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1. INTRODUCTION

1.1. Introduction to Weil’s conjecture. In number theory, the Hasse principle is the idea that
one can find integer solutions to an equation by combining together solutions modulo prime powers.
This process is handled by considering the equation over all the completions of the rational num-
bers: the real numbers R and the p-adic numbers @Q,. The adeles A of Q is a ring that combines
all these completions together, with the purpose that instead of trying to do analysis over each
completion separately, one should put them on an equal footing by simply working over the adeles.
For a first concrete indication of this phenomenon, the adeles lies inside the product R x Hp Qp
of all completions of Q. Many statements in number theory, such as class field theory, have more
enlightening adelic formulations than their classical accounts.

For a linear algebraic group G over Q (for example, SL,,, GL,), one can study analysis on the
adelic points G(A) of G. In particular, we have a canonical Haar measure on G(A), called the
Tamagawa measure (G Q-

As Q is a discrete subgroup of A, G(Q) is also a discrete subgroup of G(A). Hence, the Tamagawa
measure on G(A) induces a G(A)-invariant measure on G(Q) \ G(A). When G is semisimple (for
example, SL,, or SO,,), the volume

0(G) = / HG.,Q-
G(Q\G(A)

of G(Q) \ G(A) with respect to this measure, called the Tamagawa number, is finite, and contains
interesting arithmetic information. For example, 7g(SL2) = 1 is equivalent to the Euler product
formula for the value of the Riemann zeta function ¢ at 2. Tamagawa |Tam66| was the first one to
define 73 (G) when G is the special orthogonal group of a quadratic form and k is any number field
(for example, k = Q). He showed that 7;(SO,,) = 2 and indicated that this is entirely equivalent to
Siegel’s famous mass formula in the theory of quadratic forms (we will try to motivate this idea of
Tamagawa in a later section). Weil [Wei95| pursued Tamagawa’s idea for more general groups and
conjectured

Theorem 1 (Weil’s conjecture on Tamagawa numbers). Let G be a simply connected semisimple
linear algebraic group over a number field or a function field k, then the Tamagawa number 1(Q)
of G over k is 1.

1.2. History of Weil’s conjecture.

1.2.1. Proofs. In the number field case, Weil, Mars and Demazure (see [Wei82, p. 116] for the
precise references) have settled the conjecture for all classical groups and some exceptional groups.
Langlands |[Lan66| proved the conjecture for split groups G over Q. Lai |Lai76| generalised Lang-
lands’ proof to the quasi-split case over any number field. Kottwitz [Kot88| completely proved the
conjecture by reducing to the quasi-split case via the Arthur-Selberg trace formula.

In the function field case, Harder |Har74| proved the conjecture for split groups following Lang-
lands’ method. Until much later, Gaitsgory and Lurie [GL19] proved the conjecture for the function
field case using a completely different method.

1.2.2. Beyond Weil’s conjecture. The Tamagawa measure and the Tamagawa number can be defined
more generally for any connected reductive or unipotent linear algebraic group G over a global field
E (see |Ono66]). Ono [Ono66| derived the Tamagawa number for tori and showed how the Tamagawa
numbers behave under isogenies. In particular, consider a connected semisimple algebraic group G
over a number field and let G be its universal covering. Ono obtained a formula for 7(G)/7(G),
called the relative Tamagawa number. This was then generalised to any connected reductive groups
over a number field by Sansuc |[San81| and over a function field by [BD09]. In particular, Sansuc
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showed that for any connected reductive group G over a number field and G’ be the universal
covering of its derived subgroup, we find

7(G) _ |PicG]|
(G |[I(G)|

Here Pic(G) is the Picard group of G and III(G) is the Tate-Shafarevich set of G. Assuming the
Weil’s conjecture, this implies

Theorem 2. For a connected reductive algebraic group G over a global field k, there holds

(@)~ PO
(G|

When G is unipotent, the Tamagawa number of G over a number field is 1. Over function fields,
the Tamagawa number was computed in [Oes84].

In the other direction, Birch and Swinnerton-Dyer attempted to find analogues of Tamagawa
measure and Tamagawa number in the case of abelian varieties. This has led them to conjecture
about the integer values of certain L-functions of elliptic curves. In particular, Bloch |Blo80] showed
theorem

Theorem 3. Let A be an abelian variety over a number field. There exists an extension X of A
by a split torus such that one can define the Tamagawa measure and Tamagawa number for X.
Furthermore, the Birch and Swinnerton-Dyer conjecture for A is equivalent to the statement

B | Pic(X)tors]
)= )

where Pic(X)ors s the torsion subgroup of Pic(X).

1.3. Motivation. We will motivate the Tamagawa numbers via the arithmetic theory of quadratic
forms, following |GL19|.

A quadratic space (V,q) over Q is a finitely generated free Q-module V' equipped with a quadratic
form, i.e. a map q: V — Q satisfying the following conditions:

(1) The map V x V — Q given by (v, w) — g(v+ w) — q¢(v) — q(w) is Q-bilinear.

(2) For every A € Q and every v € V, we have g(\v) = A\2q(v).
A morphism between two quadratic spaces (V, q) and (V’,¢') is a linear map f : V — V' such that
¢ o f = q. The automorphism group of a quadratic space (V,q) over Q is denoted as O,4(Q), the
orthogonal group of (V,q).

If we fix a choice of basis {e1,...,e,} for V, a quadratic form ¢ on V then corresponds to a
matrix B, defined by (By)i; = 3(q(ei +¢;) — qle;) — q(e;)). One can show that two quadratic forms
p,q on V are isomorphic if and only if B, = T*B,T for some invertible matrix 7' € GL,(Q).

One could then ask the question of classifying quadratic spaces over Q up to isomorphism; or
equivalently, classifying n xn matrices over Q up to the equivalence relation A ~ B <= A = T!BT
for some T' € GL,(Q). To achieve this, one first base changes the quadratic space (V,q) over Q to
create a quadratic space (V ®q Qy,qqg,) over Q, for each completion Q, of Q (we think of R as
Qo). The Hasse principle for quadratic forms then states that two quadratic forms are equivalent
over Q if and only if they are equivalent over Q,’s. Over Q,’s, the classification of quadratic spaces
is easier to describe, giving us the classification over Q (see |Ser73, Chapter IV]).

If we now restrict our attention to quadratic spaces over Z then a similar statement to the Hasse
principle fails; i.e. even if s and ¢ are two quadratic forms over Z such that they equivalent under
extension of scalars to Z, and R (this is to say that s and ¢ have the same genus), it does not
necessarily follow that they are equivalent over Z.
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However, it is ‘almost true’ in the following sense: for a fixed positive-definite quadratic form ¢
over Z E|, there are only finitely many quadratic spaces of the same genus to ¢ (up to isomorphism).
In fact, one obtains a bijection (or an equivalence of groupoids)

{genus of ¢} +— 04(Q) \ Oq(A)/Oq(i x R).

Furthermore, we can also define the following weight count of quadratic forms in the genus of g,
(called the mass of the genus of q)

1
m(q) = ) 5o
20,2
where the sum is over all quadratic forms of the same genus as ¢ up to isomorphism. One can show

that
1 pma(S0,(Q)\ S0,(4)
D=2 ;@ =7 (S0, E X E))

Here fiTam is the Tamagawa measure on SO,4(A), i.e. the group of automorphisms in Oy(A) having
determinant 1, £ is the number of primes p for which SO4(Z,) = O4(Z,), and Z = Hp Zyp. The
numerator is the Tamagawa number for SO,, and as one can also compute the denominator, this
gives an explicit mass formula, called the Smith-Minkowski-Siegel mass formula.

1.4. Outline for the thesis. The goal of our thesis is to study the Weil’s conjecture. In the
next five sections, we will present the prerequisite back ground material. We will then define the
Tamagawa measure in and compute the Tamagawa numbers for various groups in the next four
sections. In the last section, we give an equivalent formulation for the Tamagawa number in the
function field case. A more detailed outline for the thesis is given below.

In we discuss valuation theory, i.e. how to equip a field & with an absolute value and take
completions of k with respect to this absolute value. Our main example is & = Q with its completions
Qp and R, where p is a prime.

In first we review the theory of measures and integrations. We then focus on discussing Haar
measures on locally compact topological groups and establish some results that will be used to carry
out computations with Haar measures in later sections.

In we define the notion of a k-analytic manifold for any complete valued field k. When k
is a local field (e.g. R or @Q,), we show that there is a theory of integration on such manifolds,
resembling the corresponding classical theory for smooth manifolds.

In we define the ring adeles A of Q and study its topology. We show that Q is a discrete
subgroup of A and that Q \ A is compact. We also describe a functorial way to give a topology on
G(A) for any linear algebraic group G over Q.

In we discuss Fourier analysis on locally compact abelian groups. In particular, we describe
the Pontryagin duals for R,Q, and A together with their quotients Z \ R,Z, \ Q, and Q \ A,
respectively. We then prove the Poisson summation formula with the focus on these groups.

In we discuss the structure theory of SLy. We determine its Lie algebra and its non-vanishing
left-invariant global top forms, and then show how to relate these two notions.

In[§ 8 we define the Tamagawa measure and the Tamagawa number for any connected semisimple
group over any global field.

In[§ 9 we compute the Tamagawa number of SLy over Q by constructing a fundamental domain
for the quotient SLy(Q)\ SL2(A).

In[§ 10, § 11] and [§ 12 we will exhibit computations of the Tamagawa numbers of classical groups
over Q using Poisson summation formula.

lq being positive-definite means gr is positive-definite, i.e. gr(v) > 0 for every nonzero vector v
7



In we showed that the Tamagawa number over function field can be interpreted as certain
weight count on the moduli space of G-bundles.



2. ABSOLUTE VALUES, COMPLETIONS OF @

In this section, following [Mil,|Sut19, Neu99|, we will discuss the completion of a field that is
equipped with an absolute value. We focus on describing the completions @Q@,’s and R of Q.

2.1. Absolute values.

Definition 4. An absolute value of a field k is a map |- | : k — R>q such that for all z,y € k:

(1) |z] =0 iff 2 =0,
(2) |zyl = |=[lyl,
(3) |z +yl < lz|+lyl.
The field k is then called a valued field. If the stronger condition

(4) o +y| < max(|z, [y]).
also holds, then the absolute value is nonarchimedean, otherwise it is archimedean.

The condition |z + y| < max(|z|,|y|) for all z,y € k is equivalent to | | being bounded on
{nl:n € Z}. In particular, this implies that if k is of positive characteristic then every absolute
value on k is nonarchimedean.

For valued field k£ with nonarchimedean absolute value | |, the set Oy := {x € k : 2| < 1} is a
subring of k with group of units U := {z € k : |z| = 1} and unique maximal ideal m := {x € k :
|z| < 1}.

Example 5. The map | | : k — R>¢ defined by |z| = 1 if z # 0 and |0] = 0, is the trivial absolute
value on k. It is nonarchimedean.

When k is equipped with an absolute value then k£ has a metric space topology. Two absolute
values | |1 and | |2 on k are called equivalent if they define the same topology on k. This is the
same as saying that there exists real number s > 0 such that |z|] = |z|2 for all x € k. We call an
equivalence class of absolute values on k a place of k.

For Q, we have the usual absolute value | |, being an archimedean absolute value. For each
prime p, we can define an archimedean absolute value | |, on Q as follows.

Ezample 6. Let p be a prime number. Every element in Q* can be written as +[] g g% where the
product ranges over the primes of Z and the exponents e, € Z are uniquely determined. We have
a map (called the p-adic valuation) v, : Q* — Z, defined by

UP <:|:quq> = ep»
q

and v,(0) := co. The p-adic absolute value on Q is defined by |x,| := p~"®) where 0], = p
understood to be 0.

> iIs

Theorem 7 (Ostrowski). Every nontrivial absolute value on Q is equivalent to either | | or | |p
for some prime p.

Sketch. For any m,n € Z, we can write m = ag+ain+---+a,n" where a; € Z,0 < a; <n,n” <m.
Letting N := max{1, |n|}, we obtain a bound |m| < N'gm/logn,

If for all n > 1, we have |n| > 1, then N = |n|. From the previous inequality, we find |m|*/1g™
loge
o

is constant for all m € Z~4. It follows |n| = |n|e’ " for all integer n > 1, hence | | is equivalent to

| loo-

If there is n € Z such that n > 1 but |n| < 1, then N = 1 and hence |m| < 1 for all m € Z,
meaning the absolute value is nonarchimedean. Let O be the corresponding local ring and m be its
maximal ideal. We find Z C O and p NZ is a nonzero prime ideal, hence this ideal is (p) for some

9



prime p. This implies |m| = 1 if m is not divisible by p, hence |ap”| = |p|” if n is rational number
whose numerator and denominator are not divisible by p. If @ € R such that |p| = (1/p)* then
|z| = |z} for all x € Q. O

For a number field k&, i.e. a finite extension of QQ, we can describe the places of k, i.e. equivalence
classes of absolute values on k, as follows.

Theorem 8. There exists exactly one place of k
(1) for each prime ideal p of O,
(2) for each real embedding of k (i.e. an injective field homomorphism k — R),
(8) for each conjugate pair of complex embeddings.

For a place v of k coming from an archimedean absolute value, we write v | co.

Ezample 9. When k = Q[z]/(2? + 1), we have one conjugate pair of complex embeddings k < C
sending x — +i. This corresponds to the completion C of k. On the other hand, the ring of integers
O = Z[x]/(x® + 1) of k has prime ideals

(1) (1414) = (1 —1),

(2) (a+ ib) where a® + b? = p is a prime with p =1 (mod 4),

(3) (p) where p € Z is a prime such that p =3 (mod 4).

The absolute value of k corresponding to each prime ideal is defined analogously as in the case of
p-adic absolute value for Q.

2.1.1. Nonarchimedean absolute values from discrete valuations. The class of nonarchimedean val-
ued fields that is of interest for us comes from discrete valuations.

Definition 10. A valuation on a field k is a group homomorphism k* — R such that for all
x,y € k*

v(z +y) > min{o(z), v(y)}.

We may extend v to a map k — R U {oo} by defining v(0) := oco. For any 0 < ¢ < 1, defining
|z, == ¢"®) yields the same nonarchimedean absolute value up to equivalence. We say v is a
(normalised) discrete valuation if v(k*) = Z. We call A := {x € k : v(z) > 0} the valuation ring
of k. A discrete valuation ring s an integral domain that is the valuation ring of its fraction field
with respect to a discrete valuation.

FEzample 11. For k = Q, the p-adic absolute value comes from the discrete valuation v, as in

For a discrete valuation ring A, there holds v(A) = Z>p, so there exists elements m € A such
that v(m) = 1, which we call them uniformisers of A. If we fix a uniformiser 7 then every element
x € kX can be written uniquely as 2 = un”, where n = v(x) and u = z/7°®) € AX. Every nonzero
ideal of A is equal to (7") = {a € A : v(a) > n} for some integer n > 0. Hence, A has a unique
maximal ideal m = (7) = {a € A : v(a) > 0}.

A discrete valuation ring enjoys many properties which gives it many equivalent definitions. At
the moment, we will direct the reader to [Sut19, Lecture 1], [Ser79|, [Mil] for further discussions
about this.

Ezample 12. The p-adic valuation v, of Q as in has valuation ring Z,), which is the
localisation of Z at the multiplicative set Z \ (p). Concretely, it is a subring of Q, with elements of
the form § € Q where p { b. The residue field is Z,)/pZ,) = Z/pZ = F).

10



Ezample 13. For any field k, the valuation v : k((¢)) — Z U {oco} on the field of Laurent series over
k defined by

E ant"™ | :=ng,

n>ng

where a,,, # 0, has valuation ring k[[t]], the ring of power series with coefficients in k. For f € k((t))*,
v(f) € Z is the order of vanishing of f at 0.

2.2. Completions of global fields.

Definition 14. Let k be a field with nontrivial absolute value. A sequence (ay) of elements in k
is called a Cauchy sequence if for every e > 0, there is N > 0 such that |ay, — ap| < € for all
n,m > N. The field k is said to be complete if every Cauchy sequence has a limit in k.

Theorem 15. Let k be a field with absolute value | |. There exists a complete valued field (k,| |)

and a homomorphism k — k of topological fields, preserving the absolute value, that is universal in
the following sense: every homomorphism k — 1 from k to a complete valued field (1,||) preserving
the absolute value extends uniquely to a homomorphism k — 1.

Sketch. Construct k to be the set of equivalence classes of Cauchy sequences in k, in the sense that
two Cauchy sequences (a,,) and (by,) are equivalent when lim,_,o |an, —b,| = 0. One can then define
addition and multiplication in the obvious way and show that k is a field. An element a € k has
image (a,a,...) inside k. O

We are interested in completed valued fields that come from taking completions of a global field,
i.e. a finite extension of Q or of Fy((t)). The resulting completed fields are called local fields, which
have the following equivalent but simple description.

Definition 16. A local field is a valued field k with nontrivial absolute value such that k is locally
compact.

Note that if k£ is locally compact then k is complete H All archimedean local fields are isomorphic
to either R or C.

2.2.1. Completions from discrete valuations. This section is about complete valued fields with dis-
crete valuation, which, in particular, is where all nonarchimedean local fields come from.

Let | | be a nonarchimedean absolute value on k obtained via a discrete valuation v. Let A, m, 7
be the corresponding valuation ring, maximal ideal and uniformiser of k.

Proposition 17. (a) If & is the completion of k with respect to | | then | | 1s also a discrete absolute
value on k. Its mazimal ideal M is generated by w. The residue field ofk is A/m = A/m
(b) If S C A is a set of representatives of A/m then every element in k has a unique representative
of the form
a_pm "+t agtagm o FapmT Tt + ., a; €8.

(c) Furthermore, we have an isomorphism of topological rings

~ . A
A fm

n—o0

2Let (zn)nz1 be a sequence in k that converges to x € k. Let U C k be a compact neighborhood of z; then a:na:flU
is a compact neighborhood of x,,. We should be able to find z € |J,, znz;'U C k.
11



Sketch. (a) Let a € k> then a corresponds to a sequence (an) in k converging to a. Then |a,| — |al,
so |a| is a limit point of |k*|. But |k*| is discrete of R, hence closed, hence |a| € |k*|. Thus || is a
discrete absolute value on % and also use v to denote the valuation on & extending the one on k. It
follows that m is generated by .

(b) Let a € k then a = 7™y for o unit in A. There exists ag € S such that ag —ag € m. Then
2000 ¢ A so there exists a; € S such that 20— — gy € m. If we keep going then we can write
apg =apg+aim+ ... and a = 1"ag.

We refer to |[Sutl9, Lecture 8] for the proof of part (c). O

Ezample 18. Let k = Q, v, be the p-adic valuation of Q and |z|, := p~ (@) he the corresponding
p-adic absolute value. The completion of Q with respect to | |, is the field Q) of p-adic numbers. For
T = amp™ + A pm T € Qp where m € Z, a; € Fp, ap, # 0 then |z|, =p~™. From
vp over Q has valuation ring Z,), and we have Z/(;) = Zp, the p-adic integers. The basis of open
sets of 0 € QQ, are kap where k € Z.

Ezample 19. Let k = k(t), let v; be the t-adic valuation on k(t), and let |z|; :== ¢~ "*(®) (for ¢ > 1
any fixed real number) be the corresponding absolute value with = = ¢ being the uniformiser. The
completion of k(t) with respect to | |; is isomorphic to field k((¢)) of Laurent series over k. The
valuation ring of k(t) with respect to v; is k[t] (), ring of rational functions whose denominators have

nonzero constant term. With 7 = ¢ as our uniformiser, we find k[t];) = k[[t]], the power series over
k.

Proposition 20. k is locally compact if and only if it is complete and has finite residue field A/m.

Proof. If k is locally compact then k is complete. As {n"A},cz is a fundamental system of closed
neighborhoods of 0, at least one of them is compact. Multiplying by 7~", which is a homeomorphism,
shows that A is compact. Let S be set of representatives for A/m, then the compact subset A is a
disjoint union of open sets s +m for s € S, implying S is finite.

Conversely, if A/m is finite then A/7™A is finite, hence from previous proposition, Aisa projective
limit of finite rings, hence is compact. If k£ is complete then A = Ais compact, meaning k is locally
compact. m

Example 21. 1) The completion @, of Q with respect to p-adic valuation v, is locally compact,
hence a nonarchimedean local field.

2) F,((t)) is locally compact as it is the completion of F,(¢) with respect to t-adic valuation and
residue field IF,.

12



3. MEASURES AND INTEGRATION

In this section we review the theory of measure spaces and integration on locally compact spaces,
in particular Haar measure on locally compact groups. We refer to |[Fol16, VR99, Kna02,[BSU96| for
the proofs of the results in this section.

