
1 DEFINITION OF RING Toan Quang Pham

1 Definition of Ring

Example 1.0.1. For an abelian group G, then the group EndAb(G) of endomorphisms of G is a ring,
under the operations of addition and composition. y

Example 1.0.2. Ring R is called Boolean if a2 = a for all a ∈ R. Boolean ring is commutative and has
characteristic 2. The power set ring P(S) is an example of Boolean ring (exercise III.3.15). y

1.1 Exercises

1. (1.1) We have a · 0 = a(0 + 0) = a · 0 + a · 0 which implies a · 0 = 0 for all a ∈ R. Hence,
0 = a · 0 = a · 1 = a so a = 0 for all a ∈ R. Thus, if 1 = 0 in R then R is the zero ring.

2. (1.2) (Example of ring) For set S, let P(S) be a power set of S. Define operations on P(S):

A + B := (A ∪ B) (A ∩ B), A · B := A ∩ B

Then (P(S),+, ·) is a commutative ring.

3. (1.3) (Example of ring) Let R be a ring, and let S be any set. The following operations endow
RS, set of set-functions S→ R, into a ring:

( f + g)(a) = f (a) + g(a), ( f g)(a) = f (a)g(a).

4. (1.4) Since tr(A)tr(B) 6= tr(AB) so sln(R) and sln(R) are not rings.

son(R) is not a ring since A =

(
0 −a
a 0

)
∈ son(R) but A2 =

(
−a2 0

0 −a2

)
6∈ son(R).

5. (1.5) Let a = [2]6, b = [3]6 then ab = 0 in Z/6Z but a + b = [5]6 s not zero-divisor.

6. (1.6) If an = 0, bm = 0 then (a + b)m+n = ∑m+n
k=0 (m+n

k )akbm+n−k. If k ≤ n then m + n− k ≥ m so
bm+n−k = 0 for k ≤ n. If k > n then ak = 0. Thus, (a + b)m+n = 0.

Note that we need ab = ba for the identity to hold.

7. (1.7) [m] nilpotent in Z/nZ iff mk divisible by n for some k ∈ N iff m is divisible by all prime
factors of n.

8. (1.8) We have x1 = 1 =⇒ (x− 1)(x + 1) = 0 by distributive property. If integral domain then
this implies either x = 1 or x = −1, exactly 2 solutions. If in nonintegral domain such as Z/8Z

then x = [1]8, [3]8, [7]8.

9. (1.9) Not hard.

10. (1.10) If right-unit a has two left-inverses b1 6= b2 then a is not left-zero-divisor since if ax = 0
implies x = (b1a)x = b1(ax) = 0. a is right-zero-divisor since (b1 − b2)a = 0 and b1 − b2 6= 0.

11. (1.11) (1, 0) · (0, 1) = (1, 1), (0, 1)2 = (1, 0) and (1, 0)2 = (0, 1).

12. (1.12) A division ring shoe elements of the form a + bi + cj + dk.

13. (1.13) Not hard.

14. (1.14) Let the leading coefficient of f , g be a, b with a, b 6= 0 then the leading coefficient of f g is
ab 6= 0 since R is an integral domain.
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1 DEFINITION OF RING Toan Quang Pham

15. (1.15) Since R is isomorphic to a subring of R[x] so if R is not integral domain then so is R[x].
Conversely, if R integral domain, we show that every polynomial of degree at least 1 is not
a zero-divisor. Indeed, we proceed by induction on deg f = n. Let f (x) = h(x) + axn with
deg h < n then if f g = 0 we can obtain a = 0 to get back to inductive hypothesis.

