global sections
form a 1-dimensional kX -vector space. A non-zero global section ω of L0 can be viewed as a global
left-invariant nowhere-vanishing algebraic differential form on G0. For every closed point x ∈ X, ω
induces a left-invariant Haar measure dµω,x on G(kx).

For an invertible sheaf L of OX -modules and a nonzero global section ω of its generic fiber L0,
one can associate a divisor on X as follows. For a closed point x ∈ X, we consider the stalk Lx ⊂ L0

at x, which is a Ox-module of rank 1 inside a 1-dimensional kX -vector space. Then ωOx is also a
rank 1 Ox-submodule of L0. Let tx ∈ Ox be a uniformiser element then ωOx = t−nxx Lx for some
integer nx. We define vx(ω) := nx to be the order of vanishing of ω at x.

Lemma 145. For every closed point x ∈ X, We have

µω,x(G(Ox)) =
|G(κ(x))|
|κ(x)|n+vx(ω)

,

where vx(ω) ∈ Z denotes the order of vanishing of ω at x.

Sketch. If we view ω as a left-invariant differential form on G(kx) via the isomorphism π∗L ∼=
Ωn
G/X , vx(ω) can be described as follows. At the neighborhood U of the identity e of G(kx), ω

can be written as ω = f(t)dt1 ∧ · · · ∧ dtn where t1, . . . , tn are the local coordinates at e, and
f : U → kx is an invertible rational function. Then f(e)Ox = t

−vx(ω)
x Ox. In other words, the image

of ω(e) ∈
∧n T ∗e (G(Ox)) under

∧n Te(G(Ox)) generates a fractional ideal p−vx(ω) of kx. Because
ω is left-invariant so for any g ∈ G(Ox), the image of ω(g) ∈

∧n T ∗g (G(Ox)) under
∧n Tg(G(Ox))

generates the fractional ideal p−vx(ω) of kx. In other words, under new local coordinates y1, . . . , yn
at the neighborhood of g ∈ G(Ox), we have ω = f ′(y)dy1∧· · ·∧dyn where f ′ is a rational function so
that f ′(g)Ox = t

−vx(ω)
x Ox. By the definition of Weil measure, we then find that tvx(ω)

x ω defines the
Weil measure on G(Ox), or ω defines a measure |κ(x)|−vx(ω)µWeil on G(Ox). Thus, by Theorem 87,
we find

µω,x(G(Ox)) = |κ(x)|−vx(ω)µWeil(G(Ox)) =
|G(κ(x))|
|κ(x)|n+vx(ω)

.

�

From § 5.5.3, the Tamagawa measure µG0,X of G(AX) = G0(AX) is

q(1−g)n
∏
x∈X

′µω,x.

where g is the genus of X. We also have∏
x∈X
|κ(x)|vx(ω) =

∏
x∈X

qdeg(x)vx(ω) = q
∑
x∈X deg(x)vx(ω) = qdegL = qdeg ΩG/X .

Here deg(x) := [κ(x) : Fq], degL :=
∑

x∈X deg(x)vx(ω) where the sum is over all closed points
of X 20, degL = deg ΩG/X = n because of the isomorphism π∗L ∼= Ωn

G/X . Thus, combining with
the previous lemma, we find

µG0,X(G(A∅X)) = qn(1−g)−deg(ΩG/X)
∏
x∈X

|G(κ(x)|
|κ(x)|n

,

given that the above infinite product converges.

20this does not depend on the choice of ω because for any two nonzero global sections ω and ω′ of L, there exists a
nowhere-vanishing function f ∈ OX(X) so ω = fω′, and one can show

∑
x∈X vx(f) deg(x) = 0.
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Proposition 146. Let X be an algebraic curve of genus g over a finite field Fq and let G be a
smooth affine group scheme of dimension n over X. Suppose that the fibers of G are connected and
that the generic fiber of G is semisimple and simply connected. Then the Tamagawa number of G
equals

τkX (G) = qn(g−1)+deg(ΩG/X)
∏
x∈X

|G(κ(x))|
|κ(x)|d

∑
P∈BunG(X)

1

|Aut(P )|
,

given that the right-hand side converges.

Proof. For each z ∈ G(kX)\G(AX)/G(A∅X), denote byOz the inverse image of z under the projection
from G(kX)\G(AX). Thus, we have

τkX (G) =
∑

z∈G(kX)\G(AX)/G(A∅X)

µG,kX (Oz).

Let γ ∈ G(AX) lie in the preimage of z, then the preimage of Oz under the projection from G(AX)
is ⊔

α∈G(kX)∩γG(A∅X)γ−1

αγG(A∅X).

Note that G(kX) ∩ γG(A∅X)γ−1 is a finite group because it is the intersection of a discrete and a
compact group. It follows that

µG,kX (Oz) =
µG,kX (A∅X)

|G(kX) ∩ γG(A∅X)γ−1|
.

Thus, combining with the previous theorem, we find

τkX (G) = τG,kX (G(A∅X))
∑

P∈BunG(X)

1

|Aut(P )|
.

We are done. �
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[Vos95] V.E. Voskresenskĭı, Adèle groups and Siegel-Tamagawa formulas, J. Math. Sci. 73 (1995), no. 1, 47-113.
[Vos98] , Algebraic groups and their birational invariants, Translations of Mathematical Monographs, Amer-

ican Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kun-
yavski [Boris È. Kunyavskĭı].
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