Convention 22. From now on, all locally compact spaces are assumed to be Hausdorff.
3.1. Measure. Let X be a set, and let M be a collection of subsets of X.

Definition 23. M is a o-algebra if M is closed under taking complements in X and countable
unions. Elements of M are called measurable sets.

Ezample 24. Let X be a topological space. The collection of Borel sets is the o-algebra B(X)
generated by open subsets of X.

Definition 25. A function f : X — Y is called measurable if the preimage of any measurable
subset in 'Y is measurable in X.

Remark 26. Let f be a complex-valued function on a o-algebra, where the measurable sets in C
are the Borel sets of C. For f to be measurable, it suffices to check f~1(S) is measurable for open
disks in C. When f is real-valued, f is measurable iff f~1(S) is measurable for any S = (a,00) C R
where a € R.

Definition 27. A measure on (X, M) is a function p: M — [0, 00] such that p(|JAi) = > u(A;)
for any countable (or finite) collection of disjoint measurable sets A;. In the special case where
M = B, a measure is called a Borel measure.

A set N C X is called a null set if N is contained in a measure-0 set. It is convenient to enlarge
M so that all null sets are measurable. We call f : X — C a null function if {z € X : f(z) # 0} is
a null set.

Given a measure (X, 1) and a measurable map f : X — Y then the pushforward of y is a measure
on Y where (fiu)(B) := u(f~1(B)) for any measurable subset B of Y. We are not aware of any
reference discussing pullback of measures in general. However, if X, Y are smooth manifolds and f
is submersive, pullback of measures can be defined via fiber integrations.

3.2. Integration. We fix the notation (X, M, ) where X is a set with o-algebra M and measure
w. We will briefly define integration with respect to this space. We refer to |[BSU96| for a more
detailed discussion of this construction.

Given S € M with u(S) < oo, let 15 : X — {0, 1} be the indicator function on S, i.e. it has value
1 on S and 0 outside of S, and define fX lsdp := u(S). A simple function f is a function of the
form f =3 a1, where a; € R and S;’s are pairwise disjoint sets in M of finite measure. For
such a simple function f = 3" a;lg,, define [ fdu =3, a;u(S;). For any real-valued nonnegative
measurable function f on X, we define

[ t@)duta) i=swp [ s()dnta)
X 1) X

where ¢ ranges over all simple functions on X with 0 < ¢ < f. We say that a measurable function
[+ X — Cisintegrable if [ |f(x)|dx < oo. If f is integrable, we can write f = (u™—u™)+i(vT—v™)
where ut(z) = max{Re(f(z)),0}, v () = —min{Ref(z),0} and similarly for v*,v~. We then

define
/f Ydp(x / +du—/udu+i/v+d,u—i/ v dpu.
X X X

We define L'(X, i) to be the Banach space of measurable functions f : X — C that have finite

Thaorm | 71s Jx fldn.
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Proposition 28 (Change of variables formula). Given a measure (X, ) and a measurable map
f: X =Y. Then, for a measurable function g : Y — C, go f is measurable and

/Ygd(f*u):/XQOfdu-

3.3. Measures and integrals on locally compact Hausdorff space. Let X be a locally com-
pact topological space.

Definition 29. A function f : X — C has compact support if the closure of {x € X : f(x) # 0}
is compact. Define C.(X) to be space of continuous functions f : X — C of compact support.

Definition 30. An outer Radon measure on X is a Borel measure j1: B — [0, 00] that is

e locally finite: every x € X has an open neighborhood U such that u(U) < oo
o outer reqular: every S € B satisfies pu(S) = inf u(U) over all open U D S,
e inner regular on open sets: every open U C X satisfies p(U) = sup u(K) over all compact

KcU.
A Radon integral on X is a C-linear map I : C.(X) — C such that I(f) > 0 whenever f > 0.

For a Radon measure space (X, i), Ce(X) is a subspace of L}(X, ).

Theorem 31 (Riesz representation theorem). Given an outer Radon measure ji, we define a linear
functional

I,:C(X)—=C

f»—>/deu.

When X is locally compact Hausdorff, there is a bijection between outer Radon measures on X and
Radon integrals on X, where one direction is giwen by p w I,. The other direction is by sending
I:C.(X)— C to the measure p on X defined by (S) = I(1lg).

Ezample 32. Let X = R", the map sending f € C.(R™) to the Riemann integral fR” feCisa
Radon integral. The Lebesgue measure p, is defined to be the corresponding outer Radon measure
on R™. Note that we have u,(gA) = |det(g)|un(A) for any g € GL,,(R) and A € B(R").

3.4. Haar measure. Let G be a locally compact Hausdorff topological group. In this section, we
will define Haar measures on G and study some properties of this kind of measures.

Definition 33. A Borel measure p on G is left-invariant if p(gS) = p(S) for all g € G and S € B.
A left Haar measure on G, denoted dig, is a nonzero left-invariant outer Radon measure on G.
Right Haar measure d.g is defined similarly.

Remark 34. In terms of Radon integrals, the condition p(gS) = w(S) for any measurable S is
equivalent to

[ r@aduta) = [ s apanta)
for any f € C.(G). Indeed, it suffices to check this for f = 1g where S C G is measurable.

Convention 35. To be more precise, a left Haar measure p is a map from Borel sets of G to [0, co].
However, for convenience, we will usually denote a left Haar measure of G to be d;g and a right
Haar measure by d,.g, where g is understood to be an element of GG. For example, the left-invariant
property is short-handed as dj(hg) = di(g), where d;(hg) is understood to be the measure of G
obtained by pushforward d;g via left-multiplication by h=1, ie. Q +— u(hf). Sometimes d;(hg)
would cause ambiguity, where it could mean either pushing forward d;g via left-multiplication by
h=1 ie. Qs d;(hRQ), or pushing forward d;h via right-multiplication by ¢g~!, i.e. Q — d;(Qg),
14



but we will try to be more precise when the situation arises. A better convention is d(Lj;-1g) or
d(R,-1h).
g

Theorem 36 (Existence and uniqueness of Haar measure). Let G be a locally compact topological
group. There exists a left Haar measure p on G and every other left Haar measure on G is cu for
some ¢ € Ryg.

Example 37. On R”, the Lebesgue measure is a Haar measure.

Remark 38. A left Haar measure need not be right-invariant. For example, consider

G:{(g’ i’) :aeR\{o},beR}

then G has a left Haar measure given by pr(S) = [ S a—lzdadb and a right Haar measure given by
pr(S) = [g ﬁdadb.

Let p be a left Haar measure on G, then G is compact if and only if (G) < co. The normalised
Haar measure on G is the unique Haar measure p such that u(G) = 1.

Example 39. Let k be a nonarchimedean local field with valuation ring O. Let m be the maximal
ideal of O and 7 be a uniformiser of O. There is a Haar measure p on k satisfying u(0) = 1.

For example, we will show p(m) = (#0/m)~! (here #0/m refers to number of elements of this
finite field). Indeed, as Oy, is a disjoint union of a + m’s where a € O/m and that p is left-invariant,
we find

L=u(0)= Y pla+m)= (#0/m)u(m).
a€0/m
Similarly, one can show that u(7"0) = (#0/m)~" for n € Z.

For another example of a computation with u, we will show p(aA) = |a|xu(A) for any open A of

k and a € k™. Indeed, let a = un™ where u € O*,n € Z and if A = O then

p(ad) = p(r"0) = (#0/m)™" = [a[pp(A).
As 7" O’s form a basis of open neighborhoods of 0 € k so from the above computation, we are done.
In fact, u(aA) = |alxu(A) holds for any choice of Haar measure on k.

3.4.1. Modular quasicharacter. Let d.g be a right Haar measure on G. Then d,.(hg) is also a
right Haar measure. Therefore, by uniqueness of right Haar measure, there exists a positive real
dc(h) so dr.(hg) = dg(h)d,g. We define the modular quasicharacter to be the corresponding group
homomorphism dg : G — Ry E| Note that ég does not depend on the choice of a left/right Haar
measure on G.

Proposition 40. Let d.g,d;g be right, left Haar measures of G, respectively. Then the following
are equivalent ways to define the modular quasicharacter:

(a) dr(hg) = éc(h)drg for all h € G,

(b) di(gh) = 6c(h)"dg for all h € G,

(¢) dr(g7") = ba(9) 'drg,

(d) di(g~") = dc(g)dig-
Furthermore, if we given d,g, we can choose djg to be such that dig = d.(g7 '), or equivalently,
drg = 0c(g)dig-

Finally, every left Haar measure is right Haar measure if and only if ¢ = 1 on G. If this is the

case, we say G is unimodular.

3 Some authors define modular quasicharacter to be the multiplicative inverse of d¢, such as in [Foll6]. Our choice

for the definition of d¢ is reflected in
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Sketch. We will prove (a) implies (c). Note that d.(g~!) is a left Haar measure. Next, we show
5c(g)~td,g is also a left Haar measure. We have

/ F(hg)bc(g) dvg = / F@)oa(h~ )" de(h 1),
G G
- /G F(@)0a(hLg) 6a(hY)dvg,

- / £(9)8c(g) " drg.
G

By uniqueness of left Haar measure, we find d,(¢7!) = c¢g(g9) ~'d,g for some constant c¢. Changing
g to g~ (i.e. pushforward two measures under taking inversion, which should give us the same
equality), we find

dr(9) = cda(g)dr(g7") = Poa(9)da(g™ " )dr(g™") = Pdr(g™h),

hence ¢ = 1.
To show (c) implies (b). As d.(g7!) is a left Haar measure so we have d;(g) = cd,.(g7 ") for some
¢ € Ryg. Then we have

di(gh) = cdp(h'g7") = 6a(h " )ed, (971) = da(h) ' dug.

The other equivalences of (a), (b), (¢), (d) can be done similarly.
Next, we show d.g = 6c(g)d;(g) implies dig = d,.(g7!). Indeed, by (c) and (d), we find d,(g~ ') =
dc(9)~ " dr(g) = di(g)-

Finally, we show if every left Haar measure is right Haar measure then ég = 1. Let d, = cd;,
then from (a), as we fix h, we find

coq(h)dig = dg(h)d,g = d,.(hg) = ¢ di(hg) = ¢ Ldyg.

This follows dg(h) = ¢~2, a constant. As ¢ is a group homomorphism, we find dg = 1. O

3.4.2. Haar measure on a homogeneous space. In this section, let G be a locally compact group
with closed subgroup H. Then G acts on G/H by left-multiplication. We say a measure p on G/H
is G-invariant if p(A) = p(xA) for any x € G and measurable A C G/H.

Theorem 41. Let H be a closed subgroup of G with corresponding modular quasicharacters dgr, dq.
A necessary and sufficient condition for G/H to have nonzero G-invariant Borel measure jic g is
that the restriction to H of éa equals dry. In this case, such a measure is unique up to positive
scalar, and it can be normalised so that for any f € C.(G), we have

| tduey = [ fine
G/H G
where 7 € C.(G/H) is defined by

fH () = /H f(eh)du.

Sketch. We sketch the proof when G, H are unimodular. We denote the projection p: G — G/H.

In fact, the map C.(G) — C.(G/H) sending f +~ f is onto, which we will not prove here
but refer to [Foll6, p.62]. To show pg/m can be defined as in the theorem, we need to show
A fG fdug is a well-defined G-invariant positive linear functional on C.(G/H). By surjectivity

of Ce(G) — C.(G/H), it suffices to show that if f € Ce(G) and f# = 0 then [, fdug = 0. Let
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¢ € C.(G/H) such that ¢ = 1 on p(supp f), then there exists g € C.(G) so g = . Assuming

=0, we find
/Gg(x )FH () dm—// f(zh)dhdz,
— /H /G g(z) f(zh)dzdh = / / (zh) f(z)dzdh,
= [ [ sams@ands = [ sa”
: f(x)dx
We are done. O

Remark 42. One can consider the space of right cosets H\G and modify the above theorem accord-
ingly.

In general, one can a define left G-invariant measure on a space under a continuous transitive
action of G as follows.

Definition 43. Let S be a locally compact topological space then S is a G-space if there is a
continuous left action of G on S, i.e. a continuous map from G x S to S such that s — xs is a
homeomorphism of S, and x(ys) = (xy)s for all x,y € G,s € S. A G-space is called transitive if
for every s,t € S there exists x € G such that xs =t.

If S is a transitive G-space then for any sg € S, the isotropy /stabiliser group H = {x € G : xsg =
so} of sp is a closed subgroup of G and ¢ : G — S by = — xsg is a continuous surjection of G onto
S. This induces a continuous bijection ¢ : G/H — S such that ®op = ¢ where p: G — G/H is the
quotient map. Note that it is generally not the case that ® has continuous inverse. For example,
consider G = R with the discrete topology, acting by translation on S = R with the usual topology.
We call S a homogeneous space if ® is a homeomorphism. With this, we can identify S with G/H
and a G-invariant measure on G/H with a G-invariant measure on S.

3.4.3. Haar measure from a fundamental domain. When H is a discrete subgroup of GG, one can
determine pig /g by integrating with respect to pg over a fundamental domain F of G.

Definition 44. Given a locally compact topological group G and a discrete subgroup H, a measurable
set F' C G is a strict fundamental domain for H \ G if the projection m : F' — H \ G is a bijection.
A measurable set F' C G is a fundamental domain for H \ G if F differs from a strict fundamental
domain by a set of Haar measure 0.

When we have such a fundamental domain F', we can define a G-invariant measure on H \ G by
integrating over F'.

Proposition 45. Let G be a locally compact topological group with a left Haar measure duc, let H
be a countable discrete subgroup of G, and let F C G be a fundamental domain for H \ G. Then
the quotient measure H \ G' can be given by

f(Hg)dpma(Hg) = / f(9)duc(g)-
H\G F

Proof. By uniqueness of G-invariant measure on H \ G, it suffices to check that

/f dg—/thg

heH



for all f € Ce(G). As G = ey hF, we find

/Gf(g)dg— Z/th(g)dg— Z/Ff(hg)dg—/FZf(hg)dg

heH heH heH

by left-invariance of G and the fact that we can exchange the sum and the integral by Fubini’s
theorem. 0

3.4.4. Haar measure from closed subgroups. We have the following useful proposition that describes
a Haar measure on G = ST in terms of Haar measures on its closed subgroups S and T

Proposition 46 (Theorem 8.32 of [Kna02|). Suppose S and T are closed subgroups of G with
compact intersection and the product map S x T — G 1is open with image erhausting G except
possibly for a set of Haar measure 0. Then one can normalise the left and right Haar measures on
S and T, respectively, so that

_ Tt fst)
/Gf(g)dzg— SXTf( t)ég(t)dl d,t /m 5G(t)dl dt.

In particular, if G is unimodular, then
/f(g)dg = f(st)d;sd,t.
G SxT

Proof. The group S x T acts continuously on ST C G by (s,t)w = swt~!, and the isotropy group
at 1is K x K where K = SNT. Thus, we have a bijective continuous map ® : (S xT)/(K x K) —
ST sending (s,t) + st~'. This map is a homeomorphism (i.e. has continuous inverse) since
multiplication S x T" — G is an open map. Hence, a left Haar measure djg of G restricts to a
Borel measure on ST, and hence obtaining a Borel measure du on (S x T') /(K x K) via change of

variables formula for measures:
f(@(s0)dn = [ Flst™ V) =

f(g)dig.
(SxT)/(KxK) ST

/(SXT)/(KXK)

We denote Ly, R, : G — G to be left/right translation maps. From [Proposition 40, we have
dl(LsORto—lg) = 0¢(to)dig, which gives

F(5, )ALy (5,1)) = / F(sg ks, 15 0)d,

/(S><T)/(K><K) (SxT)/(KxXK)

Il
~—

(sm)/(KXK)(f 0@ o Ly Ryt 0 ®)(s, t)dp,

(f © CD_I)(LSalRtog)dlg’

T

(fo® 1)(sg gto)dug,

!

(f o @ N (g)di(s09ty "),

=

(f o ") (9)dc(to)di(g),
Soto) | (s )i,
(SXT)/(KxK)
or in our convention,

(1) dp(Lisg,t0)*) = 0 (to)dp ()
18

T~ — o — o

~



on (S xT)/(K x K). We define measure dji(s,t) on S x T by

Fs.0di(s.) = [ | [ / f(sk,tk»dk] ap((5, 1K),

(SxT)/(KxK
where dk is Haar measure on compact K normalised to have volume 1. From , we have
dfi(sos, tot) = da(to)dfi(s,t). Note that dg(t)d;sd,t also satisfies this condition. Therefore, dji(s,t) =
d¢ (t)d;sd,t for suitable normalisation of d;sd,t (to see this, mimic the proof that a left Haar measure
is unique up to scalar, see [Kna02, Theorem 8.23]). Hence, we find

SxT

f(g)dig = f(st™1)dc (t)disdyt
ST SxT
for all f € C.(ST). Changing ¢ by ¢t~! on the right hand side via [Proposition 40| and replacing ST
by G on the left hand side, we are done. O

3.4.5. Haar measure on restricted product. In this section, we will construct certain Haar measure
on restricted products, which will be required later in defining Haar measure of adelic points of
linear algebraic groups. We first define restricted products of a family of topological spaces.

Definition 47. Let (X;) be a family of topological spaces indexed by i € I, and let (U;) be a family
of open sets U; C X;. The restricted product H;el X; with respect to U;’s is the topological space

X =[x 0) = {(xz-) € [[Xi: 2 €U for almost all i € I} .
el
with the basis of open sets
{HVZ : Vi € X, is open for all i € IandV; = U; for almost all Z} ,
where almost all means all but finitely many.

Remark 48. We refer to |[Sut19] for the proofs of the following remarks about restricted products:
(1) In general, the restricted product X is not the subspace topology from [[ X; as the former

has more open sets
(2) For a finite set S C I then by letting

X S = H Xz' X H Ui
i€S iZS
then Xg is an open set of X whose subspace topology is precisely the product topology of
the X;’s and U;’s. As [[' X; = Ug X5 over all finite sets S C I, this gives another way to
define the restricted product as the direct limit of Xg’s.
(3) If X;’s are locally compact and almost all of the U;’s are compact then the restricted product
[T X; is locally compact.

Proposition 49 (p. 185 of [VR99|). Let G = [[,c; Gv be the restricted direct product of locally
compact groups G, with respect to family of compact subgroups H, C G, (except for some finite set
of places Jx). Let u, be a left Haar measure on G, normalised so that vaJoo wy(Hy) converges.
Then there is a unique Haar measure p on G such that for each finite set of indices S containing

Joo, the restriction pg of p to
Gs =[] Gox [ Ho
vES vgS
1s the product measure.

4recall the product topology on [], Vi of topological spaces V; is the coarsest topology for which all the projections
are continuous
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Proof. The finiteness of Hv)(oo / 1, @90 guarantees that the product measure pg on Gg is a Haar
measure, i.e. is finite on compact subsets Hv)(oo H,.

Next, we will show the existence of such a Haar measure on G. As G is locally compact, we can
choose a left Haar measure p on G such that for some fixed finite set of S of indices containing
Joo, the restriction of p to Gg is the product measure pg. This measure p is independent of the
choice of S because if we consider another finite set S” of indices containing J,, again because of
uniqueness of Haar measure on Ggg whose restriction to Gg is ug, p restricted to Ggug: must
also be a product measure. Hence, u restricted to Gg is also a product measure. O
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4. ANALYTIC MANIFOLDS AND INTEGRATIONS

Over a complete valued field k with respect to a nontrivial absolute value, one can develop a
theory of k-analytic functions and k-analytic manifolds that closely resembles the classical setting
of real analytic functions and real analytic manifolds. Furthermore, when k is a local field, one can
also define integration of differential forms on k-analytic manifolds. In this section, we will describe
this process, following [Igu00].

On a different note, unlike most references we find about differential geometry, we will discuss
manifolds and its related objects in the language of sheaf theory. One reason is that this language
is also used in algebraic geometry, so in our naive view, it seems to be a more universal language
than describing manifolds via compatible charts. For example, such point of view is also taken in
[Ram05], [Wed16].

4.1. Analytic functions. For every a = (a1,...,aq) € k% and every r € R~q, we denote the closed
and open polydisks of radius r centered at a in k% to be

D(a,r) = {x € k% : |z; — a;| < r Vi},
Do(a,r) = {z € k% : |z; — a;| < 7 Vi}.
We consider power series f(T) = Znezg . fuT™ € K[[T1,...,T,]] of d variables with coefficients

in k, where we denote 7" :=T}" - -- T;d and In|=ny+ -+ ng.
A power series f = Znezio [nT™ € K[[T]] is said to be convergent if its radius of convergence,

-1
defined by p(f) = (hm SUPn -0 |fn|1/‘”|> is positive. We have that for any 0 < r < p(f), the

series > fpT™ converges in k for all T' € Dy (0, ).