16. (1.16) (Ring of power series)

(i) If a0 + a1x+ · · · is unit in R[[x]] then there exists b0 + b1x+ · · · such that (a0 + a1x+ · · · )(b0 +
b1x + · · · ) = 1. This follows a0b0 = 1 or a0 is a unit. We also have ∑i+j=k aibj = 0 so bk =
1
a0

∑k
i=1(−aibk−i). This proves the claim. In parituclar, inverse of 1− x is 1 + x + · · ·

(ii) As R is a subring of R[[x]] so if R not an integral domain then so is R[[x]]. If R is a integral
domain, consider (a0 + a1x + · · · )(b0 + b1x + · · · ) = 0 then a0b0 = 0. As R is integral domain,
either a0 = 0 or b0 = 0. However, WLOG, if a0 6= 0 then f (x) = a0 + a1x + · · · is a unit
according to 1, which implies b0 + b1x + · · · = 0, as desired. Thus, if a0 = b0 = 0, similarly, we
can proceed to obtain ai = bi = 0 (or else one of f , g must be 0). This proves that R[[x]] is an
integral domain.

17. (1.17) A polynomial f (x) = ∑ aixi can be viewed as element ∑ ai · i of monoid ring R[N].
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2 THE CATEGORY RING Toan Quang Pham

2 The category Ring

Examples of ring homomorphisms

Example 2.0.1. Let R be a ring. EndAb(R) is a ring of endomorphisms of R underlying the group
(R,+). For r ∈ R, defined left- and right-multiplication by r by λr, µr, respectively. That is, ∀a ∈ R

λr(a) = ra, µr(a) = ar

Then the function r 7→ λr is an injective ring homomorphism λ : R → EndAb(R). Similarly, the map
r 7→ µr is also an injective ring homomorphism. y

Example 2.0.2. The inclusion map ι : Z→ Q is a ring homomorphism. [Exercise III.2.12] y

2.1 Exercises

1. (2.1) Since every ring homomorphism sends 0 to 0 so we are done.

2. (2.2) If ϕ surjective then exists a ∈ R such that ϕ(a) = 1S. This follows ϕ(1R) = ϕ(1R)ϕ(a) =
ϕ(a) so ϕ(1R) = 1S.

If ϕ 6= 0 and S an integral domain, there exists b ∈ R, c ∈ S, c 6= 0 such that ϕ(b) = c. This
follows c = ϕ(b) = ϕ(1R)ϕ(b) = ϕ(1R)c which implies (1S − ϕ(1R))c = 0. Since S integral
domain and c 6= 0 so this follows ϕ(1R) = 1S.

3. (2.3) The ring P(S) is isomorphic to (Z/2Z)S by the map ϕ : P(S) → (Z/2Z)S defined as
A 7→ fA where A ⊆ S and fA(x) = 1 if x ∈ A and fA(x) = 0 otherwise.

4. (2.4) There are injective ring homomorphism H→ gl4(R) and H→ gl2(C):

a + bi + cj + dk 7→


a b c d
−b a −d c
−c d a −b
−d −c b a

 , a + bi + cj + dk 7→
(

a + bi c + di
−c + di a− bi

)
.

5. (2.5) The function from the multiplicative group H∗ of nonzero quartenions to the multiplicative
group R+ of positive real numbers, defined by assinging to each nonzero quartenion its norm,
is a group homomorphism. The kernel of this homomorphism is isomorphic to SU2(C).’ Kernel
of ϕ consists of a+ bi+ cj+ dk ∈H∗ such that a2 + b2 + c2 + d2 = 1. From exercise II.6.3, SU2(C)

are
(

a + bi c + di
−c + di a− bi

)
such that a2 + b2 + c2 + d2 = 1. This suggests obvious isomorphism from

kerϕ to SU2(C).

6. (2.6) A map ϕ : R[x] → S extending ϕ : R → S and sending x ∈ R[x] to s while preserving
mutiplication and addition is unique since

ϕ

(
n

∑
i=1

aixi

)
=

n

∑
i=1

ϕ(ai)si.

The map is a ring homomorphism since ϕ is a ring homomorphism and s commutes with ϕ(r)
for all r ∈ R, which explains

ϕ
(
∑ aixi

) (
∑ bjxj

)
= ϕ

(
∑ aixi

)
ϕ
(
∑ bjxj

)
.
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2 THE CATEGORY RING Toan Quang Pham

7. (2.7) Distinguish between concepts of ’polynomial’ and ’polynomial function’ well distinct.