Let U be an open subset of k%. We say a function f : U — k is k-analytic in U if for each a € U,
there is a real number r > 0 and a convergent power series f, € k[[T]] such that f(z) = fo(x — a)
for all z € D(a,r) C U. Every k-analytic function is continuous. If a k-analytic function on U does
not vanish anywhere, then its inverse is k-analytic as well.

For a positive integer m, a function f : U — k™ defined by u — (f1(u),..., fm(u)) is k-analytic
if each f; is analytic for 1 < i < n. Composition of k-analytic functions is k-analytic.

For a k-analytic function f : U — k on an open set U of k%, one can define its partial derivatives

at a € U to be

af (a) -— lim f(a + t€l> — f(G’)’

6301- t—0 t
for i € {1,...,d}, where ¢; = (0,...,1,...,0) which has 1 in the i-th place and 0 everywhere else.
We also know that df/0x;’s are k-analytic. We define the Jacobian matrix of a k-analytic map
f:U = k%as Df(a) = (0fi/0x;(a)), where f = (f1,..., fa). The determinant of D f(a) defines an
analytic map Jy on U, called the Jacobian determinant of f.

The inverse function theorem and implicit function theorem also hold over any complete valued

field &.

Theorem 50 (Inverse function theorem). Let f : U — k% be a k-analytic function where U is an
open subset of k%. Let a € U be such that the Jacobian matriz Df(a) of f at a does not vanish.
Then there exist an open neighborhood U, of a such that f(U,) is an open neighborhood of f(a) in
k? and a k-analytic function g : f(U,) — U, such that go f = idy, and fog= idg(u,)-

Theorem 51 (Implicit function theorem). Let F' = (Fy,..., Fy,) where Fi, ..., Fy, € k[[x1,...,Zy,
Yiy .-, Ym]] are k-analytic functions on a neighborhood of (0,0) such that Fi(z,y) = 0 for all 1 <
i < m. If det(0F;/0y;(0,0)) # 0 then there exist k-analytic functions fi,..., fm € k[[x1,...,25]]
on some open neighborhood U of 0 € k™ such that for f = (f1,..., fm), f(0) =0 and F(x, f(z)) =0
forallz e U.
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For the proofs of these two theorems, we refer to [Igu00, Section 2.1].

4.2. Locally ringed space. In this section, we would like to introduce the notion of locally ringed
spaces, which we will later use to define a k-analytic manifold.

Definition 52. A ringed space is a pair (X,0x) consisting of a topological space X and a sheaf
of rings Ox. A k-ringed space is a ringed space (X,0x) where Ox is a sheaf of k-algebras. A
morphism of ringed spaces f : (X,0x) — (Y,0Qy) is given by a continuous map f: X =Y and a
morphism of sheaves f#* : Oy — £.O0x over Y.

A locally ringed space (X, 0x) is a ringed space (X, Ox) whose stalks are local rings. Given the
stalk Ox , at x with its unique mazimal ideal m,, the residue field of X at x is k(x) := Ox o /m,. A
morphism of locally ringed spaces f: (X,0x) — (Y, Oy) is a morphism of ringed spaces such that
the induced ring map Oy, ¢(p) — Oxx is a local Ting map.

We say a ringed space (X, Ox) is locally isomorphic to (Y, Oy) if for each x € X, there exists an
open neighborhood U of x and an isomorphism (U,Ox|v) = (V,Oy|v) of sheaves where V' is some
open subset of Y.

Remark 53. For a locally ringed space (X, Ox), given f € Ox(U), we can talk about the value of
f at x € U as the image of f in x(x). Hence, one would like to think of sections of Ox as functions
on X.

Example 54. Let M be a real C'°°-manifold. Then we can define a structure sheaf Oy; for M where
Oap(U) is the ring of smooth functions f : U — R. (M, Oy) is then a locally R-ringed space, as
for x € M, Oprp is the ring of germs of smooth functions at =, which is a local ring with maximal
ideal being functions that vanish at x. The value of f € Oy (U) at € U, by definition above,
is precisely f(x). Furthermore, (M, Q) is locally isomorphic to (R™, Ogrn) with its sheaf of C'°°-
functions. Indeed, for any = € M, we can choose a chart (U, : U — R") of x, then (U, Op|v) is
isomorphic to (¢(U), Orn |y 1)) by sending a smooth function f : U — R on U to a smooth function

fop™ton pU)CR™

Combined with the previous example, the following proposition indicates that saying M is a
real C°°-manifold is the same as saying that M is a R-ringed space that is locally isomorphic to
(R™, Opn) with its sheaf of C'*°-functions.

Theorem 55. Let (M, Opr) be a R-ringed space that is locally isomorphic to (R, Oga) with its sheaf
of C*°-functions. Then M can be equipped with a structure of a real C°°-manifold, with Oy being
the sheaf of smooth functions on M.

Proof. We can cover M by open sets U’s such that for each U, there is an isomorphism ¢y :
(U, Oply) = (V,Ogaly), where V is open in R?. We say (U, ¢y) is a chart of M. The R-algebra
of R-analytic functions on U is Oy (U). If we are given another chart (U’, py) for M, we have an
isomorphism of locally R-ringed spaces

ourlunur 0 oit -1y : (o (U NU"), Opal gy wnun) = (eur (U NU'), Oaly,, wour))-
The following lemma implies that the above morphism is precisely the chart-compatibility condition
in the classical definition of manifolds via charts and atlas.

Lemma 56. Let (R",Orn) be the sheaf of C*®°-functions on R™. Let U C R™",V C R™ be open
subsets with the induced structures of locally R-ringed spaces Oy, Oy from R™ R™, respectively.
Then every morphism f : (U, Oy) — (U, Oy) of locally R-ringed spaces is k-analytic. Furthermore,
the morphism of sheaves is given by sending g € Oy (V') to go f € Oy (f~H(V")) for any open subset
V' of V.

Conversely, any R-analytic map f : U — V induces a morphism of locally R-ringed spaces via
taking compositions.

22



Sketch of proof of lemma. Let V' be an open subset in V and a € f~}(V’). We have the following
commutative diagram

Ov (V') —— Ovpa) — Ovpa)/MV,f(a) —

R
lf e l fa lfj Jid
R

Ov(f~1 (V")) —— O —— Oua/mpya ————

In this diagram, the first row corresponds to the evaluation of elements in Oy (V') at f(a) and
similarly for the second row. We have f, : Oy r,) — Ouq is a local ring map so it induces fa
which corresponds to the identity map on R because f(V’) is a morphism of R-algebras. The
commutativity of the diagram implies that f(V')(g)(a) = g(f(a)) for g € Oy (V’), as desired. O

We are done. 0

Ezample 57. Let A be a commutative ring with unity. Let X = Spec A to be the set of all prime
ideals of A. In this example, we show that X can be equipped with a structure of a ringed space.
X is then called an affine scheme.

First, X is a topological space with closed sets being V' (S) = {p € Spec A : S C p} for all subsets
S of A. One can also show that X has basis of open sets D(f) = {p € Spec A : f & p} where f € A.

To define the structure sheaf Ox of X, it suffices to define this on the basis of open sets of X,
i.e. we let Ox(D(f)) = Ay, the localisation of A at the set {f, f%,...}.

In this case, for f € Ox(X) = A, the value of f at p € X is the image of f in A,/pA,, which is
f (mod p). A scheme is a ringed space that is locally isomorphic to affine schemes.

4.3. Analytic manifolds. suggests that we define k-analytic manifolds as follows.

Definition 58. A k-analytic manifold of dimension d is a k-ringed space (M, Q) which is locally
isomorphic to (k%, Oa) with its sheaf of k-analytic functions. This follows that (M, Q) is a locally
k-ringed space. A morphism ¢ : M — N of two k-analytic manifolds is a morphism of locally
k-ringed spaces.

Remark 59. With the same argument as in one can show that our definition of k-
analytic manifolds is the same as the definition of k-analytic manifolds via charts and atlas.

Remark 60. In most situations, M is assumed to be paracompact and Hausdorff. For example, these
conditions give the existence of a continuous partition of unity on coverings of M (see |Cralll), and
we will later use this to define integration of top-forms on M.

Next, we will define (co)tangent bundles/vectors of a k-analytic manifolds as derivations. In
fact, the following definitions work for any locally k-ringed space (M, Ops), but we will restrict our
attention to M being a k-analytic manifold.

Definition 61 (Tangent bundle). Let (M,Oxps) be a k-analytic manifold. A k-derivation of Ops is
a k-linear homomorphism D : Opr — Ops of sheaves such that Dy (fg) = fDy(g) + gDu(f) for all
U C M open, f,g € Op(U). Denote by Dery(Opr) the k-vector space of k-derivations of Opy. It is
also an Opr(M)-module via

(g . D)U(f) = gUDU(f), D e Derk(OM),g S OM(M),f S OM<U)

We define the tangent bundle TM to be the sheaf of Opr-modules via TM(U) := Derg(Oply). A
section of tangent bundle over U is called a vector field. The tangent space T, M of M at p is the stalk
of TM at p, which is a k-vector space of k-derivations Dery(Opsp). Equivalently, by composing with
Onp = K(p) = Onrp/my, =k, we can describe T, M as the k-vector space of k-derivations Opgp — k
at p, i.e. D € TyM then D : Opp — k such that D(fg) = f(a)D(g) + g(a)D(f).
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Remark 62. Let (x,U) be a chart of a k-analytic manifold M with coordinate functions z1,...,zq
then 52 : Oy = Oulu sends f € Oy (V) to 2L € 0 (V) where V' C U is open. Here
8% € Op (V) is a k-valued function on V, sending p € V' to afoﬂi (z(p)). And ((% S By ) form
a basis of the free O/(U)-module Derg(Ons|rr).
Definition 63. The cotangent bundle Q}, of an analytic manifold (M,Opr) is the sheaf of Op-
modules Hom(T M, Oypr). Concretely, a section over U is a morphism of sheaves f : TM |y — On|u,
called a differential 1-form over U. Furthermore, we can define Qﬁ/[ = AP Q},, whose section over
U C M is called a differential p-form over U.

We define a morphism d : Oy — Q}\/[ of sheaves of k-vector spaces as follows:

d: O —QY,
f€0u(U) —=(df : D € TMy = Dery(Onmly) — D(f) € Oumlu).

In particular, we have d(fg) = fdg + gdf .

Remark 64. Let (x,U) be a chart of M with coordinate functions z1,...,24 : U — k. Then
dr; € QL (U) and (dzy,...,dzg) is a basis of Q4,;(U). This basis is dual to the basis (8%1) of
TM(U). For f € Op(U) then

df = Z 81’1

If » > 1 then Qﬁ\ﬂU is a free Oy/|y-module with basis
dzi, A+ Ndzy,, 1 < <--- < <d.

Remark 65. The cotangent bundle satisfies the following universal property: it is a sheaf of Op-
modules equipped with differential d : Oy — Q}w, i.e. a morphism of sheaves of k-vector spaces
satisfying d(fg) = fdg + gdf where f,g € Op(U), that is universal among sheaves of Oy;-modules
X equipped with differential d : Opy — X. The universal property implies that given a chart (U, x)
M with coordinate functions z,...,zq, Q3,(U) is a free Oy (U)-module with basis dz;.

A morphism of k-analytic manifolds ¢ : (M, Oy7) — (N, On) will induce a morphism ¢* : QL —
QL of Op-modules. Concretely, if f € On(U) then dyf € QL (U) is sent to dp(f o ¢) where
fodeou(f~1(U)).

Remark 66. In terms of coordinates, let f : M — N be a morphism of k-analytic manifolds, and let

(V,y), (U, x) be charts of M, N respectively with coordinate functions z1,...,z4 for x and y1, ..., Y.
for y. Then w € QX (U) can be written as

w= E wrdziy A -+ ANdwxi,,
1<iy <-<ip<d

where I = (i1,...,ip) and the w’s are k-analytic functions on U. The morphism f : M — N of
k-analytic manifolds will induce a differential p-form f*w € Q4 (f~HU)NV)on f~H(U)NV C M
defined by

frw="> (wrog¢)d(w;oe),

I

0x;,, o
- ¥ S oo der (2

> dyjl/\---Adyjp.
1<i < <ip<d 1<1 < <jp<e 1<m<d,1<n<e
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4.4. Integration of differential forms. In this section, we assume that k is a local field with a
Haar measure p. Let M be a k-analytic manifold of dimension d and let w be a global differential
d-form on M. We will define a measure on M by defining integration of the d-form w El

First, we consider the case when M = k?. We then can form a product measure dyu on M from
the given Haar measure on the local field k. Suppose that over an open U of M, w can be written
as h(x)dxy A -+ Adxg where h is a k-analytic function on U. With this, we define the measure |w|

on U to be
[ el = [ ol@)inie)ldu
U U

for any complex-valued ¢ € C.(M) with compact support in U. To see what happen to this measure
under k-bianalytic map f: V — V, we first need the change of variables formula for k%:

Theorem 67. Let U be open set in k% and f : U — k% be an injective k-analytic map whose
Jacobian J¢ does not vanish on U. Then for any measurable positive (resp. integrable) function
¢: f(U) — R, we have

/ o()dp(y) = / (£ @) () da(z).
F(U) U

Proof. We refer to |Igu00, Theorem 7.4.1| for the proof when & is a nonarchimedean local field. [

Now, consider a k-bianalytic map f : V. — U, where U,V C k¢ are open with coordinates
x1,...,xqgon U and y1,...,yq on V. Then J¢(x) = det (O(x; o f)/0y;). As

ffw=nh(f(x))Jf(x)dys A--- A dya,

we have, by the change of variable formula

[ o nisal= [ oo NIbE)TEdi A+ A dya
1% Vv

— [ bl A+ A da,
U

:/ plwl.
U

Next, we consider the case when M is any k-analytic manifold of dimension d.

Proposition 68. There exists a unique measure |w| such that for every chart (U, f) of M and every
measurable positive (resp. integrable) function ¢ supported in U,

w| = o f1 Lyl
/Mgou /f(U)(w SO

Sketch. To construct w, by Riesz’s representation theorem, it suffices to do this for ¢ with compact
support. One can consider charts (U;, f;) of M covering support of ¢ and consider continuous
partition of unity subordinated for these charts, i.e. a family (\;) of continuous real-valued functions
on M such that supp A\; C U; and > \; = 1 on supp . We then have

w| = Xio fiD(po £ OIS wl.
/Mgou ;/m( FY (o FOIUY ]

We show the independence of charts. Suppose we have another chart (U, g) with same U C M.
Then fog™':g(U) — f(U) is k-bianalytic map on k%, so

—l*w: o —1\x% —l*w: _I*UJ.
/mw Yol /gw)w gl /g(mr(g Yl

Sor to be more precise, we are integrating a density |w]
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It is not difficult to show that our definition does not depend on the choice of a partition of unity
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5. ADELES

In this section, we will define the ring of adeles A associated to a global field k£ and study its
topology. We then describe a functorial way to give a topology on G(Ay) for any linear algebraic
group G. We also show that G(k,) is a ky-analytic manifold for smooth G.

5.1. Adeles of Q. We will review the construction of adeles A for k = Q. Let S be always a finite
nonempty set of places of Q, including the infinite place. For convenience, we sometimes refer to R

as Q-

Definition 69. The adeles A = Ag of Q s the restricted product of the locally compact spaces Q,
with respect to the compact open subspace Z, of Q,. In other words, A is a topological space whose
elements are

Ag = H 'Qy =4 (ap)p € H Qp : ap € Z, for almost all p p ,

p<oo p<oo
here “almost all" means “all but finitely many”. A has a basis of open sets given by

US X HZ”’

vgS
where S is a finite set of places of Q, and Ug is an open set of
Qs =[] Q.
vES
under the product topology.

Let

Qs=[]Q. Z°=]]z.
veES vgS
We find Qg x 75 is an open subring of A with the induced topology being the product topology ﬁ
Indeed, the open sets of A restricted to Qg x 75 are of the form [Toes Un x Hv¢5 V., where U, is
open in Q,, V,, is open in Z, and V,, = Z, for almost all v € S. This is precisely the open basis of
the product topology of Ag := Qg X 75, Furthermore,

A=|JQsx2°
S

where S ranges over all finite sets of places of Q. Also note that for S C 7', we have an inclusion
continuous map from Qg x Z° to Qr x ZT of topological rings. In other words, we find Ax =
liﬂ g Qg x Z°. With this, A is a topological ring, under componentwise addition and multiplication.

Proposition 70. The adeles ring A is a locally compact Hausdorff topological ring.
Proof. We first show A is locally compact. Note that by Tychonoff’s theorem, vas Z,, is compact

as each Z, is compact. It follows that Qg x 75 is a finite product of locally compact spaces, hence
locally compact. As each point x € A lies in one of these spaces, we find A is locally compact.
Next, we show A is Hausdorff. Note that [[, Q, is Hausdorff as Q, is Hausdorff. It follows that
A with the subspace topology of [[, Q, is Hausdorff. In particular, for any two distinct points
x,y € A, there exists two disjoint open sets [[,.q Uy X vas Qu and [],cp Vi HveZT Qy of [T, Qs
that contain z,y, respectively; here S,T are finite sets of places of Q). Because z,y € A, one
can enlarge S, T so that [[,cqUp X [[gsZv and [[,cp Vo X [[,gr Zv are disjoint open sets of A
containing x, y, respectively. Thus, we conclude that A is Hausdorff. O

6this notation of Z5 is motivated from the fact that it is the profinite completion of Z5 = {z € k|z € O, Vv & S}
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For each place v of Q, we have a continuous embedding
Qy — A:xy—(0,...,0,2,,0,...,0).

Indeed, the preimage of a basis open set [ g Uy X vas Zy of A is either: @ if 0 ¢ U; for some
place t € S;t # v, or U, if 0 € U for all t € S\ {v} and v € S; or Z, if 0 € Uy for all t € S and
végS.

We have a diagonal embedding

Q—A:zm (z,x,...,2).

This map is well-defined as = € Z, for almost all places v where x € Q. The image of QQ under this
embedding is called the principal adeles, which we will also denote QQ for convenience.

Proposition 71. Q is a discrete subgroup of A.

Proof. 1t suffices to show that 0 € Q has an open neighborhood U in A that does not intersect
Q\{0}. Let U = {(zy) € A : |zy|y < 1if v =00 and |x4|, < 1if v # oo} then U is open and 0 € U.

By prime factorisation in k = Q, we find U N (Q \ {0}) = &, as desired. O
Let
AS — H/Qv-
vgS

Then we can identify Qg x A® with A via Qg x A < A x A — A where the latter map is addition
on A. Tt follows that Qg x AS is isomorphic to A as topological rings, with the product topology
on Qg and the restricted product topology on A®.

5.1.1. Approzimation theorem for adeles.

Theorem 72. For any finite nonempty set S of places of Q,
(a) (Weak approzimation property) Q is dense in Qg via the diagonal embedding, and
(b) (Strong approzimation property) Q is dense in A® via the diagonal embedding.

Proof. (a) Without loss of generality, we assume S contains the infinite place. We need to show that
any open set in Qg contains a nonzero element in Q. Indeed, a basis of open sets of Qg consists
of open sets U x Hpes?p@o(ap + kaZp) where U is open in R and k, € Z,a, € Q. We choose
x € UNQ. Then by the Chinese Remainder Theorem, there exists y € Q,z € Z \ {0, 1} such that
y=a,—x (mod p*») and z = 1 (mod p*») for all p € S\ {oc}. Hence, for sufficiently small £ < 0,
x 4 y2* is our desired element in Q.

(b) We first consider the case where S does contain the infinite place. A basis of open sets of A®
consists of open sets [ [ cr(ap +p*Z,) x [,¢sur Zp where T is a finite set of places of Q, TNS = &,
ap € Q for all p € T. By the Chinese Remainder Theorem, there exists x € Q such that z = q,
(mod p*») where the denominator of  only has prime powers of primes p € T. It follows z lies in
the open set.

If S does not contain the infinite place, then there exists a prime ¢ € S. An open set of A°
consists of open sets U x [[,cr(ap + p*7Z,) x [1,¢sur Zp where T' is a finite set of places of Q,
TNS=a,a,cQforallpeT, U is open in R.

There exists £ € Z~g,x € Z such that q% € U. Indeed, pick any y € U and let ¢ be sufficiently
large such that (y — ¢~ y+q¢ %) CU. As [qz - %, q'y + %] has length 1, there exists an integer x
lying inside that interval, giving zq~¢ € U.

By the Chinese Remainder theorem, there exists z € Q,t € Z-1 such that z = q, — xzqt
(mod p*») and ¢* = 1 (mod p*») for all p € T, where the denominator of z only has prime powers
of primes p € T. Tt follows zq ¢ + 2¢'* € Q lies in the desired open set. ]
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Corollary 73. Let S = {oo} be the set of all infinite places of Q then
(a) 10\ A%/Z] = 1 )
(b) We have an isomorphism Q \ A/Z = Z \ R of topological spaces.