8. (2.8) Obvious.

9. (2.9) The center of a ring R is a subring of R. Center of a division ring is a field.

10. (2.10) The centralizer of a ∈ R consists of elements r ∈ R such that ar = ra.

Centralizer of a is a subring of R, for every a ∈ R. Indeed, denote such set as Za. We have
1R ∈ Za. If a, b ∈ Za then (a − b)r = ar − br = ra − rb = r(a − b) so Za is a subgroup of Z.
Furthermore, (ab)r = a(rb) = (ra)b = r(ab) so Za subring of R.

Center of R is the intersection of all its centrelizers. This is not hard.

Every centralizer in a division ring is a division ring. Indeed, for r ∈ Za then ar = ra =⇒
rar−1 = a =⇒ ar−1 = r−1a so r−1 ∈ Za. Thus, Za is a division ring.

11. (2.11) Division ring R of p2 elements, where p prime, is commutative. Indeed, if R is not
commutative, then its center C (exercise 2.9) is a proper subring of R, which means C is a proper
subgroup of R so |C| = p.

Let r ∈ R, r 6∈ C then centerlizer Zr of r (exercise 2.10) contains both r and C. This follows
|Zr| > p. However, Zr is also a subgroup of R so |Zr| divides p2. Hence, |Zr| = p2 or Zr = R.
As this is true for all r 6∈ C, we can easily show that every r 6∈ C commutes in R, which means
r ∈ C, a contradiction. Thus, R must be commute.

12. (2.12) Given homomorphism ϕ : R → S then cokerϕ is an initial object in the category of
homomorphism α : S→ T such that α ◦ ϕ = 0.

R S T

cokerϕ

ϕ

0

α

∃!α

In category Ab there R, S, T are abelian group then cokerϕ ∼= S/imϕ. In category Ring, as
every ring is also abelian group under + and ring homomorphism also group homomorphism,
cokerϕ is also S/imϕ with multiplication defined (s1 + imϕ)(s2 + imϕ) = s1s2 + imϕ.

For ϕ = ι : Z ↪→ Q then cokerι = Q/Z.

13. (2.13) Not hard. The componentwise product R1 × R2 of two rings satisfies the universal prop-
erty for products in category Ring.

14. (2.14) Let’s first draw out the diagram for coproduct:

Z[x]

Z[x1, x2] S

Z[x]

π1

f1

ϕ

π2

f2
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2 THE CATEGORY RING Toan Quang Pham

Observe that ring homomorphism f1 : Z[x] → S is completely determined by f1(x). Similarly,
f2 : Z[x] → S is determined by f2(x) and ϕ : Z[x1, x2] → S determined by ϕ(x1) and ϕ(x2).
Hence, this suggests ϕ(x1) = f1(x) and ϕ(x2) = f2(x). Since we are in the the category of
commutative ring so this definition makes ϕ into a ring homomorphism (as one can commute
ϕ(x1) and ϕ(x2) to satisfy the product property of ring).

The diagram also suggests that π1 : Z[x]→ Z[x1, x2] by x 7→ x1 and π2 defined similarly. With
π1, π2 defined as this, the uniqueness of ϕ is obtained from the commutativity of the diagram.

15. (2.15) There exists many different ways to give a structure of ring without identity to the group
(Z,+):

One views (mZ,+, ·) as "ring without identity" then ·means multiplication in Z, i.e. (mn1)(mn2) =
m(mn1n2).

Note ϕ : Z→ mZ as n 7→ mn is a group isomorphism. One can use this to transfer the structure
of ’ring without identity’ (mZ,+, ·) back onto Z: ϕ−1(mn1 · mn2) = ϕ−1(mn1) • ϕ−1(mn2) so
mn1n2 = n1 • n2. This induces multiplication • in Z as a • b = mab. With this, (Z,+, •) is a ring
without identity.

For different m, the structures of Z are nonisomorphic as ’rings without 1’. Indeed, if we have
a ring homomorphism ϕ : (Z,+, •m) → (Z,+•n) then by addition property of ring, we have
ϕ(x) = xϕ(1). On the other, by using multiplication, we have ϕ(1 •m 1) = ϕ(1) •n ϕ(1) so
mϕ(1) = nϕ(1)2. If ϕ is bijective then ϕ(1) 6= 0 so m = nϕ(1). Since m, n > 1 so if ϕ(1) 6= 1
then ϕ is not surjective, i.e. for any x ∈ Z, gcd(x, ϕ(1)) = 1 then there does not exist ϕ(y) = x.
Thus, (Z,+, •m) not isomorphic to (Z,+, •n) for different m, n.

16. (2.16) There exists (up to isomorphism) only one structure of ring with identity on the group
(Z,+):

Let R be a ring whose underlying group is Z. By proposition 2.7, there is injective ring homo-
morphism λ : R→ EndAb(R) mapping r ∈ R to left-multiplication λr : R→ R by r.

Proposition 2.6, we know that EndAb(R) ∼= Z as rings. Hence, it suffices to show λ is surjective:
For any ϕ ∈ EndAb(R), if ϕ(1) = r then ϕ(n) = ϕ(1)n = rn so ϕ = λr = λ(r). Thus, λ is indeed
surjective and therefore, R ∼= Z as rings.

17. (2.17) Let R be a ring, and E = EndAb(R) be ring of Endomorphisms of underlying abelian
group (R,+). Prove center of E isomorphic to a subring of center of R.

Denote ZR, ZE centers of R, E, respectively. From proposition 2.7, there exists injective ring
homomorphism λ : R → E defined as r 7→ λr where λr : R → R is left-multiplication by r.
Since λ is injective so λ−1 (restricting to image of λ) is a well-defined ring homomorphism.
Hence, it suffices to show λ−1(ZE) ⊆ ZR.

For α ∈ ZE then α commutes with right-multiplication µr ∈ E by r. We have (α ◦ µr)(x) =
(µr ◦ α)(x) for every r, x ∈ R. This follows α(xr) = α(x)r and by letting x = 1 then α(r) = α(1)r
so α is essentially left-multiplication by α(1). Hence, λ−1(α) = α(1). Thus, λ−1(ZE) ⊆ ZR.

18. (2.18) Not hard.

19. (2.19) For positive integer n then EndAb(Z/nZ) ∼= Z/nZ as rings. Us exrcise 2.7, it suffices to
show λ : Z/nZ → EndAb(Z/nZ) is surjective. For ϕ ∈ EndAb(Z/nZ) then ϕ(a) = ϕ(1)a so
ϕ = λϕ(1). Thus, λ is indeed surjective.

5
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3 Ideals and quotient rings

Example 3.0.1. If J is two sided ideal ofMn(R), a ring of n× n matrices over ring R. Then

1. (Exercise III.3.5) A matrix A ∈ Mn(R) belongs to J if and only if the matrices obtained by
placing any entry of A in any position, and 0 elsewhere, belong to J.

2. If I set of (1, 1)-entries of matrices in J. Then I is two-sided ideal of R and J consists of those
matrices whose entries all in I.

One can use these two properties to show thatMn(F) is simple (exercise III.3.9). y

Example 3.0.2. Let S be a set and T ⊆ S. Subsets of S contained in T form an ideal P(T) of the
power set ring P(S).

If S finite, then every ideal of P(S) is of this form. This is not true for the case S is infinite
(exercise III.3.16). y

Example 3.0.3. Let R be a commutative ring. Then set of nilpotent elements of R is ideal of R. The
ideal N is called nilradical of R. This is not true if R is noncommutative (exercise III.3.12).

Then R/N contains no nozero nilpotent elements (such ring is said to be reduced). y

3.1 Exercises

1. (3.1) im ϕ is a subring of S since 1S ∈ im ϕ and for ϕ(a), ϕ(b) ∈ im ϕ then ϕ(a) − ϕ(b) =
ϕ(a− b) ∈ im ϕ and ϕ(a)ϕ(b) = ϕ(ab) ∈ im ϕ.