Proof. (a) It suffices to prove that A* = Q + Z. Consider z € A®. Then z + Z is an open
neighborhood of x as Z is open subgroup in A*°. From strong approximation theorem for adeles,

we know Q is dense in A*. Hence, there exists £ € Q so that £ € x + Z, implying x € Q + Z.
(b) We identify A with R x A®. Consider the map

¢:Z\R— Q\A/Z
Z+ x — [z,0]

where we denote [z, ] for (z,y) € R x A to be the double coset Q + (z,y) + Z. Note that Z and
Q are embedded diagonally into R and A, respectively.

We first show that ¢ is injective. If x € R so [z,0] = 0 then (z,0) = ({,{ +y) for y € Z and
£ € Q. It follows £ = —y € Zsolc Qﬂi = Z. Hence, x = £ € Z, as desired.

To show ¢ is surjective. From (a), we find A>® = Q + Z. Hence, A=Q+ R+ Z and surjectivity
follows.

To show ¢ is continuous. Consider U C R to be representatives of an open subset U' in Q \ A/ 7
with 0 € U. Then Q + (U, 2) is open in A. As A = R x A%, we can cover Q + (U, Z) by open
subsets (X;,Y;) where X; and Y; are open in R and A, respectively. As 0 € U and Z is open in
A% we find Q + (X;,Z) is also open in Q + (U, Z) and these subsets cover Q + (U, 7).

On the other hand, as Z = QN Z, Q + (U, Z) is disjoint union of £+ (Z + U, Z) for L € Q,0 & Z.
Combining with the previous argument, we find (Z + U, Z) must be obtained from taking the union
of (X, i), where X; are open subsets of R. It follows U + Z is open in R, meaning inverse image of
U’ under ¢ is open in Z \ R.

To show ¢ has continuous inverse, it suffices to show ¢ is open map. Consider U C R so Z + U
is open in R and we need to show Q + U + 7 is open in A. This holds because Q + U + 7 is the
union of open sets ¢ + (Z + U, Z) where £ € Q. O

Corollary 74. The quotient Q \ A is compact.

Proof. From the previous corollary, we obtain a homeomorphism of topological spaces
Q\AXZ\R X Z.

Note that Z is compact. As Z is a lattice in R, Z \ R is compact. Thus, Q \ A is compact. O

5.2. Topology of adelic points. Let X be an affine k-scheme of finite type. For a k-algebra R
which is also a topological ring, we can endow X (R) with a canonical topology. When k& = Q and
R = A, X(A) is homeomorphic to the restricted product of X(Q,) over all places v of Q.

Proposition 75. Let R be a topological ring. There exists a unique way to topologise X (R) for all
affine schemes X of finite type over R such that

(1) the topology is functorial in X ; that is, if X — Y is a morphism of affine schemes of finite
type of R, then the induced map on points X (R) — Y (R) is continuous;

(2) the topology is compatible with fiber products: this means if X — Y and Y — Z are mor-
phisms of affine schemes of finite type over R, then the topology on (X xzY)(R) is the fiber
product topology;

(3) closed immersion of affine schemes X < Y (i.e. the map of coordinate rings O(Y) — O(X)
is surjective) induces topological embeddings X (R) — Y (R) (i.e. a continuous map that is
homeomorphic onto its image);
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(4) if X = Spec R]t] then X (R) is homeomorphic with R under the natural identification X (R) =
R.

If R is Hausdorff or locally compact, then so is X (R). Moreover, if R is Hausdorff then the closed
immersion X — Y induces a closed embedding X (R) — Y (R).

Sketch of proof. We refer to [Conl2| for the proofs of these two propositions. Essentially, the topol-
ogy of X(R) is constructed by choosing an R-algebra isomorphism O(X) = R|[t1,...,t,]/I for the
coordinate ring of X, for any ideal I. The set X(R) can then be identified with the sets of ele-
ments in R™ on which the elements in I (we view elements of I as R-valued functions on R™) all
vanish. We have an injection X (R) < R™ which we equip X (R) with the subspace topology of
R"™. One then has to check that the defined topology does not depend on the choice of isomorphism
O(X) & RJ[t1,...,ty]/I and satisfies all the functorial properties as above. O

Proposition 76. Let R — R' be a continuous map of topological rings and let X be an affine
scheme of finite type over R. Then X(R) — X (R') is continuous. Moreover, if R — R’ is a

(1) a topological embedding,
(2) a open topological embedding,
(3) a closed topological embedding,
(4) a topological embedding onto a discrete subset,
then so is X(R) — X(R').
Proof. The proposition follows from the commutative diagram

X(R) —— R"

(R
[

X(R) —“— R™

where i and 7’ are topological embeddings. For example, we find f~1(U) = X(R) N g~ }(U) for any
U C X(R') so f is continuous. If g is a topological embedding then so is g o 4, hence f is also a
topological embedding. If ¢ is open or closed then so is f. O

Ezample 77 (Topology of adeles and ideles). When k = Q and R = A, we have G4(R) = A. From
8 5l we know that A has the topology generated by the basis of open sets

stnzv

vgS
where S is a finite set of places of k and Us is open in Qg = [],cq Q.
Next, we consider the ideles G,,(A) = A*. We have a closed immersion G,,, — G, x G, sending
t + (t,t7!). Therefore, we have a topological embedding AX < A x A, giving G,,(A) = A* the
topology generated by the basis of open sets

U5><HZ;<

vgS

where S is a finite set of places of k and Ug is open in Qg = [],g Q) under the product topology
m Note that this is not the same topology as giving A* C A the subspace topology. In particular,
Hp <00 Z; is an open set in A* but it is not open under the subspace topology from A. Indeed,
if Hp<oo Z, is open under the subspace topology from A, it is a union of A* N U’s where U =
Ug x vas Z, is open in A. One can then choose a sufficiently large prime p such that a = (ay)y

"To see this, consider open set U x V in A X A. For a = (ay) € A, if (a,a™') € U X V then aF' € Z, for almost all
v, meaning a, € ZJ for almost all v; finally, note that Q;f has the subspace topology from Q, for all places v
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satisfies (ay)ves € Us N Qg, ap = p and a, = 1 for v ¢ S U {p}. It follows a & [],.. Z; but
a € A*NU, a contradiction.
Thus, we have a homeomorphism

Gm(A) = [[Gm(Qy).
Ezample 78 (Topology of GLa(A)). The map GLy — My x G, sending z + (z,det™' z) is a
closed immersion of affine schemes since the associated k-algebra map k[z11, 12, To1, T22] ®f k[t] —
k11,212, 21, xgg,det_l} sending ¢ to det™! := (11292 — T12791) ! is surjective. Hence, we have a
topological embedding GLy(R) < Ma(R) x G4(R).
With the above embedding, we will describe the topology of GLa(Ag). It suffices to describe a
basis of open neighborhoods of the identity of GLa(A).

We first describe the topology of GLa (A7) where Ay := Qp x 77 = [Toer Qu x H%ZT Z,, for some

fixed finite set T of places of Q containing the infinite place. We know that (I + p*M,,(Z,)) x (1 +
p*Z,) for k € Z>, forms a basis of open neighborhoods of (I2,1) € M>(Q,) x Q,. Therefore, for
any finite set S of places of Q containing the infinite place, and k € Z>1, the collection

[ ((+ 0@ < 1+ 0°7,)) x [ (Ma(Z,) x 2,)
peSNT pgSUT

forms a basis of open neighborhoods of (12, 1) in My (A7) xAp (by definition of the product topology).
Intersecting these sets with the image of GLa(Ar) from the embedding, we obtain

H (12 +PkM2(Zp)) X H GLa(Zp)
peSNT pdSUT
as a basis of open neighborhoods of I in GLy(A). Thus, we have a homeomorphism
GLy(Ar) = [] GL2(Qu) x [ GL2(Zw).
veT vgT

Now, Ap < A is an open embedding, so GLa (A7) < GL2(A) is also an open topological embedding.
Furthermore, as GLa(A) = [Jg GL2(Ag) over all finite set S of places of Q containing the infinite

place, we conclude that the collection
11U x [] GL2(Z0)

veS vgS

forms a basis of open sets of GLa(A), where S is a finite set of places of Q containing the infinite
place and U, is open in GL2(Q,).Thus, we have a homeomorphism

GL2(A) = [ GL2(Qy).

e argument in the previous example holds for general GL,,, giving a homeomorphism GL,,(A) =
[T, GL,.(Q,). Hence, we have the following result.

Proposition 79. For a linear algebraic group G over Q and a faithful representation G — GL,,
one has an isomorphism of topological groups

elVNE=N  el(o)

where the restricted product on the right is defined with respect to the compact open subgroup G(Q,)N
GL,(Zy) of G(Qy), where vt co.
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Ezample 80 (Topology of SLa(A)). We have a closed immersion SLy < GLy of affine schemes as
O(SLg) = O(GL2)/(z11222 — 12211 — 1), giving a topological embedding SLo(R) «— GLa(R) for
any topological ring R.

Since Q is a discrete subgroup of Ag, SL2(Q) is a discrete subgroup of SLa(A).

We refer to |Conl2| for more discussions on describing the adelic topology of X (Ay) for any
separated scheme X of finite type over k. For example, on |Conl2, p. 10|, when removing the
affineness assumption of X, X (k) may not be a discrete closed subset of X (Ay).

5.3. Analytic manifolds from smooth schemes. Continuing from |[Proposition 75| we restrict
X to be a smooth affine scheme of finite type over k, where k is a complete valued field. In this
section, we show that one can endow X (k) with a canonical structure of a k-analytic manifold. Here
smoothness of X means the following (see [GW20, §6.8])

Definition 81. Let X be an affine scheme of finite type over k. We say X is smooth of dimension
d over k if X can be covered by affine open sets Speck[t1,...,tn]/(f1,--., fu_a) for suitable n and
fi, such that the Jacobian matriz (0f;/0t;)(x) € M _aqyxn(k(x)) has rank n — d. Equivalently,
the ideal in k[ty,...,t,] generated by the f;’s and all the (n — d) x (n — d) minors of the Jacobian
(0fi/0t;) is the whole ring k[tq, ..., ty].

Ezample 82. GLy = Spec k[x11, Z12, T21, T22,t]/(t(x11222 — T21212) — 1) is a smooth scheme over k
of dimension 4.

Ezample 83. SLy = Speck[z11, 12, Z21, Z22] /(11222 — 21212 — 1) is a smooth scheme over k of
dimension 3.

Proposition 84. There is a canonical structure of a k-analytic manifold on X (k), which is char-
acterised as follows:

(1) Functorial in X : morphism of smooth k-schemes induce morphism of k-analytic manifolds;
open (resp. closed) immersions induce open (resp. closed) immersions of k-analytic mani-
folds.

(2) When X = Specklz1,...,zq4], the structure of k-analytic manifold on X (k) = k? is the
natural one.

(8) Etale morphisms of smooth k-schemes induce k-analytic local isomorphisms.

Sketch of proof. Defining a structure of a k-analytic manifold on X (k) amounts to describing which
continuous functions are k-analytic, such that the induced locally ringed space is locally isomorphic
to k™ with its sheaf of k-analytic functions. Let U be an open set of X (k). A continuous function
f U — kis k-analytic at « € U if there exists an immersion of k-schemes i : V' — Specklti,. .., t,]
on a Zariski-open neighborhood V of z in X and a k-analytic function g : W — k on an open
neighborhood of x such that f = g o< on some open neighborhood of z in U. We say f is analytic
if it is analytic at every point in U.

We refer to [CLNS18| Chapter 0, §1.6] for the verification of the functorial conditions with the
above analytic structure. O

Example 85. If k = Q, or k = R then GLy(k), SLa(k) are k-analytic manifolds.

5.4. Weil measure on the integral points of nonarchimedean local fields. From the previous
section, for a smooth scheme X of finite type over a nonarchimedean local field k, X (k) is a k-analytic
manifold. In this section, we show that if X a smooth scheme over O, there is a very natural measure
on X (0Oy), called the Weil measure, that does not depend on the choice of a volume form, i.e. a
nowhere vanishing differential form of top degree. Furthermore, if we can construct any measure
on X (k) by integrating a volume form on X (k) (see[§ 4.4)), the Weil measure is then the restriction
measured on X (O) C X (k). In this section, we will also prove a theorem of Weil that links point
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counting over finite fields with integration over local fields. We will mainly follow two references
[CLNS18, Chapter 0] and [Magl6].

Let k be a nonarchimedean local field, Oy be its ring of integers, F, be the residue field where
q is a prime power of a prime p. Let X be a smooth scheme of relative dimension n over O and
Qx/0, be the sheaf of differentials.

We will define a canonical measure on X (0Oy), called the Weil measure. Because X is smooth
over Oy and Q% /04 is a locally free sheaf of O x-modules of rank 1, there exists an affine open cover
{U;} of Op-schemes of X such that we have a trivialisation Q}/ok\m = Ox|y, over each U;. A
trivialisation of Q% /Ok‘Ui corresponds to a nowhere-vanishing differential form w; € T'(U;, /Ok)’
From this, we can define a (Radon) measure d|w;| on U;(Oy) by integrating with respect to w;. We
also have X (0y) = J; Ui(Og), so in order to define a (Radon) measure on X (Oy), the measures d|w;|
must agree on overlaps. This is true because for two nowhere-vanishing differential forms w;|y;nu;
and wj|y,nu; on U; NUj, there exists a nowhere-vanishing function f € Ox|y,ny, (hence invertible)
so that w; = fw; on U; N Uj. This gives us the relation d|w;|(z) = |f(z)|rd|w;|(z) of measures on
U;(Ox) N Ui (01) = (U; N U;)(O). However, as f : (U; N U;)(0},) — O is invertible, |f(z)|, = 1 for
all x € (U; NU;)(0y), meaning d|w;| = d|w;| on (U; N U;)(Oy).

Remark 86. The Weil measure is canonical in the sense that its construction does not depend on
the existence of a global differential form. The main reason for this is that our scheme X is over
Ok, hence any invertible function f, defined on an open set U of X, must have |f(z)|x = 1 for
all z € U(Og). This also means that one may not be able to repeat this construction to define a
measure on X (k). However, if we have a global differential form w € I'(X, ng/@k)’ we can define a

measure on X (k) whose restriction to X (Oy) is the Weil measure.

In the literature (see [Bat99]), it seems that the name Weil measure is given when X has a global
nowhere-vanishing differential form, and the measure we have constructed is called the canonical
measure. In fact, the two measures are the same if the Weil measure (as defined in the literature)
exists. Thus, for convenience, we will stick with our definition of Weil measure.

Theorem 87 (Weil). Let X be a smooth scheme of dimension n over Oy. Let u be the Weil measure

on X(Oy), then
X(F
[ e
X (0g) q

Sketch. Because X is smooth over O, the reduction map ¢ : X(0f) — X (F,) sending z — 7 is

surjective, giving
dp = / dp.
/X(Ok) xeXZ(IF'q) e~ HT)

It suffices to show f(p_l(i) dp = ¢7" for all 7 € X(F;). We view T € X(F,) as an element of X
by taking the value Z(n) at the generic point n € SpecF,. Because X is smooth and Qx/0, 18
locally free, there exists an affine open set U = Spec Og|x1, ..., Zn+m]/(f1,-- ., fm) of T such that
Qx /0, |v is trivialised and the Jacobian matrix (8 fi/02ni;)1<i j<m is invertible at ¢~1(Z) C U(O)
(¢~1(Z) C U as any open set of T contains x € ¢ (%), viewed an element of X by evaluating at the
generic point 1 € Spec Ok). We consider the map g : U(Oy) — Ag:m defined by g(z1,...,ZTnim) =
(1, s T, [1(2), ..., fm(x)). Observe that the Jacobian of g at ¢ ~1(Z) is a unit in O. Therefore,
by forgetting the last m coordinates, g induces an etale morphism h : U — Agk, which induces a
k-analytic isomorphism from =1 (Z) to p” by Hensel’s lemma, where p is the maximal ideal of Oy.
Furthermore, because {2 X/ok|U = O%|v, we can find a global nowhere-vanishing differential form
wel (UA" QX/O,JU) We then have h*(dt; AdtaA---Adt,) = fw, where f is invertible in U, hence
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f(z) p-adic norm for z € U(Og). By definition, fw defines a Weil measure on the neighborhood

U(O). Thus, we find
/ d,u:/dtl/\'--dtn:q_n
(@) P

by the change of variables formula. O

Proposition 88. Let X be a smooth scheme over Ok, Y be a reduced closed subscheme of codimen-
sion at least 1 in X. Then Y (Ok) has measure 0 in X (Of) with respect to the Weil measure.

Sketch. By using affine cover of X, we can reduce the problem to the case where X is an affine
smooth scheme. By considering some hypersurface containing Y, we can also reduce to the case
of principal divisor, i.e. Y is defined by f = 0 for irreducible f € T'(X,0x). By the Noether
normalisation theorem, we can then further assume that X = Spec Og[z1,...,2,] and f = z1.
To show p(Y (Or)) where p is the Weil measure, for m € Z>1, we set
Ym(Ok) = {(l’l, c. ,$n) S OZ X € mm}
We then find

Y(Or) = Y (Ok).

1

pu0) = [ | I] [ sl =a
m i=2" Yk

p(Y (0r)) = lim (Y (Or)) = 0.

DY

We also have

Therefore, we find

0

5.5. Measure on the adelic points. Let k£ be a global field, X be a smooth affine scheme of
relative dimension n over k, w € I'(X, Q% /Spec .) be a global nowhere vanishing algebraic differential

form over k, called a volume form. Our goal in this section is to associate a measure on X (Ay).

5.5.1. Measures on local points. We first normalise the Haar measures on each local field k, as
follows:

(1) If k, = R then we use the Lebesgue measure.

(2) If k, = C then we use twice the standard Lebesgue measure on C = R? ie. if 2 = x + iy
with z,y € R then this Haar measure is |dz A dzZ| = 2dx A dy where dz and dy are the
Lebesgue measure on R.

(3) If k, is nonarchimedean, we normalise the Haar measure on k, so that O, has volume 1.

By arguing similarly as in and for each place v of k, we can construct a (Radon)
measure |w|, on X (k,) as follows:

(1) Cover X by affine schemes Uy’s with chart (Us, Ox|y,) = (V C kY, Ognly). When taking
k,-points, there holds X (k,) = U, Ui(ky). On Uj(ky), with local coordinates z1,...,z,
coming from the isomorphism (U;, Ox|v,) = (V C k}}, On|y), w can then be written as
fdxy A -+ Ndx, where f is k-analytic on U;(ky).

(2) We can define a measure |f|,dzidzs - - dzy, on each U(k,). To define a measure on X (k,),
we use partition of unity. One then shows that the resulting measure |w|, on X (k,) does
not depend on the choice of local coordinates or on the choice of partitions of unity.

Example 89. For SLo over Q, as we did in the proof of [Proposition 112 we can choose Uy; =
Spec O(SL2)4,, and Uy2 = Spec O(SLg),,, to cover Spec O(SLg). Hence, w over U1 (Q,) = {(z11, 12, x21) €
Q3 : 211 # 0} can be written as %d:cn A dxr1a A dxor, and indeed :cl_ll is Qu-analytic on Up1(Qy).
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5.5.2. Local finiteness of the measure on X (Ag). We would like to construct a Radon measure on
our locally compact space X (Ag) roughly as a product of measures |w|, on X (k,). In particular,
we require our measure to have finite volume on compact sets. In order to address this issue, we
will describe a family of compact sets of X (Ay) via taking certain integral model of X, and then
use this information to give criteria that ensures the existence of a Radon measure on X (A).

For each place v of k, let k, be the completion of k with respect to v and O, be its ring of integers
and k(v) be the corresponding residue field. Let S be a nonempty finite set of places of k containing
all archimedean places and let Og := {x € k: z € O,Vv ¢ S}. For example, if £k = Q, S = {2,3}
then Og = Z[3].

By the principle of “spreading out" (see |[Pool7, §3.2]), by enlarging S if necessary, there exists
a smooth scheme X of finite type over Og such that X XSpec g Opeck = X |§| and w extends to a
volume form @ on X. As Spec O, — Spec Og for v € S, we can regard X (0,) as a compact open
subset of X (k) = X (k,), and

(2) I X(0,) x J] X (k)

0@ S’ veS’

as an open subset of X (Ay) for any finite set S of places of k containing S.

Furthermore, from |Theorem 87, we know |w|,(X(0y)) = [@0],(X(0,)) = X))l

k(o)™

As every point in X (Ay) lies in the open subset , if the infinite product
11 X (k(v))]
Lo

converges absolutely, we can define a Radon measure px = [[,/|w|, on X(Aj) whose restriction to
is the product measure. If X satisfies this condition, we say X admits an adelic measure.

Note that this definition of px (if it exists) does not depend on the chosen subset S of places of
k, or on the choice of integral model X (because two choices of integral models become isomorphic
after enlarging 5).

5.5.3. Weil restriction of scalars. If X admits a Tamagawa measure, we normalise the measure on

X (A) to
pLx = pl;dlmX Hl|w|v7
v

where

(1) if k is a number field, py = |Ag|"/? where A}, is the discriminant of the field k, and
(2) if k is the function field of a curve X over Fy, p, = ¢! where f is the genus of X.

There are two main reasons why we do this. The first reason is that in some sense, this normal-
isation makes the measure depend only on the scheme X rather than the choice of global field k.
More precisely, we have the following

Proposition 90. Let k' be a finite separable extension of a global field k, let X' be a smooth scheme
of finite type over k' that admits an adelic measure, then its Weil restriction of scalars X = Res,’Z,X "
i.e. a scheme over k defined by X (R) := X' (RQyk') for any k-algebra R, is a smooth scheme of finite
type over k which also admits an adelic measure. Furthermore, we have a canonical homeomorphism

X(Ar) = X' (Ay)

8A rough sketch of this idea over Q: We first consider smooth affine scheme and choose equations for this scheme.
Then there exists large enough n so that the coefficients are in Z[%] This gives us an integral model over Z[%] Next,
consider any smooth scheme by gluing along affine opens. One needs to check smoothness along the way.
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that is a measure-preserving morphism if we equip both sides with the normalised measures as dis-
cussed before.

For the proof of this proposition, we refer to [Wei82, p. 22|. We delay the second reason for this
choice of normalisation to the section (after introducing Fourier analysis on adeles).
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6. FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS

In this section, we study Fourier analysis on locally compact abelian groups, in particular for the
cases of R,Q, and A. Our goal is to establish the Poisson summation formula. The references we
use for this section are [Foll6| §4] and [Pool5|.

Throughout the section, let G be always a locally compact Hausdorff abelian topological group.
For example, S = {z € C: |z| = 1} is a locally compact Hausdorff abelian group.

6.1. Pontryagin dual. In this subsection, we will define the Pontryagin dual Gofa locally compact

abelian group . The Pontryagin duality then claims that G is isomorphic to G as topological
groups. Furthermore, when G is a local field or G is the adeles, we also have an isomorphism G = G
of topological groups.

Definition 91. A character of G is a continuous homomorphism x : G — C*. A unitary character
of G is a continuous homomorphism x : G — S'. The Pontryagin dual G of G is the group of
unitary characters of G, with the group operation being pointwise multiplication. We can equip G
with the compact-open topology, i.e. the topology generated by {x € G : X(K) Cc U} for every
compact K C G and open U C S*.

In fact, G is also a locally compact abelian group. Any continuous homomorphism ¢ : G — H of
locally compact abelian groups induces a continuous homomorphism H—G taking x to x o ¢. In
fact, taking the Pontryagin dual is a contravariant and exact functor from the category of locally
compact abelian groups to itself.

Example 92. If G is discrete then Gis compact. Indeed, the compact-open topology on G is precisely
the topology of pointwise convergence of all maps from G to S'. With respect to the latter topology,
G is a closed subset of the space of all maps from G to S'. The latter space is compact as it is
homeomorphic to (S 1)‘G|, therefore G is also compact.

We will assume the following result (see |Foll6, p. 110] for the proof):
Theorem 93 (Pontryagin duality). We have a canonical isomorphism of topological groups
G— G,
g = (x = x(9))-

In the next subsections, we will explain the following table:

G| G
"R| R

Q| Q@

A A

Z | R/Z

ZP QP/ZP

Q| Q\A

6.1.1. Pontryagin duals of local fields. Let k be a local field.

Proposition 94. For a local field k and a nontrivial unitary character i of (k,+), we have an
isomorphism U : k — k of locally compact abelian groups, sending a — 14, where Yq(x) := (ax).

Proof. We check ¥ is injective. If 9, = 9y for a,b € k then ¢(ax) = ¢(bx) for all x € k, or
Y((a—b)x) =1 for all z € k. As 1 is nontrivial, we find a = b.
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We show that ¥ is a homeomorphism onto its image. From the topology of E, it suffices to
show that k has C(K,U) = {a € k : ¥o(K) C U} = {a € k : aK C ¥ }(U)} as basis of open
neighborhoods of 0, where K C k is compact and 1 € U C S* is open.

For any compact set K of k and open set U of S' containing 1, as 1~ (U) contains an open disk
around 0 and K is bounded, there exists § > 0 such that if a € k, |a| < § then aK C »~1(U). This
shows C(K,U) is open in k, as given ag € C(K,U), we know for all a € k such that |a —ag| < ¢
then (a — ap)K C ¢~(U), implying a € C(K,U).

For any § > 0, we show that there exists a compact K of k and an open set U of S' containing 1
such that the open disk |a| < ¢ contains C'(K,U). Indeed, we can choose b € k such that 1(b) # 1
(1 is nontrivial) and choose open U C S! containing 1 such that ¢(b) € U. Hence, b € =1 (U). We
choose K to be a closed disk centered at 0 of radius at least |b|/5. Hence, aK C ¢~1(U) implies
b ¢ aK, meaning |b| > |a| - |b]/d, so |a| < 6.

Finally, we show W is surjective. From the pairing (,) : k X k— S1, we have an order-reversing

bijection between closed subgroups of % and closed subgroups of k£ by taking orthogonal comple-
ments. Hence, to show U(k) = k: it suffices to show W(k)* = {0}. If z € \Il(k) then ¢, (z) =1 for
all @ € k, implying = = 0. (|
Remark 95. There is a standard nontrivial unitary character ¢ for each local field k:
(1) If k = R, we let 9(z) := e 27®,

2) If k= Qp, 1 is defined by ¥(Z,) = 1 and 1 (p™") = > " for all n > 1.

) If k =TFp((t)), define ¢ (3 ait’) == e?mia-1/P (here we choose a lift of a_; from F, to Z).

) If kg is either R, Q) or [F,,((¢)) with the corresponding character v as above and k is a ﬁnite

(
(3
(4

separable extension of kg then let ¢ : k — S' defined by the composition k: /o ko — St

Corollary 96. We have H@ =7 and @3 = Zyp for prime p.

Proof. It suffices to show that the image of the map I@\Z — R 5 Ris Z. A nontrivial unitary
character f : R/Z — S' induces a nontrivial unitary character f’ : R — S‘1 of R whose kernel
contains Z. From previous proposition, it must be of the form f/(x) = 2™ for some a € R.

Because f’|z =1 so a € Z. Hence, we can define a bijection R/Z — Z sending f to a.

Similarly, the image of Q/p/\Zp — @; = Qp is Z, because for the standard character v of Q,
defined in [Remark 95| ¢ (ax) =1 for all z € Z,, iff a € Z),. O

6.1.2. Pontryagin dual of adeles. Recall that the adeles A of Q is a locally compact abelian group
under addition. From previous propositions, we have the following result

Proposition 97. We have an isomorphism of topological groups
AT @.,Qu/Zy),
v
w = (¢|Qv)7

va (%)

In other words, to give a unitary chamcter ¥ of A, it suffices to give a collection (V) of unitary
characters of Q, so that 1y|z, = 1 for almost all places v of Q.
Furthermore, we can construct a nontrivial unitary character exp, on A by letting expy |q, to be

the standard characters on Q, as in[Remark 95. Then
U:A A
a— (expy , : T+ P(ax)).
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is an isomorphism of topological groups.

Sketch. The first isomorphism holds for any restricted product, i.e. if G, are locally compact abelian
groups and H, is open compact subgroup of G, then

[1(Go 1) = [T (Go. Gu/H)

with the similar map as defined in the proposition. One can easily show that this map is a bijective
group homomorphism. To show it is a homeomorphism requires more work.
For the second isomorphism, the standard character v, on Q, induces an isomorphism ¥, : Q, —

@, that sends Z, to Q/v/\Z,, as shown in |corollary 96/ Hence, ¥ is precisely the map
v, o ——— ~ o~
A =T@nz) P T@. @ /z.) = A
v v

O

Remark 98. For a general global field &, one can choose a standard character exp,, on Ay, as follows:

(1) If k is a number field, we choose the standard character ¢, on each k, as in[Remark 95 and
choose exp,, =[], %y as the standard character on Ay.

(2) If k is the function field of a curve X over F,. Let Qx/p, be the cotangent sheaf, i.e. the
sheaf of 1-forms. Let € be the fiber at the generic point, so ) is a 1-dimensional k-vector
space. Define Q, := Q ®j k,. There is a residue map Res, : , — k, defined as follows: if
u is a uniformiser of the closed point v, the residue map is

Res, : Q, = k(v)(w)du — k(v)
Z aiu'du — a_y.
1EL
Here k(v) is the residue field at the closed point v. This definition is independent of the

choice of uniformiser ﬂ A choice of a global 1-form w € €}, gives rise to a unitary character
on k,

o
Uy () = exp (;mTrH(U)/]FqRes(xw)>
for each closed point v of X. Let exp, =[], ¥» be the standard unitary character on Ay.

Corollary 99. Let ¢ be the standard character on A as in the previous proposition. Then v is
trivial on Q and the isomorphism A = A defined via v gives Tise to an isomorphism of topological
groups Q= Q \ A.

Proof. We first recall the definition of 1) = [, %y. Here ¢oo : R — S is defined as ¢oo(z) =
e 2™ and for prime p, if x = up"” € Q, where u € Zy, then ¢p(x) = 0if n > 0 and ¢p(x) =
e2mip"(@p™" mod p) if 4y < (. Hence, to show (z) = 1 for z € Q, it suffices to show that if
T = p]fl . ~plzf € Q then x — Zpi st k<0 pfi (xp~* mod p~*) € Z, which is true. Thus, 1 is trivial
on Q. - -

Next, we will show Q = Q \ A. Since Q\ A is compact, Q \ A is discrete. Under the identification
Y A A Q\ \I/(m) is a discrete subgroup of the compact group Q \ A, implying Q \ \P(M)
is finite
9For formal Laurent series f, g with ord(f) > 1 then Res((g o f)f') = ord(f)Res(g)
10We show that a discrete subgroup H of a compact group G has to be finite. Indeed, as H is discrete, there exists
an open neighborhood U of 1 so HNU = {1}. This follows aU N H is either empty if a ¢ H or {a} if a € H. Because

G is compact, G is a finite union of aU’s for a € G, implying H is finite.
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On the other hand, \II(Q \ A) is a Q-subspace of A, as if 1,|g = 1 then Tan‘Q =1 for all ¢ € Q.
This means Q' \II(Q \ A) is a finite Q-vector space. As Q is infinite so Q = \I/(Q \ A), as desired. [

Remark 100. For an arbitrary global field k, one can also show that the standard character expy,

(as defined in |Remark 98) is trivial on k, hence inducing an isomorphism k = m of topological
spaces.

6.2. Fourier transform. In this subsection, we will discuss Fourier transform on G, in particular
when G is Q,, R or Ag.

If f € LY(G), we can define the Fourier transform ‘}/c\: G—C by

- / f(@)x(9)dg
G

One can show f: G — Cis always continuous.
Under the condition that the function on G is nice enough, we have the following Fourier inversion
formula

Theorem 101 (Fourier inversion formula). Let G be a locally compact abelian group. Let dg be

a Haar measure on G. Then there exists a unique Haar measure dy on G, called the Plancherel
measure, such that if f € L'(G) is such that f € L'(G) then

(3) f(g) = /éf(x)x(g)dx

for almost everywhere g, i.e. there exists a null-set N C G such that the above formula holds for all
geG\N.
We refer to |Foll6, p. 111] for the proof of this theorem. Note that under Pontryagin duality, the

Fourier inversion formula can be written as f(z) = f(—x).

Ezample 102. If G is discrete with the counting measure, the Plancherel measure on the compact
group G is the normalised Haar measure so that G has volume 1. Indeed, consider f € LY(G)
defined as f(z) =1 if z = 1 in G and 0 everywhere else. Hence, we find

- Z flg)x(g) = x(1) = L.

geG

By the Fourier inversion formula,

/ FooxMdx = dx(G).

In|Theorem 101} the Fourier inversion formula depends on the condition that f € Ll(é). One can

define the space of Schwartz-Bruhat functions on a locally compact abelian group so that Fourier
transform is an isomorphism on these spaces. In the next subsections, we will focus on defining
such functions when G is a local field or G is the adeles. Furthermore, in such cases of G, there is
a natural Haar measure on G such that its pushforward via G = G (as discussed in the previous
section) is the Plancherel measure on G in the Fourier inversion formula.

Hgome authors, such as [Foll6|, define f by taking complex conjugate of x(g).
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6.2.1. Fourier transform for local fields.

Definition 103. For a local field k, a function f : k — C is called a Schwartz-Bruhat function if

o When k =R", f is a C*®-function whose derivatives are rapidly decreasz'ngEL i.e. for any
a, B € 2L, let 2% := 2 -- -z and DPf =05 ... 90" f we have

sup a:aDﬁf(a:)‘ < 00.

rER”™
o When k = C", f is viewed as a function on R*™ with rapidly decreasing derivatives.
o When k is a nonarchimedean local field, f is a locally constant function of compact support.

We denote S(k) to be the complex vector space of Schwartz-Bruhat functions on k.

Ezample 104. If f(z) € Rlzy,..., 2, then f(z)e"* € S(R™). All compactly supported real
C*°-functions are Schwartz functions.

Ezample 105. Every Schwartz-Bruhat function f € S(Q,) can be written as f = >, Cilai_,'_pkizp
where a; € Qp, k; € Z and ¢; € C. Indeed, because every open set in Q, is a disjoint union of open
balls a + kap (for some a € Q, and k € Z) and that f is compactly supported, the support of f is
a finite disjoint union of such open balls. As f is also locally constant, we are done.

Upon identifying k with % via a choice of a standard unitary character as in [Remark 95, we can

rewrite the Fourier inversion formula as follows

Theorem 106. Let k be a local field and v be the standard unitary character on k as in[Remark 95,
Under the identification k = k wvia v, the Fourier transform

/f

defines an automorphism of vector spaces on S(k
There is a unique Haar measure dx on k such that its pushforward via k = k is the Plancherel
measure on k. We call dx the self-dual Haar measure on k. Under such choice of measure, we have

the Fourier inversion formula
Z/kf(y)w(xy)dy

In particular, the self-dual Haar measure on k can be described explicitly as follows:

(1) If k =R then dx is the Lebesgue measure.

(2) If k = C then dx is twice the Lebesque measure.

(8) If k is nonarchimedean then dx is the Haar measure for which its ring of integers O has
measure (#0/D)"V/2 where D is the different of the field extension k/Q, or k/Fy((t)).

Proof. We will defer the proof of this proposition for the final version of our thesis. At the moment,
we will refer to [VR99, p. 300] for further discussions. O

6.2.2. Fourier transform for adeles. In this section, we work with the adeles of @, but the statement

will hold for the adeles of any global field k.

Definition 107. Let k be a global field, a Schwartz-Bruhat function f : Ax — C is a finite C-linear
combination of [[, fu : A — C, where f, € S(Qy) and fylo,, =1 for almost all places v of k. We
denote S(Ay) to the space of Schwartz-Bruhat functions on Ay.

We can describe the Fourier transform on A in the same way as how we have done for local fields.

1241\ the case where k = R™, such f is also called Schwartz function
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Theorem 108. We fix a standard unitary character expy for Ay as given in[Remark 98 and let dx
to be the self-dual measure on A with respect to 1. For f € S(A), the Fourier transform

— [ f@)expy(ay)da
A

defines an isomorphism on S(Ay). We also have the Fourier inversion formula f(x) = f(—zx) for
all x € Ag. In particular, the self-dual Haar measure on Ay is the restricted product of the self-dual

Haar measure on k, as described in proposition |Theorem 106,

6.3. Poisson summation formula. Consider an exact sequence of locally compact Hausdorff
abelian groups

0 > A > B > C 0
where A, B, C are equipped with Haar measures du 4, dup, duc that make the following equation

holds:
/B F(b)dpu(b) = /A /C F(e+ a)dpiala)dpc(c)
for all f € C.(B).

The Poisson summation formula is essentially the special case of the following result:

Theorem 109. For any Schwartz-Bruhat function f: B — C, we have

[ @dnate) = [ F@dnc

where f: B — C is the Fourier dual of f, dug is the dual Haar measure on C.

Sketch of proof. Define F(z) = [, f 4 f(x+a)dpa as a function on C. By Fourier inversion formula,
we have

Flxe) = /C F(e)xo@duc(e),
- / / f(c+ a)xc(@duc(c)dpa(a),
CJA

- /B FO)xC B b),
= fxo).

Again, by Fourier inversion formula, we find

Fle) = /aﬁ(Xc)Xc(C)dﬂa(Xo)

which may be written as

/ fle+a)dpa(a / F(xe)xe(©)dug(xo)-
By letting ¢ = 0, we get the desired identity. O

In the special case where L is a lattice in B (i.e. L is discrete and B/L is compact) then the dual
space L+ = B/L is a lattice inside B. From [Example 102] the counting measure on B /L is dual to
the normalised Haar measure on B/L, giving

z€L yelt

The measure on B is often chosen so that u(B/L) = 1.
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Ezample 110. From the exact sequence 0 — Z — R — Z \ R — 0 and that m = 7, we find
1 —~
Y @)= ——= D fl@),
T€L Hr(Z\R) 2=
Applying the above equality to fyields

~ 1
> )= NR(ZVR)%]C(I)'

TEL

Combining these two identities, we find pr(Z \ R) = 1.
The same exact argument for 0 - Q - A — Q \ A — 0 shows pua(Q\ A) = 1.
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7. SLa

In this section, we will describe SLs as a linear algebraic group over a field k. We will then define
and derive a nonvanishing, left-invariant global top form for SLs.

7.1. Affine algebraic group SLs. The affine algebraic group SLs over a field k is the morphism
of affine schemes Spec O(SL2) — Spec k where

O(SL2) = k[z11, 212, T21, T22]/ (2112722 — T21712 — 1).
The k-algebra O(SLs) is equal to the ideal generated by x11,x12 as for any f € O(SLg) then
f = f(.%‘n.%‘gz - 1‘21$12) (S (33‘11,.%12). Therefore, Spec O(SL2) = D(l‘n) U D(aj‘lg) where for f S
O(SLg2), D(f) := {p € Spec O(SLs) : f & p} is the distinguished open set of Spec O(SLs).
For a k-algebra R, the R-points of SLy, denoted by SLa(R) is the group Homy_,15(O(SL2), R),

which can be identified with {(in ?2) 1 xij € Ry w1790 — 11221 = 1} with the usual group
21 22

structure.
For a ring R, we use SLg r to denote SLa over R.

7.2. Lie algebra. In this section, we define the Lie algebra of SLy. We have a projection k[e]/(¢?) —
k sending a + €b to a. For k-algebra R, we define the Lie algebra of SLy over R to be

(4) Lie(SLy)(R) := ker(SLa(R]e]/(€%)) — SLa(R))

In particular, one can describe elements in Lie(SLg)(k) as 2-by-2 matrices of determinant 1, with
entries over k[e]/(¢2), such that by letting € — 0, we get the identity matrix. Concretely, elements
of Lie(SLg) are of the form <1 _;Z?H 1 —T—a;?mz) =1+ € (Z; Z;;) such that aj; + a2 = 0,
which we can identify with sla(k), a k-vector space of 2-by-2 matrices having trace 0.

In general, for an affine algebraic group G, it is more subtle to see the Lie algebra structure
from the definition of tangent space. However, we can embed G into GL, and the Lie algebra
structure of Lie(G) is induced from this embedding.

We find that for a k-algebra R, Lie(SLy r) = R ®j, Lie(SLg) as R-modules.

The dual Lie(SLg)* is a k-module generated by dz;;, for 1 < i,j < 2, modulo the relation
dri1 + dxog = 0.

7.3. Differential forms. To define the cotangent sheaf of SLy over k, we first need to define
the module of relative differentials Qo sr,)/k- It is a O(SLgz)-module equipped with a k-derivation
d : O(SLz2) — Qos1,)/k that is universal as initial object among O(SLz)-modules M equipped with
k-derivation d : O(SLg) — M. Concretely, Qor,)/k is a O(SLz)-module generated by dz;; for
xi; € O(SLa),1 < 4,7 < 2 quotient out by the relation x11dxs + x92dx11 — x12dw21 — T21dx12. The
map d : O(SLz) — Qg(sL,)/k s the obvious one, as suggested by the notation.

We define the cotangent sheaf Qgr,, /i H to be the sheaf of Ogy,-modules associated to O(SLg)-
module Qgsr,)/k- Concretely, for f € O(SLz), its section over distinguished open D(f) = {p €
Spec O(SL2) : f & p} in Spec O(SLy) is the localisation of Qg g,k at f. Note also that the global
section of gy, /i is precisely Qo(sL,)/k-

Proposition 111. (a) The cotangent sheaf Qgy,, i is a vector bundle of rank 3, hence a cotangent
bundle.

(b) The fiber of Qsi,k at a point p € Spec O(SLa) is Qo(sr,)/k @o(sL,) K(P), where k(p) =
O(SL2)p/m = k and m is the mazimal ideal of the local ring O(SLz),. The fiber of Qgr, /i at p is

isomorphic as k-vector space to the cotangent space m/m?2.

Bnotice that there is a subtlety in our choice of notations, where Qo (sr,)/% is different from Qgr, /1
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A differential 1-form over open U in SLy is a section of Qgp, /, over U. For example, in
F(QSL2 Jk> D(ﬂcll)) = (QO(SL2)/k)x11’ we have

ZL‘HdiL‘QQ 1
= — (z12dx21 + T21dT12 — T22dT11).
11 z11

() dxgn =
Therefore, any differential 1-form over D(x11) can be written as

1
$T<f12d$12 + fordwa + fridzn),
11

where fij S O(SLQ).

We define the canonical sheaf wsr, to be wsr, = /\3 Qsr, /i~ Its sections over open U of
Spec O(SLg) are called top (dimensional) forms of SLa over U. For example, its sections over
D(z11) form a O(SL2),,,-module generated by dx11 A dxia A dzay. If w is a top form of SLy over U
then we say w is nowhere vanishing if wy, € (wsL, ), is nonzero for all z € U.

7.4. Left-invariant differential form. We consider a k-algebra isomorphism

La : O(SLQ) — O(SLQ),
Tij > a1 Ty + aipwej, 1 < 4,5 < 2.

a1l ai12

) € SLy(k). This induces an isomorphism of
a1 a2

corresponding to left-multiplication by a = (
O(SLg)-modules

Lo : Qo(sLy) /i = Qo(sLa)/k
fd:vij — La(f)(aﬂdxlj + aizd.l‘gj),

for any f € O(SL2), hence, an isomorphism of sheaves of Ogr,,-modules L, : wsr,, — wsL,-
A top form w over open set U is called left-invariant if Low = w for any a € SLo(k).

Proposition 112. There is a unique, nowhere vanishing, left-invariant, global top form for SLo up
to scalar over k*.

Proof. We first determine all left-invariant top forms wqy over D(x11). From previous section, we
can write wyy over D(x11) as fdxi1 Adxia Adzoy where f € O(SLa)y,,. It follows that over D(z11),
we have
Lowii = Lo(f)d(a1z11 + a12x21) A d(ar1212 + ai2x2) A d(azizin + ageai),
La(f)

= (a11211 + a12x21)dz11 A dzig A dzog.
11

Therefore, for wy; to be left-invariant, we must have z11f = (a11211 + a12w21) Lo (f) for any f €
O(SL2)s,, and any a;; € k such that ajjazs — ajgas; = 1. This implies f = Cxﬁl for C € k. Thus,
w11 = C’xl_lldxll A dxz1o A dxoy for some C € k*.

Similarly, we also can find a left-invariant top form wis over D(x12) to be wio = C”xl_;dacn A
dx1o N dxoy for some C' € kX.

As Spec O(SLz2) = D(711)UD(712), a global left-invariant top form w € T'(Qgy,, /1, Spec O(SLa)), if
exists, must correspond to wy; and wie when restricting to D(x11) and D(x12), respectively. Hence,
to find such global top form, it suffices to find C,C" € k* such that wy; = wy2 on D(x11) N D(x12) =
D(z11212). Indeed, on D(x11212), dzog can be written as in , hence wio = 5;21122 dx1i ANdzioNdray.
Therefore, wy; = wip gives C = C’. Thus, SLs has a unique , nowhere-vanishing, left-invariant global
top form up to scalar over k*. ]
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Next, we will identify left-invariant global top forms over k with A®Lie(SLy)(k)*, following
[BLR90, §4.2|. Indeed, the unit element in the group structure of SLy corresponds to the k-algebra
morphism ¢ : O(SLa) — k sending z;; to 1if 1 <i = j <2 and 0 everywhere else. This then corre-
sponds to a morphism ¢ : Spec k — Spec O(SLz) of affine scheme. Therefore, one can pullback sheaf
Qs1, /i of OgL,-module via € to get a sheaf e*Qgy,, /x of Ogpecx-modules, which is just a k-module
k ®0(SL,) 20(SLy)/k- We note that this k-module is isomorphic to Lie(SLz)(k)*.

On the other hand, via the structural morphism p : Spec O(SLy) — Speck, we have a canon-

ical isomorphism p*e*Qgr, /i = Qqp, /i that is obtained by extending sections in e*{Qgr, ;p =
Lie(SLz)(k)* to left-invariant sections in Qgy, /, (see [BLR90, page 102]). Thus, the k-module
A® Lie(SLy)(k)* is identified with the k-module of left-invariant global top forms.
7.5. Adjoint map. Given a k-algebra R, an affine algebraic group G and its Lie algebra g :=
Lie(G), we define the adjoint representation Ad : G(R) — Aut(g(R)) to be Ad(g)r = gzg~' where
r € Lie(G)(R) C G(Re]/(£2)).

In particular, if w € A® g(R)* then

Ad(g)w = det (Ad(g) : g(R) — g(R)) w.
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8. THE TAMAGAWA MEASURE ON ALGEBRAIC GROUPS

For an algebraic group G over a global field k, there exists a left-invariant (or right-invariant)
volume form w over k E| that is unique up to scalar over k*. Following one can construct a
Radon measure |w|, on G(k,) for every place v of k. In particular, this is a left-invariant (respectively,
right-invariant) Haar measure if w is left-invariant (respectively, right-invariant). In this section,
we will show that when G is connected semisimple, G admits an adelic Haar measure coming from
lwly’s (ie. see for the definition). Furthermore, this is a canonical adelic Haar measure
on G(Ay), and we called it the Tamagawa measure of G(Ag). We will then define the Tamagawa
number of G and state the Weil’s conjecture on the Tamagawa numbers.

8.1. About normalisation of adelic measure and Tamagawa measure on A"”. For a nonar-
chimedean local field k,, we have chosen two normalisations for a Haar measure on k,, one in
where we require O, having volume 1, and one in [Theorem 106| as a self-dual Haar measure with
respect to Fourier transform. In this section, we will would like to explain the relation between
these two normalisations in defining adelic measure on A.

Proposition 113. Let py be the normalisation in our definition of adelic measure as in[§ 5.5.3
With respect to the Haar measures p,, on nonarchimedean local fields k, such that O, having volume 1
(and to the normal Haar measures i, on archimedean local fields), we obtain an adelic Haar measure
pie =1, 1o on Ag. This measure induces an Ag-invariant measure on k\Ay where pui(k\Ag) = pi.

We refer to [Wei82, p. 12| for the proof of this proposition.

This proposition says that the normalised adelic measure p, " I], 1y as in [§ 5.5.3|is the self-dual
Haar measure on A} with respect to Fourier transform (see [Theorem 108|), as both give volume 1
for k™\A} (with respect to self-dual Haar measure on Ay, the volume of k\Aj being 1 is proved
in using Poisson summation formula) and both are Haar measures on A}. We call this the
Tamagawa measure pgrx on Ap and the volume of £™\A] with respect to this measure is called
the Tamagawa number of G, , denoted 74,(G(), and we know 74,(G}) = 1.

Furthermore, we can restate our normalised adelic measure for a smooth affine scheme X of finite
type over k as in in terms of self-dual Haar measures on each local field k,. This is done by

simply removing the normalisation p, dim X

Ezample 114. When k = Q, our two normalisations of Haar measure on Q, coincide. Hence, the
volume of Q\A is 1 because the quotient Q\A has a fundamental domain

0,1) x [] Zy.

giving the volume pgr([0,1)) X [], po, (Zp) =1 for Q\A.

8.2. Tamagawa measure and Tamagawa number on semisimple groups. Let G be a con-
nected semisimple algebraic group over a global field k. In this section, we show that G admits an
adelic Haar measure There exists a left-invariant algebraic differential form w of top degree (i.e. a
gauge form) of G over k. This induces a left-invariant Haar measure |w|, on G(k,) with respect to
the self-dual Haar measure on k,. In this section, we show that G admits an adelic Haar measure.

Firstly, for semisimple G (or even for unipotent or reductive GG), the Haar measure on G is
unimodular (i.e. both left and right invariance) due to the following proposition

Proposition 115. The modular quasicharacter of G(ky) is
0k, (9) = |det (Ad(g) : g(kv) = g(kv))l, -

14many references refer to this as a gauge form
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Proof. From [§ 7.5, we know Ad(g)w = det (Ad(g) : g(ky) — g(ky))w. Therefore, by Change of
variables formula in [Theorem 67, we find that Ad(g) : G(k,) — G(ky) induces a new left Haar
measure d|w|,(ghg™!) on G(k,) so that

dlwls(ghg™) = |det (Ad(g) = g(kv) — g(kv))], dlwlo.
As d|wl|, is left Haar measure so from we find
dlwlo(ghg™) = dlwlo(hg™) = dar,)(9)d|wlo-
This gives d¢(x,)(9) = |det (Ad(g) : g(kv) — g(kv))l,,, as desired. O

Proposition 116. G admits an adelic measure.

Sketch. We follow the proof of [Vos98, p. 136]. To show G admits an adelic measure, we need to
check the criteria in in[§ 5.5.2} Let .S be a finite set of places of k containing the archimedean places
such that there is a smooth group scheme G over Og with generic fiber G. We want to show

H [G(s)]
\" ’
vgS
converges absolutely, where x(v) is the residue field of k,, n is the dimension of G.

Steinberg in |SR68, §11.16] gave a general formula for G(x(v)) (see |Oes84, §1.1.6] for a nicer for-
mulation of this formula). The formula roughly says the following: Let G be a connected semisim-
ple algebraic group over Fy, let B be a Borel subgroup of G' containing a maximal torus 7T". Let
T := Hom(T,G,,). The Galois group Gal(F,/F,) acts on the Q-vector space E = T(F,) ® Q
by o(x)(x) = o(x(c™(x))) for 0 € Gal(F,/F,),x € T(Fq),x € T(F,). The Weyl group W =
Ng(T(F,))/T(F,) acts on V via the conjugation action on T(F,). Thus, we obtain an action of
Gal(F,/F,)x W on E, hence an action on the symmetric algebra S(E) of E. A theorem of Chevalley-
Shephard-Todd showed that the W-invariant algebra S(F)" is a polynomial algebra generated by
¢ = dim T homogeneous algebraically independent polynomials of degrees a;’s for 1 < i < ¢. The
Steinberg’s formula implies that

0 l
¢TI =g ) <1GE) < g JJ(1+¢7).
i=1 i=1
One can show that a; > 2 by relating the a;’s with the Betti numbers b; of the maximal compact
subgroup of G(C) via the formula

Zb tz H t2ai—1)

i=1
and knowing that b; = by = 0. O

From this proposition, we know that if w is nowhere-vanishing, left-invariant global algebraic top
form (i.e. a gauge form) over k of G inducing Haar measures |w|, on G(k,), [[,’|w|, defines a Haar
measure on G(Ay). We call this the Tamagawa measure pc  on G(Ay). This measure satisfies the
following nice property

Proposition 117. The definition of the Tamagawa measure on G(A) does not depend on the choice
of a nowhere-vanishing, left-invariant global algebraic top form on G over k.

Proof. From [Proposition 112| any left-invariant, nowhere vanishing global top form w of G over k
is cw for some ¢ € k*.
Therefore, if w’ = cw is another choice of a top form on G over k, from ??, the corresponding
Haar measure on G(ky) is |c|yuy for each place v of k, where p, the Haar measure on G(k,)
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corresponding to w. By similar construction, we denote p, ., to be the restricted product measure
on G(A) corresponding to w.

Let S be a finite set of places containing the archimedean places so that G is a smooth group
scheme over Og := [],#g Oy with generic fiber G. Consider an open subset U = [],cg G(ky) x
[Togs G(0,) of G(A). By construction, the restriction of pram and u/,  to U is the product

measure. On the other hand, by the product formula [], |cly = 1 0 pram = W, on U. By the
uniqueness of Haar measure, fimam = (., on G(A). O

As G(k) is a discrete subgroup of G(Ag), the Tamagawa measure induces a G(Ay)-invariant
measure on G(k)\G(Ay). Using reduction theory as in [PR94, §5.3], one can show that the volume
of G(k)\G(Ay) is finite, and we call it the Tamagawa number of G over k, denoted by 74(G).

Proposition 118. All groups below will be connected semisimple.
(1) For algebraic groups G1,Go over k then 11,(G1 x G2) = 1,(G1)11(G2) and 7:(G1 X G2) =
Tk(G1)Tr(G2).
(2) Let G be an algebraic group over a finite separable extension | of k, then 7)(G) = Tk(ReSZG),
where Resk is the Weil restriction of scalars.
(3) If G splits over k, for an isogeny (i.e. surjective map with finite kernel) f : G' — G of G
then 7,(G) = ,(G") - | ker f].

Proof. For (1), we refer to [Wei82, p. 27| or |Igu78, p. 121].
For (2), this follows from [§ 5.5.3]
For (3), we refer to [Ono65, Theorem 2.1.1]. O

8.3. Weil’s conjecture on Tamagawa numbers. We restate Weil’s conjecture on Tamagawa
numbers.

Theorem 119 (|Wei95|). Let G be a connected simply connected semisimple linear algebraic group
over a global field k, then 1,(G) = 1.
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9. TAMAGAWA NUMBER OF SLs
In this section, we will give a detailed proof of the following theorem

Theorem 120. 7(SLyg) = 1.

9.1. Approximation theorem for SLs; over Q. For an affine algebraic group G over Q. We say
G satisfies strong approximation with respect to a finite set S of places of Q if G(Q) is dense in
G(A®). We then have the following results. We refer the reader to [Rap14] for more discussion.

Theorem 121 (Strong approximation theorem). Let G be a semisimple and simply connected linear
algebraic group G over Q. Then, for any nonempty finite set S of places of Q, G(A) is dense in
G(A%).
Corollary 122. If an affine algebraic group G over Q satisfies the strong approximation theorem
with respect to a finite set S = {oo} of places of Q then

(1) |G(Q) \ G(A®)/K*>°| =1 for any compact open subgroup K> of G(A>).

(2) If ' = G(Q) N K™ then by embedding G(R) to the infinite component of G(A), we have a

homeomorphism
I\ G([R) = GQ)\G(A)/K™.

The proof of this corollary is similar to the proof of for G,. We will give a proof of
strong approximation theorem for SLo over Q.

Proposition 123 (Strong approximation theorem for SLy). For any non-empty finite set S of
places of Q, SLa(Q) is dense in SLa(A%).

Proof. If Z is the closure of SLg(k) in SLy(A®), then Z is a subgroup of SLo(A®). It suffices to
prove that Z contains SL2(Q,) for every v ¢ S. Indeed, if such a condition holds then the subgroup
Z will contain [[,cq SL2(Qu) X [[,¢sus SL2(Zy) where S’ is any finite set of places of Q disjoint
from S. As this exhausts SLo(A%), we find Z = SLy(A).

1

To show SL2(Q,) C Z, note that SLa(Qy,) is generated by Ut (Q,) = { <0 T)} and U~ (Qy) =

* 1
U*(Q). As UT = G, so by the strong approximation theorem for G,, the closure of UT(Q) in
SLo(AS) is UT(AS), implying Z contains UH(Q,) for all v ¢ S. O

{(1 O>} so it suffices to show Z contains U*(Q,). By definition, Z contains the closure of

Corollary 124. (a) We have SLy(A%) = SLy(Q) SLo(Z) and

SLy(A) = SLy(Q) (SL2 xHSL2 )

Note that SL2(Q) embeds diagonally into SLa(A) while for’ SLa(R) and SL2(Qp), each is embedded
into its p-component in SLa(A).
(b) We have
SLa(Z) \ SLa(R) = SLo(Q) \ SLa(A)/ SLa(Z)

SO

(SLy(Z) \ SLa(R)) x HSL2 >~ SLy(Q) \ SLa(A)

as topological spaces.

One can repeat the proof of to prove this corollary.
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9.2. Tamagawa number for SLy over Q. Because SL2(A) is unimodular and SLy(Q) is a discrete
closed subgroup of SLa(A), from UTam induces a SLo(A)-invariant measure on the quotient
SL2(Q) \ SLa(A). The volume of SLy(Q) \ SLo(A) is then called the Tamagawa number of SLa over
Q, denoted by 7(SL2 ).

By the construction of the Tamagawa measure on SLa(A) and by we obtain

7(SLog) = psLym)w(SL2(Q) \ SLa(R)) x ] mp(SL2(Zy))
SL2(Qp),w
where w is a choice of a volume form over Q of SLa; pgy,(g,)w 18 the corresponding measure on
SL2(Q,) defined via w, as described in previous section.
In the next two sections, we will show that

SLy(FF _
MSLz(@p)M(SLQ(Zp)) = |p£,p)’ =1-p 2
and
72
BSLy () w (SL2(Z) \ SL2(R)) = ((2) = 5
obtaining [TEEorem T20

9.3. Volume of SL3(Z,). In this section, we will use the Haar measure pgy,(q,)w induced by the

top form w = %dx Ady A dz (as defined in i to compute the volume of SLy(Zp). Indeed, we
have a surjective map p : SLa(Z,) — SL2(F,) with kernel

N:{(ZL Z) :a,c€1+pr;b,d€pr}.

The surjectivity of p is shown in the following lemma;:
Lemma 125. Let N € Z~q. The group homomorphism SLa(Z) — SLo(Z/NZ) is surjective.

Proof. Indeed, we want to show that for A = <CCL Z) € My(Z) such that ad — bc — Nm =1 for

some m € Z then there exists B € SLy(Z) such that B = A (mod N). From ad —bc— Nm =1, we
know ged(d, ¢, N) = 1 so there exists n € Z such that ged(c,d + Nn) = 1 (for example, by Chinese
Remainder Theorem, we can choose n such that d+ Nn =1 (mod p) for plc,p{ N and d+ Nn =d
(mod p) for p | ¢,p | N, i.e. ptd). By replacing d with d + Nn, we can assume that ged(d,c) = 1.

We want to find B = a+cNe b+de> such that ad —bc+ N(de —cf) =1, or m = de — cf. As

ged(e, d) = 1, there exists e, f € Z such that m = de — cf, as desired. O
Because [SLy(F,)| = p(p? — 1) so by the left-invariance of the measure, we find

1SL5(0,),0(SL2(Zy)) = [SLa(Fp) 1sr, (@), (V) = p(0* — DLy (@,)w(N)-
We have

HSLy (@) (V) = / la™!|,dadbdc = / dadbdc,
N N

dadbdc,

/a ,cE1+pZyp,bEPZy

/ / / dadbdc,
PZyp J Ly J Ly

= (up(pZp))* =p~°

Thus, fi81,(q,)w(SLa(Zp)) = (1 —p~2).
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9.4. Volume of SL3(Z) \ SL2(R). In this section, we compute the volume of SLy(Z) \ SLa(R) by

determine its fundamental domain.
9.4.1. Volume form of SLa(R). From [§ 7.4, we know that SLs over Q has a unique left-invariant

volume form w up to scalar over Q*. In particular, over open set { <:§ ‘3) € SLy(R) : = # O} of

SL2(R) then w = 2z~ dx A dy A dz.
Over R, every element in SLo(R) is uniquely expressed as product

cosp —sinp) fa 0 1 u
sinep  cosp 0 ot 0 1

where ¢ € [0,27),a > 0,u € R. Hence, under change of coordinates x = acos,y = aucosp —

a~lsinp and z = asin g, we find that wr can be globally expressed as wr = adp A da A du

9.4.2. Fundamental domain of SLa(Z) \ SL2(R). First, we denote the upper half-plane H = {z €
C:3(z) > 0}. For g = <(Z b> € SLy(R), z € C, we define gz := 22+

d cz+d*

Proposition 126. We have a smooth action of SLa(R) on H wvia
® : SLa(R) x I — I
(9,2) = gz.

This action is transitive and the special orthogonal group

cosf) sinf
SO2(R) = {(— sin 0 cos0> 0 R}

is the stabiliser of i, inducing a homeomorphism
gf) : SLQ(R)/ SOQ(R) — K
sending g — gi. Furthermore, PSLa(R) = SLa(R)/{%1} acts faithfully on 3.

Proof. As 3(gz) = % > 0 so gz € H, meaning each g € SLy(R) induces a smooth map from
H to H (called linear fractional transformation) with inverse g—!. Furthermore, one can also check
9(¢'z) = (99’)z so we have an action of SLa(R) on K.

Next, we show this action ¢ is smooth. We first choose a chart for SLa(R). Without loss of

generality, let U, = { (CCL Z) € SLo(R) : a # O} be a open subset of SLy(R) with chart ¢ : U, — V

d

<a b>>< az+b
Zy —
betl’

C d cz + Ca

which is smooth on U, x H because it is composition of smooth maps.

91;> € SLy(R) maps i to z. One can

cosf sinf
SO2(R) = {( sin # cos@) 0 R} '

is the stabiliser of i. Overall, we have a smooth and transitive action of the Lie group SL2(R) onto
the smooth manifold H, we obtain a diffeomorphism

SLo(R)/ SO2(R) = G/Stab(i) — X,
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where V = {(a,b,c) € R : a # 0} sending <CCL b) to (a,b,c). Under this chart, the map ¢ is

This action is transitive as for any z = x + iy then y*1/2 (‘g

also check that



sending g — gi. O
Under the action of PSLy(Z), H has fundamental domain:
D={zeH:|z| >1,Re(z) < 1/2}.

The action of PSLy(Z) on H commutes with the left action of PSLo(Z) on SLa(R)/SO2(R). We
then find

Proposition 127. (a) The fundamental domain for the action of PSLa(Z) on SL2(R)/SO2(R) is

1 . a 0 AN 1
¢ (D>_{<O a_1) <O 1) Hul < 1/2,0 < a < m}
(b) The fundamental domain for the left-action of SLa(Z) on SLa(R) is ¢~ 1(D)K where

K= {(‘6‘ aol) (é f) Lo [0,27),a > o} ~ S0, (R)/{+1}.

Proof. (a) Indeed, as ¢ is homeomorphism, ¢~!(D) is open connected. As no two points in D
belong to the same PSLy(Z)-orbit, no two points in ¢~*(D) that belongs to the same PSLy(Z)-orbit.
We also have ¢~1(D) = ¢~1(D), hence, knowing H = Uy epsLy ) 4D implies SL2(R)/SO2(R) =
U, epsioz) 70~ (D). We are done.

(b) From (a), we have

SLoR) = |J  1471(D)SOs(R),

YEPSLy(Z)
= U 19 (D)SO(R)/{£1},
y€SL2(Z)
- U DK
~v€SL2(Z)
Also from (a), no two points in ¢~ 1(D)K belong to the same SLy(Z)-orbit, else we can find two
points in ¢~1(D) belong to the same PSLy(Z)-orbit. O
Thus, from this proposition, we find
pstaeo(SL2(2) \SLa(®) = [ adadud,
¢~ H(D)K
1/2 (1—u?)"12 ,m
= / / / adpdadu,
=-1/2Ja=0 ©=0
=712/6.
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10. THE TAMAGAWA NUMBER OF SPECIAL LINEAR GROUPS
In this section, we will prove the following theorem
Theorem 128. 7g(SLy,) = 1.
We will induct on n. The case n = 2 was proved in the previous section.

10.1. The action of SL, on G]. We study the action of SL,, on V' = G] by right multiplication.
In particular, we determine the orbits and stabilisers of this action and describe measures on these
spaces.

One can prove the following

Proposition 129. Ifk is a division algebra, the orbits of SL,, (k) acting on k™ are {0} and k" —{0} =
e1SLy,,(k), where e; = (1,0,...,0) € k™.

Let SLy, ¢, be the stabiliser of ey under this action. Then SLy, ¢, is the semidirect product SL,,_1 MGZ‘I.
In particular, every element in SLy, ¢, (k) has the form

1 0

(¢ %)
where ¢t € k"1 d € SL,_1(k).
10.1.1. Measures on orbits and stabilisers. The map SL, (k) — e; SL,(k) sending g — e1g gives
rise to a bijection SLy ¢, (k)\ SLn(k) = €1 - SLy(k). When k = Q, or k = A, this induces a
homeomorphism with respect to the topology of k. Because the map g + e1g is also SL,,-invariant,
the SLj,-invariant volume form dv = dvy A - - - Adv,, on ey - SLy, (k) (it is invariant because det(g) = 1
for g € SL,,(k)) induces an algebraic differential form 6 on SL,,, satisfying dh A § = dg, where dh, dg
are invariant volume forms on SL, ., and SL,, respectively. This implies that for any continuous
function f on SL,(A) with compact support, we find

dgla = hg)|dhla | |d(er -
o /SLn(A)f(g) ol /e1~SLn(A) </SLn,e1(A)f( 9 |A>‘ (€1-9)la

By the uniqueness of the SL,, (A)-invariant measure on the quotient space SLy, ¢, (A)\ SLy, (A) induced
from |dh|a and |dg|a, from (6]), we find

/ F@)[dv]s = / F(erg)ldgla,
e1-SLn(A) SLn,eq (A)\SLn(A)

where f is a continuous function on A" with compact support and |dg|s is the SL,(A)-invariant
measure on SL;, ¢, (A) \ SLy,(A).
On the other hand, we have the following proposition

Proposition 130. A" — e; SL,,(A) has measure 0.

Proof. Note that if v = (v1,...,v,) € A such that v; € A* for some 1 < i < n then v € e; SL,(A).
Therefore, A™ — ey SL,(A) C (A — AX)". Furthermore, A — A* lies in the union of open sets of
the form Ug x Hpgs kaZp, where S is a finite set of places of Q containing the infinite place, Ug is

open in [], g @y, kp > 1 for all p € S. We also know that Ug x Hp¢S kaZp has measure 0. Hence,

A — A is a null set (see , meaning it has measure 0 (after enlarging our measure space on A to
include give null sets as having measure 0). U

Thus, we can rewrite the above identity as

@ [ sl = [ F(erg)ldgl.

SLiney (A)\ SLn(A)
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10.2. Using Poisson summation formula. For f € §(A"), we let

1(f) = /S I (Z f(:vg)) dgla.

zeQn

Assuming for a moment the convergence of this integral for any f € S(A™), we will prove the
following

o~

Proposition 131. For any f € 8(A™), we have I(f) = I(f).
Proof. For g € GL,(A), let fy(z) := f(xg), we find

Jo@) = | f(yg) expa(ya’)ldyla,

= ldet(@) [ 1) espatug™'s" ol

= ldet(@) [ 1) espatylag™))lauls

= |det(g)|;" f(zg™").

By applying the Poisson summation formula for f,, we find

> flzg) =|det(g)z" Y Flag™).

zeQn xeQnr

Let g € SL,(Q) and noting that g — ¢g~* is a measure-preserving homeomorphism on SL,,(A), we

A~

find I(f) =I(f). O
10.3. Write the integral over SL,(Q)\ SL,(A) into orbits. Using the results in we have

I(f):= Fr(g)ldgla,

/SLn(@)\SLn(A)

B /SLn(Q)\SLn(A) (f(o) + D )f(f’fg)) |dg|a,

z€er-SLn(Q

— Om(SLy) + [ S ferg)ldg,

SLy (Q)\SLx (A) YESLn,e; (Q)\SLn (Q)

— F(0)ro(SL) + / f(e19)ldgla.

SLineq (Q)\SLn(A)

— £(0)7g(SLu) + 70(SLn.e) / f(e1r9)ldgla,
SLn,.31 (A)\ SLn(A)

= F(O)Q(SLy) + 7a(SLuer) [ (0)ldvla

= f(O)TQ(SLn) + TQ(SLn,m)f(O)a

~

= f(0)7q(SLyn) + f(0).

Replacing f by fin the above and noting that f(0) = f (0) by Fourier inversion formula, we find

o~

I(f) = F(0)7g(SLa) + £(0).
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From [Proposition 131} we find

(70(SLn) = 1)(f(0) = F(0)) = 0.

-~

There exists f € 8(A™) so f(0) # f(0). Thus, we find 79(SL,) = 1.
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11. THE TAMAGAWA NUMBER OF SYMPLECTIC GROUPS

0 I,

We first recall the definition of Sp,,,. Let J,, = (_ I 0

) be a 2n-by-2n matrix. The symplectic

group is defined as

Spon (k) := {M € Mapxon(k) : M'J, M = J,}.
In this section, we will focus on proving the following theorem
Theorem 132. For all n > 1 then 1g(Spy,) = 1.

We will prove this theorem by induction on n. When n = 1 then Sp, = SLs, hence ¢(Spy) =
TQ(SLQ) =1.

11.1. The action of Sp,, on G2". We study the action of Sp,,, on G2" by right multiplication.

Proposition 133. If k is a division algebra then the orbits of Sps, (k) acting on k*" is {0} and
k* — {0} = e1 Spyy,(k), where e; = (1,0,...,0).

Let Spy,, ., be the stabiliser of e1, then Spy,, ., is isomorphic to the semidirect product Spy,, o X (G2n—2x
Ga)-

Proof. Let X = (

5= ()

Furthermore, X € Sp,,, if and only if A/C —C'A = B'D—D!B =0 and A'D — C'B = I,,. Thus,

é g) where A, B,C,D € M, «,. For X to stabilise ¢ means A = (i 2) and

1 0 0 0
i : A B rz1 a 0 ¢ a c
X e Sp2n,81 if and only if X = <C D> = . w1 oy where (y1 y2) = (:cg —3:1) (b d)
T2 0 d
and (z fl) € Spyy,_o- Here x; are (n — 1) x 1 vectors, y; are 1 x (n — 1) vectors. =

11.2. Computing the Tamagawa number of Sp,,,. With the same argument as in the case of
SLy,, one can show that for f € 8§(A?"), we find

F(0)ldu]s = / f(e19)ldgla.

A2n Sp?n,el (A)\ SPQH(A)
Define
1= | > Fag) | ldgla.
Sp2n(@)\ Sp2n (A) IGQ”

By applying Poisson summation formula as in the case of SL,,, we find I(f) =1 (J?)
Finally, similarly to the case of SL,,, we have

-~ ~

I(f) = F(0)7q(Sp2s) + 10 (SPan.e,)f(0) = f(0)7q(Spay,) + £(0)-

Replacing f by f in the above equation and noting that f (0) = f(0) by Fourier inversion formula,
we find X K

I(f) = f(0)1(Spas) + £(0).
Thus, we obtain 7g(Spy,) = 1.
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12. THE TAMAGAWA NUMBER OF SPECIAL ORTHOGONAL GROUPS

In this section, we will show that the Tamagawa number for the special orthogonal group SO, g

(with respect to a non-degenerate quadratic form ¢) is 2 (see [Theorem 134)). In this section, we
follow [Mar66], [Ilgu78, Chapter 4] and [Hid20].

12.1. Orthogonal groups. Let V be a vector space over QQ of dimensionn > 3. Amapqg:V — Q
is called a quadratic form on V over Q if it satisfies the following conditions:

(1) The function b: V x V — Q, defined by

b(z,y) = q(z +y) — q(z) — q(y),

is a symmetric bilinear form.
(2) For A € Q and z € V, we have q(Az) = \2q(x).

Throughout this section, we will always assume that ¢ is nondegenerate, i.e. b is nondegenerate.

A morphism between two quadratic forms ¢,q’ is a linear map f : V — V such that ¢’ o f = q.
The automorphism group of a quadratic form ¢ over Q is denoted as O4(Q), called the orthogonal
group of (V,q).

For any Q-algebra R, ¢ induces a quadratic form gr : V ®g R — R over R by extension of scalars.
Its automorphism group is denoted by O4(R). Thus, we have defined an algebraic group O4 over Q
corresponding to the quadratic form ¢ : V — Q.

Furthermore, O, is an affine algebraic group. Indeed, we fix a choice of basis {e1,...,e,} for
V', a quadratic form ¢ on V then corresponds to a symmetric matrix B, defined by (By):; =
3(q(e; +€;) — q(e;) —q(e;)). One can show that two quadratic forms ¢,¢” on V are isomorphic over
Qif By = T'B,T for some T' € GL,(Q). Thus, for any Q-algebra R, we can describe O4(R) as

04(R) = {x € GL,(R) : B, = 2'B,x}.

Let SO, be the closed algebraic subgroup of O, that consists of automorphisms of ¢ having deter-
minant 1.
Our main result in this section is the following

Theorem 134. 7¢(SO,) = 2.

To prove this, we induct on n = dim V. We will take for granted that 7¢(SO,) = 2 for n = 3, 4.
The proof for these cases can be found at [Wei82, p. 65, Theorem 3.7.1]. To use induction, we first
start by studying the action of SO, on V' = GJ,.

12.2. Orbits and stabilisers of the action of SO, on GJ. We study the action of SO, on
V = G} by right multiplication.

12.2.1. Orbits. The orbits under the action of SO, on V' are described in the below proposition.

Proposition 135. Let k be an extension of Q. The orbits under the action of SO(k) on V (k) by
right-multiplication are U (i), := q; ' (i) — {0} fori € k and {0} (note U(i)y can be empty for some
This follows from Witt’s theorem.

Lemma 136 (Witt’s theorem). Let k be an extension of Q, then two nonzero points x,y € V (k) =
k™ belong to the same orbit under the action of SO4(k) by right-multiplication if and only if qi(x) =

a(y)-
58



12.2.2. Stabilisers. For 0 # v € V(Q), let SO, 4 be the stabiliser of v under the action of SO, on
V, i.e. for a Q-algebra R, we denote

SOuq(R) = {g € O4(R) : vg = v}.
We will show that SO, 4 is a linear algebraic group by the following proposition

Proposition 137. If q(v) # 0 then SO, 4 is isomorphic to a special orthogonal group of dimension
n —1. If q(v) = 0 then SO, 4 is isomorphic to the semidirect product of G2 acting on a special
orthogonal group of dimension n — 2.

Proof. We will describe the structure of SO, 4(R) in the two cases where ¢(v) = 0 and g(v) # 0.
For convenience, we will restrict the discussion to SO, 4(Q), as the case SO, 4(R) for any Q-algebra
R is completely similar.

If g(v) # 0 then we will show SO, is a special orthogonal group of dimension n — 1. Let
W, = (Qu)* := {v/ € V : q(v,v') = 0} (for convenience, we refer to b(v,v') as q(v,v')) then
W, is a Q-vector space of dimension n — 1. Indeed, we know ¢(v) # 0 so g(v,v) # 0. Hence,
for any basis v,v1,...,v,—1 of V, one can choose ¢; € Q so that g(v,v; + ¢;v) = 0. This means
W, = spang{vi + c1v,..., V1 + cp_1v}.

We note that if g € SO, then g preserves W, as 0 = ¢(v,v") = q(gv, gv') = q(v, gv’) for v € W,,.
This means SO, C SOy, . Conversely, given g € SO, then we can extend g to action on V' by
letting gv = v, as v € W,,. Thus, SO, = SO i.e. SO, is the orthogonal group corresponding to
the quadratic form ¢y, .

If g(v) = 0 but v # 0, the restriction of ¢ to Qu is trivial. Since ¢ is nondegenerate, there exists
v’ € V independent from v such that g(v,v’) = 1. Then g(v' —zv) = 3q(v' —zv,v' —2v) = ¢(v') —x
for € Q. Thus, by taking = ¢(v') and replacing v" by v' — zv, we may assume that g(v') = 0.
It follows W = (Qu @ Qu’)* has dimension n — 2, as for any w € W, we can find ¢,¢ € Q so

qle’

q(w + cv + v, v) = q(w + cv + V', v") = 0. Thus, under a choice of basis v,v1,...,v,-2,v" of V
where v1,...,v,_2 is a basis of W, ¢ has the matrix form
0 0 1
B,=[0 5 0
1 0 0

where S is a (n — 2) X (n — 2) symmetric matrix corresponding to ¢|y. From this, one can show
that SO, , is the semidirect product SO, xG?~2, i.e. an element in SO, 4(Q) has the form

qlw
1 0 0
w A 0
—%thw —wtsS 1

where w € G2 and A € SO O

qlw

12.2.3. Measures on orbits and stabilisers. In this section, we will define a SOg-invariant volume
form on the orbits U(z). This volume form allows us to connects the Tamagawa measure on SO,
(see (9)) with the Tamagawa measure on the affine space V (see (g)).

Let dv = dvi A -+ - Adv,, be the volume form on V. As ¢ is nondegenerate, we find ¢*dz = d(q(v))
is a nowhere vanishing 1-form on V(Q) — {0} El Because we have a submersion ¢ : V — {0} — G,

5We know d(q(v)) = >orey %dvi. It suffices to prove that if for z € V(Q) so that %(m) =0forall<i<mn,
then z = 0. Indeed, because ¢ is nondegenerate, there exists a non-singular matrix A such that g(v) = vTAv =
vi(Av)1 + ... + vp(Av),. We find a%qi = (Av); + (v A);. Therefore, if there is z € V(Q) so that aa—fi(a:) = 0 for all
1<i<nthen 27A=—(Az)" = —zTA” or 227 A = 0 since A is symmetric. This implies z = 0.
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so there exists an algebraic nowhere-vanishing differential form 6 of degree n —1 on V(Q) — {0}
such that
0 A d(q(v)) = dv.
Observe that 0 is SO4-invariant since ¢(vg) = ¢(v) and d(vg) = det(g)dv = dv.
By restricting 6 to U(i) C V — {0}, we obtain a G-invariant volume form 6; on U (i) over Q. For
a local field Q, of Q, ; defines G-invariant volume forms |6;|, on U(i)q, for any i € Q,, satisfying
the integration along fibers of the submersion qq,

/ fldel, = / ( / fez-rv) dil,.
V(Qy)—{0} Qv U (i),

Over Ag, we also have a similar result

(®) [, fldsla = /A ( /U N f|ei|A) il

On the other hand, for i € Q and if 0 # v; € U(i)x then by Witt’s theorem, for any extension k
of @, the map SOy (k) — U (i) sending g — v;g give rise to a bijection SOy, (k) \ SO4(k) = U ().
When k£ = Qp,R or A, this induces a homeomorphism with respect to the topology of k. Because
the map g — v;g is SO -invariant, the algebraic differential form 6; on U(¢) induces an algebraic
differential form 6 on SO, satisfying dh A0, = dg, where dh, dg are invariant volume forms on SO, ,,

and SOy, respectively. Thus, for any continuous function ' on SO4(A) with compact support, we
find

o /Soq(A) Floldd = /U(m </soq,vim) F(hg)’dh‘A) 10i(vi - 9)]a-

Here, |dg|s and |dh|s are the Tamagawa measures on SO4(A) and SO, (A), respectively.

12.2.4. Measure on the orbit of 0. For the purpose of the later section, we need a more detail study
of the measure |0y|; on U(0)x, where k is either a local field k = Q, or k = Ag.

Recall from the proof of [Proposition 137 if there is 0 # v € U(0)y, there exists v' € V so q(v') =0
and ¢(v,v") = 1. We then let W = (kv @ kv’)*. One can then show that any v” € U(0), i.e. 0 # v"
and g(v") = 0, is either in kv @ g|;;' (0) U kv’ @ g7 (0) or can be written as

v = —(2a) tq(w)v + w + av’
for a € k* and for any w € W — (g|w)~1(0). Because, kv@q|y; (0) Ukv' @qly;; (0) is a proper Zariski

closed subset of U(0); (for example, kv & q|§[,1(0) contains all € U(0) such that ¢(v,z) =0, and
the polynomial ¢(v,-) does not vanish on U(0)x), |fg|x has measure 0 on this set. Hence, the map

it (W =gl (0) x Gy = U(0)y,
(w, a) — —(2a) tq(w)v + w + av’

has image being a Zariski dense open subset of U(0)x, and || is determined by its restriction to
its open set (W — q\;vl(O)) X Gy,. Because i is translation W-invariant and G,,-invariant, i*6p, as
an algebraic differential from, must also be invariant under these actions. Hence, i*0g is dz1 A --- A
dxp,_o N\ %a up to a constant multiple of Q*, where dxq1 A - -+ A dx,_o is a W-invariant volume form

on W and df is a G-invariant volume form on G,,. This follows for a fixed a € k>, we find
160 (aw)| = |al; 2[00 ()|
for u € U(0)y.
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12.3. Writing the integral over SO, (Q)\SO4(A) into orbits. To calculate 7g(SO,) fSO
where |dg|, is the Tamagawa measure on SO4(A), we consider a general integral

/ F(g)ldgla
SO4(Q)\SO4(A)

for some left SO4(Q)-invariant continuous function F' on SO4(A) with compact support. We let
f:V(A) — C be a Schwartz-Bruhat function and let Fy : SO4(A) — C be defined by

= > flxg)

zeV(Q)

Q)\ SO, (

Note that Fy is left SO,4(Q)-invariant, and we temporarily assume the convergence of the below
integral to find

(10)  I(f) = / Fy(g)ldgl.
SO4(Q)\SO4(A)

(11) — / f(xg) | ldgla.
504(Q\SO4(4) % xe%(:Q
U(i)gp#0
(12) — [(0)a(SOy) + / 3 S feng)ldgla.
SO4(@\S04(A) jeq  4e50,,(Q)\S0,(Q)
U(i)g0
(13) — FO)(80) + Y / F(vig)ldgls,
icQ  7S0u; (@\SOq(4)
Ui)g#0
(14) — )50+ 30 / ( / f(vihg)|9(vi-g)!A> dhl,,
5 Json,@nso., U()a
Ui)g#0
(15) — 000+ 3 79(S0,,) / £(0)16ia.
iEQ Ui)A
U(i)g#0
(16) — H(0)7g(80) +2 3 / )16,
i€Q U(i)a
U(i)o#0
(17) — F(0)m(SO,) +2Z/ )6
i€Q

Some explanation for the above manipulations:

11)) Follows from knowing the orbits under the action of SO4(Q) on V(Q) (see [Proposition 135)).

12)) From where we have a bijection U(i)g = SO, (Q) \ SO4(Q)

13) Because SO4(Q) is discrete in SO4(A), one can take the integral over SO,, (Q) \ SO4(A).

14)) Follows from @ in

15) Because f(v;g) is left SO,, (A)-invariant.

16) From the description of SO,, in|Proposition 137} by inductive hypothesis, we know ¢ (SO,,) =
2 for all i € Q and all 0 # v; € U(i)q.
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By the Hasse principle, if U(i)g = 0 then U(i)s = 0. Hence, we can take the sum over all
i€ Q.
We know that 79(SO,) is finite and we can also show that

converges absolutely, meaning the integral

/ Fr(g)ldg|a
SOg(Q)\SOq(A)
is defined.

12.4. Using Fourier transform and Poisson summation formula. With the same notation
as in the previous subsection, in this subsection we will prove the following lemma

Lemma 138. For f € §(V(A)), we have

3 / )6 =S / F(0) expa(g(@)2)|dv]a,

zeQ z€Q

where |dv|a is the Tamagawa measure on V(A) = A™.

Proof. We first define a continuous map ¢ on A by

o5(1) 32/ f16i]a-
U(i)a
By using from [§ 12.2.3) we find that the Fourier transform of ¢y is

e / 61(3) expa (y2)|dyla,

:/ </ fepr(ix)]d9i|A> |dila,
A \JU(i)a

= f(v) expy(q(v))[dv]a.

V(A)

From this, we can deduce Poisson summation formula for ¢ (one needs to check certain analytic
conditions of ¢5 in order to have the Poisson summation formula, we refer to [Wei65, Proposition
1,2] or [Igu78, Chapter 4] for more details on this), giving

S op@) = 65(x)

zeQ zeQ

This proves the lemma. O
Lemma 139. Fort € A*, we define fiy(x) := f(at). Then

I(fe) = It 1(fi1)-
In particular, letting t = 1, we obtain I(f) = I(f).

Proof. For f € §(V(A)), let x be a unitary character on A such that the bilinear map x(q(z,v))
defines an isomorphism between V' (A) and its Pontryagin dual and such that the discrete subgroup
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V(Q) of V(A) is identified with the unitary characters on V(Q)\V(A) via z — (y — x(q¢(z,y))).
With this choice, we can consider the ‘twisted” Fourier transform of f to be

= / f(@)x(q(z,y))|dz|a,
V(A)

where |dz|s is the Tamagawa measure on V(A). With this respect to this Fourier transform, the
Tamagawa measure is self-dual, giving us the Fourier inversion formula

/ Fla)x@@,p)\dzla

and the Poisson summation formula. For any g € GL(V(A)), we have ¢(zg,y) = ¢(z,yg"). There-
fore, letting fy(z) := f(zg), we find

folz) = Fyg)x(a(z,y))ldyla,

V(A)
— | det(g)];" / F)x(ale,yg ™)) ldyl,
— | det(g)[; / Fw)x(a@g™, y)ldyls
V(A)
= | det(g) ;! Fzg ™).

By applying the Poisson summation formula for f,, we find

> flag) =|det(g)l;" D Flag™

zeV(Q) zeV(Q)

For t € A*, we have

I(f =/ f(zgt) | |dg|a,
(%) SO4(A)\ SO4(4) Z l9sla

zeV(Q)
— i | (0gt™) | Idgla
SOq(A)\ SOq4(A) mg(:@)
= [t[i"I(fi1).
d
12.5. Final touch. From [Lemma 138 and [§ 12.3] we obtain the following identity
1= | S flag) | ldals = FO)ra(S0) +23 [ f(v)expy(a(v)a)ldvla,
S04(Q\SOq(4) \ zev (@) zeQ V(A)

for any f € 8(V(A)). This is referred to as the Siegel formula for the orthogonal groups ([Wei65,

[gu78,Mar66]).
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From [Lemma 139, we know I(f;) = ]t!&"[(ftﬂ), yielding
I(fy) = [t I(fi),

= [t[," f(0)7a(SOg) + 2|t Z/ F(t o) expy (g(v)z)|dvla,
z€eQ

= [t],"f(0)7a(SOg) +2 Y f(v) expy (q(v)t*e)|dv]a + 2£(0).
egx V)

One can show that the sum over Q* converges to 0 if |t| — co. Hence, we find

|1‘1m I(ft) = 2/(0).

On the other hand, we also have

1= 1000 +2 5 [ s

zeQX U(i)a

The above equality follows from [§ 12.3| and from our analysis of measure |0y|4 on U(0)4.
One can show that the sum over Q* in the above equation is O([t|™") for any positive integer
N as |t| = oo (see [Mar66, p. 136]). Thus, we have

Jim 1(£) = F(0)0(S0y).

This concludes the proof that 7¢(SO,) = 2, as desired.

)\l + [H2T / £(0)1fol.
U(0)a
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13. TAMAGAWA NUMBER OVER FUNCTION FIELDS

The goal of this section is to describe the Tamagawa number of a simply connected semisimple
group G over function field of a curve over F, as a weight count on Bung(X).

Throughout this section, we will denote by X to be a smooth projective curve over F, and by G
a smooth affine group scheme over X.

13.1. Function fields. In this section, we aim to describe P! over a field k as a smooth, projective,
geometrically connected algebraic curve. We then define the function field kp1 of P! and completions
of kpl .

The projective k-scheme P} := Proj k[xg, 1] can be described as follows:

(1) The points of P! consist of homogeneous prime ideals of the Z-graded ring k[zo, 21] E

(2) For a homogeneous polynomial of positive degree f € klxi,x2], let D(f) be the set of
homogeneous prime ideals of k[x,z1] not containing f. These sets form a basis of open
sets for P'. Furthermore, one can think of D(f) as Spec(k[zo, z1]f)o, the spectrum of the
algebra of elements in k[xo, 1] having degree 0. For example, one can identify D(x;) with
the affine scheme Spec k[x/;, ¥1/3]/(2;/; — 1), where z;/; is identified with z;/x;.

(3) The structure sheaf of P! is obtained by giving D(f) the structure sheaf of Spec(k[zo, z1] £ )o-
In particular, Op1 (D(x0)) = k[z1/0], Op1(D(x1)) = k[z¢/1] and the gluing of the structure
sheaves on D(zo) N D(z1) = D(xoz1) is obtained by sending z/; — 71 o.

Being an integral scheme (i.e. Op1(U) is an integral domain for every nonempty subset U of P1),
P! has a generic point 1 (i.e. a point that is dense in P!), corresponding to the homogeneous prime
ideal (0) in k[zo,z1] (because every open set D(f) contains (0)). The stalk Opi , of P! at 7, and
hence the residue field k(n), is noncanonically isomorphic to k(7" (i.e. if we view 7 as an element
of Speck[zg/1] < P!, its stalk is then k[zg/1]0) = k(zo/1)). We denote this as kpi and call it the
function field of P' over k.

Proposition 140. Closed points of P! are in bijection with completions of kp:.

Proof. A point in P! is closed if it is closed in each open set D(z;) of P!. Furthermore, a point
in an affine scheme Spec A is closed if it corresponds to a maximal ideal in A, and the maximal
ideals of k[z] are in bijection with monic irreducible polynomials in k[z]. Thus, closed points of P!
corresponds to homogeneous polynomials Q(zo,71) € k[zo, 1] so that either Q(zg/1,1) is monic
irreducible in xq/; or Q(1,z1/y) is monic irreducible in zy .

For a closed point 2 € P! corresponding to a homogeneous polynomial Q(xg, 1) € k[zq, 1], the
stalk Op1, of P! at x is k[%/l](@(xo/l,l)) = k[$1/0](Q(1,x1/0))~ The residue field k(z) at = is then
noncanonically isomorphic to k[t]/(Q(t,1)), which is a finite extension of k. We denote by O, the
completion of the local ring Op:1 ,, then O is a complete discrete valuation ring with residue field
k(z), noncanonically isomorphic to the power series ring x(x)[[t]]. Let k, be the fraction field of
Oz. We find that k, is a completion of kp1. ]

13.2. Integral model. Let Gg be a linear algebraic group over kx.

Definition 141. An integral model of Gy is an affine and smooth group scheme 7w : G — X whose
generic ﬁberlﬂ is isomorphic to Gy.

Evample 142. An integral model SLy — P! for SLy can be obtained by base change SLy =
SLo XSpecIqul-

16
1

an ideal of k[zo, z1] is homogeneous if it is generated by homogeneous polynomials

Ti.e. let 1 be a generic point of X then we have a morphism Spec k() — Spec Ox . — X, giving us the generic fiber
G x x Spec k(n) as a scheme over x(n)
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Given such a group scheme, for every commutative ring R equipped with a map u : Spec(R) — X,
we can associate a group G(R). If u factors through the generic point n of X, we can equip R with
the structure of kx-algebra via u, and G(R) can be identified with Go(R). A choice of integral
model gives additional structures:

(1) For each closed point z € X, we have a morphism Spec O, — SpecOx, — X EL SO we can
consider the group G(0,) of O,-valued points of G.

(2) For a closed point € X, we have a morphism Speck(z) — SpecOx, — X, so we
can consider the group G(k(z)) of k(x)-valued point of G. We have a surjective map
G(0;) — G(k(x)) because G is smoothlﬁ

(3) For a finite set S of closed points of X, we have a morphism Spec Ai — X so we can consider
the group G(A%) of AS-valued point of G. It is an open subgroup of G(Ax) = Go(Ax)
and as Spec A‘)g( = [ g Speck, x ngs Spec Oy, G(A*;() is isomorphic to the direct product
[locs G(ka) x Ha:QS G(0g).

13.3. Adelic uniformation of G-bundles. In this section, we will describe the set of isomorphism
classes of G-bundles in terms of a double quotient space.

Definition 143. Let Y be a X-scheme. A G-bundle onY is a Y -scheme P equipped with an action

of Gy == G xx Y given by Gy xy P = G xx P — P which is locally trivial in the following sense:

there exists an open immersion U — Y and a Gy -equivariant isomorphism U Xy P 2 U Xy Gy.
Let Bung(Y') be the groupoid of G-bundles on'Y whose morphism are isomorphims of G-bundles.

For a G-bundle P on X and an open covering U — X, we denote by P|y the pullback of P along
U— X.

Theorem 144 (Adelic uniformisation theorem). Let X be an algebraic curve over Fy, and G be a
smooth affine group scheme over X. Assume that the fibers of G are connected and that the generic
fiber of G is semisimple and simply connected. Then

(a) There is a bijection between the double quotient

Gkx)\G(Ax)/G(AY)
and the set of isomorphism classes of G-bundles on X, sending v € G(Ax) to a G-bundle
P,.
(b) For~ € G(Ax) then the automorphism group of Py corresponds to elements in v G (kx)yN
G(A%).

Following |GL19, §1.3.2|, we attempt to give a sketch for the proof of this theorem. We first
remark that we have defined G-bundles in terms of the Zariski topology. However, as far as we are
aware, one needs G-bundles in flat/etale topology for this result to hold. Due to our ignorance in
this topic, we will pretend that we know what ‘flat/etale topology’ means and accept any results
about G-bundles in ‘flat/etale topology’ which are used in the below proof of the theorem.

Sketch. For convenience, for x € X, we denote D, = Spec O, and D} = Speck,.

An element v € G(Ax) can be identified with (v, € G(kz))zex where v, € G(O,) for all but a
set S of finitely many closed points of X. Hence, by Beauville-Laszlo theorem on gluing G-bundles,
there exists a G-bundle P, on X such that

18For example, let X = SpecZ, a prime number in Z corresponds to a closed point of X, we find Ox , = Z,) is a
local ring with maximal ideal mx , = pZ(,). The completion of Ox ;, with respect to this maximal ideal is O = Z,.
Thus, we have Z — Z,) — Zy, giving us Spec O, — SpecOx, — X
199moothness implies a condition on the Jacobian of the local coordinates at a point, and by a generalisation of
Hensel’s lifting lemma, we have surjectivity. For more details, see p.20 of See Weil’s book Adeles and Algebraic
Groups
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(1) Py is trivialised over U = X — S via some ¢ : G xx U = P,|y.

(2) For each x € S, Py is trivialised over D, via 9, : G X x D, = Py|p,.

(3) As D} — D, and D} — U, the two trivialisations are glued together on Speck, by v, €
G(k;) for z € S. In other words, the map

(18) Gk 2% (D3, Ploy) 1% Gk

is given by sending 1 — 7.
Note that the definition of P, is independent of the choice of S, as long as S contains all points x
50 7y & G(O,).

Conversely, considering a G-bundle €, we will show that there exists 7 € G(Ax) such that
€ = P,. Because the fibers of GG are connected, by a theorem of Lang, for each closed point € X,
the bundle € is trivial over Spec(x(x)). Because G is smooth over X, € is also smooth over X. By
Hensel’s lemma, any trivialisation of P over Spec(k(x)) can be extended to a trivialisation of P
over Spec(0Q;). This implies € is trivial over Spec(k,) for any € X. Therefore, by a theorem of
Harder, as the generic fiber of GG is connected, semisimple and simply connected, € is trivial over
the generic point. By a direct limit argument, € is trivial over some open subset U C X.

Let S be the set of closed points of X that are not contained in U. We know that & is trivial
over U and over D, for all z € S. By the previous construction, the gluing data gives us an element
7€ G(Ax),s0 E=P,.

Thus, we have constructed a surjective map G(Ax) — | Bung(X)| sending v — P,.

Finally, we identify when P is isomorphic to P, for 7,7 € G(Ax). Both are trivialised at
the generic point, implying the isomorphism Py |specky = P./|specky corresponds to an element in
Aut(G x x Speckx), corresponding to an element o € G(kx). In particular, we have

I(Spec kx, P,) ¢—> Glhx) < Glhx) 25 D(Speckx, P.y),

where ¢, : G X x Speckx — Py |specky and ¢y : G xx Speckx = Py|specky are trivialisations of
P, and P, over Speckx, respectively.

A trivialisation at the generic point induces a trivialisation over some open set U of X. Let S
be a set of closed points not contained in U. We know P, and P,/ are also trivialised over D, for
z € S. Arguing similarly, P,|p, = P./|p, corresponds to an element 3, € G(0) for all z € S. In
particular, for x € S, we have

x i Yot 2
(D, P) 225 G(0,) 222 G(0,) 225 T(D,, Py)
Lastly, we know the gluing data of trivialisations of P, over U and over D, for x € S comes from
Yz € G(ky), i.e. (18). Similarly for 4. Thus, by combining everything, we find

v lay =[] 8" € GAR).

vES

Thus, an element in v 1G(kx)y' N G(Ag() defines an isomorphism between P, and P, uniquely.
We are done. n

13.4. Tamagawa number in terms of G-bundles. Let X be an algebraic curve over F,; and kx

be the function field of X. Let Gy be a connected semisimple simply connected linear algebraic

group. In this section, we will give a formula for the Tamagawa number of Gy in terms of G-bundles.

Let 7 : G — X be an integral model of G (such an integral model always exists), let ¢/ x be the

relative cotangent bundle of . Then €7,y := A" Q¢ x is aline bundle on G, where n = dim(G).

Let £ be the pullback of QF, G/x along the identity section e : X — (. Sections of £ can be
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identified with left-invariant differential forms on G via the canonical isomorphism 7*£ = (% /X

(see [BLR90, p. 100]). Let Lo := Speckx xx £ be the generic fiber of £, whose global sections
form a 1-dimensional kx-vector space. A non-zero global section w of £y can be viewed as a global
left-invariant nowhere-vanishing algebraic differential form on Gg. For every closed point z € X, w
induces a left-invariant Haar measure dpy, , on G(k;).

For an invertible sheaf £ of Ox-modules and a nonzero global section w of its generic fiber £y,
one can associate a divisor on X as follows. For a closed point x € X, we consider the stalk £, C L
at x, which is a Oz-module of rank 1 inside a 1-dimensional kx-vector space. Then wQ, is also a
rank 1 Oz-submodule of L£g. Let t, € O, be a uniformiser element then w0, = t;"*L, for some
integer n,. We define v,(w) := n, to be the order of vanishing of w at x.

Lemma 145. For every closed point x € X, We have

Nw,x(G(om)) = m’

where v, (w) € Z denotes the order of vanishing of w at x.

Sketch. If we view w as a left-invariant differential form on G(k;) via the isomorphism 7*£ =
Q% )x vz (w) can be described as follows. At the neighborhood U of the identity e of G(k;), w

can be written as w = f(t)dt; A --- A dt, where ty,...,t, are the local coordinates at e, and

f:U — k, is an invertible rational function. Then f(e)O, = t; * (w)(‘)x. In other words, the image
of wle) € N"T¥(G(0,)) under A" T.(G(O,)) generates a fractional ideal p~+®) of k,. Because
w is left-invariant so for any g € G(0O,), the image of w(g) € A" T, (G(0;)) under A" Ty(G(0y))

generates the fractional ideal p~%»() of k,. In other words, under new local coordinates v, ..., yn
at the neighborhood of g € G(0,), we have w = f'(y)dyi A- - - Ady,, where f’ is a rational function so

that f/'(¢)0, = t;vm(w)(‘)m. By the definition of Weil measure, we then find that tgz(w)w defines the
Weil measure on G(0O,), or w defines a measure |r(x)| =) yyweq on G(O,). Thus, by [Theorem 87

we find
o (G(O4)) = ()]~ pwea (G0.)) = W -

From [§ 5.5.3| the Tamagawa measure pg, x of G(Ax) = Go(Ax) is
q(l—g)n H/:U’WJ'
zeX
where g is the genus of X. We also have
H ‘/i(l’)’v”(w) _ H qdeg(x)vw(w) _ quEX deg(z)ve(w) qdegL _ qdegQG/X_
zeX zeX
Here deg(x) := [k(x) : Fy], deg £ := ) deg(z)v,(w) where the sum is over all closed points
of X m, deg L = deg{lg,/x = n because of the isomorphism 74 = (2, /X Thus, combining with
the previous lemma, we find
0 _ n(l—g)—deg(Qg,x) |G(K($)|
naox (G(AY)) =q / N
: JISrET
given that the above infinite product converges.
20this does not depend on the choice of w because for any two nonzero global sections w and w’ of £, there exists a

nowhere-vanishing function f € Ox(X) so w = fw’, and one can show > . v, (f)deg(x) = 0.
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Proposition 146. Let X be an algebraic curve of genus g over a finite field Fy, and let G be a
smooth affine group scheme of dimension n over X. Suppose that the fibers of G are connected and
that the generic fiber of G is semisimple and simply connected. Then the Tamagawa number of G
equals

T (Q) = g0~ D Hes@e0) T |G (w(2))| 3 1

d s
zeX ‘/i(.%‘)’ PeBung(X) ’Aut(P)’

given that the right-hand side converges.

Proof. For each z € G(k‘x)\G(AX)/G(Ag)(), denote by O, the inverse image of z under the projection
from G(kx)\G(Ax). Thus, we have

Ty (G) = Z 1k (Oz).
2€G(kx)\G(Ax)/G(A%)

Let v € G(Ax) lie in the preimage of z, then the preimage of O, under the projection from G(Ax)

1S
|_| ayG(A%).
a€Gkx )G (AL )y

Note that G(kx) N ’yG(A%)’yfl is a finite group because it is the intersection of a discrete and a
compact group. It follows that

_ peky (%)
|G (kx) NYG(A% )y

Thus, combining with the previous theorem, we find

1
mix (6) = Taux (GAR) D0
PeBung(X)

We are done. n

ke iy (02)
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