If im ϕ is ideal of S but 1S ∈ im ϕ so S = im ϕ so ϕ is surjective.

If ker ϕ is subring of R then 1R ∈ ker ϕ and since ker ϕ is ideal of R so R = ker ϕ or ϕ = 0.

2. (3.2) For ring homomorphism ϕ : R → S and ideal J of S then I = ϕ−1(J) is an ideal of
R. Indeed, for r ∈ R then ϕ(rI) = ϕ(r)ϕ(I) = ϕ(r)J ⊆ J since J ideal of S. This follows
rI ⊆ ϕ−1(J) = I. Similarly, Ir ⊆ I. Thus, I ideal of R.

3. (3.3) For ring homomorphism ϕ : R→ S and ideal J of R.

ϕ(J) need not be ideal of S. Indeed, consider the inclusion ι : Z → Q then ι(nZ) = nZ is not
ideal in Q.

However, if ϕ is surjective then ϕ(J) is ideal of S. Indeed, for any s ∈ S, there exists r ∈ R such
that ϕ(r) = s. This follows sϕ(J) = ϕ(rJ) ⊆ ϕ(J) as rJ ⊆ J. Similarly, ϕ(J)s ⊆ ϕ(J).

For surjective ϕ, I = ker ϕ then we can identify S with R/I through the isomorphism r + I 7→
ϕ(r). Let ϕ(J) can be identified as an ideal J of R/I by previous argument. In fact, J = (I + J)/I.
Therefore,

R/I
J
∼=

R/I
(J + I)/J

∼=
R

I + J

by Third Isomorphism theorem.

4. (3.4) Consider unique ring homomorphism ϕ : Z → R defined as a 7→ a · 1R then im ϕ is
a subgroup of R so it is an ideal of R. From exercise III.3.1, ϕ is surjective and therefore
R = im ϕ ∼= Z/ ker ϕ = Z/nZ where n charactieristic of R.

5. (3.5) Let Ea,b be n× n matrix that has 1 at (a, b)-entry and 0 everywhere else. Then n× n matrix
A then (m, n)-th entry of Em,a AEb,n is (a, b)-th entry of A and 0 everywhere else.

Hence, if A in a two-sided ideal J ofMn(R) then Em,a AEb,n ∈ J, as desired.
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6. (3.6) J two-sided ideal of ringMn(R) and I ∈ R set of all (1, 1)-entries of matrices in J then I is
two-sided ideal of R. From previous exericse III.3.5, if x is (1, 1)-entry of some matrix in J theny · · · 0

...
. . .

...
0 · · · 0

 ∈ J. For any y ∈ R then

x · · · 0
...

. . .
...

0 · · · 0


y · · · 0

...
. . .

...
0 · · · 0

 =

xy · · · 0
...

. . .
...

0 · · · 0

 ∈ J so

therefore, xy ∈ I for any x ∈ I, y ∈ R. Similarly, yx ∈ I for any x ∈ I, y ∈ R. Furthermore, I is
obviously a subgroup of R so therefore, I is a two-sided ideal of R.
Next, we show J consists precisely of matrices whose entries all belong to I. For matrix A =

(ai,j) ∈ J then from previous exercise III.3.5,

ai,j · · · 0
...

. . .
...

0 · · · 0

 ∈ J and therefore, ai,j ∈ I. This

follows every entry of A is in I for every A ∈ J.
Conversely, consider a matrix A = (ai,j) whose entries are in I, we want to show that A ∈
J. Indeed, from previous exercise III.3.5, A can be written as A = ∑i,j Ei,1(ai,jE1,1)E1,j where
ai,jE1,1 ∈ J by exercise III.3.5. Therefore, as J is two-sided ideal ofMn(R) so indeed, A ∈ J.

7. (3.7) Ra left-ideal of R and aR is right-ideal of R. Also, a is left-, resp. right-, unit if and only if
R = aR.

8. (3.8) A ring R is a division ring if and only if its only left-ideals and right-ideals are {0} and R.
Indeed, if R is division ring and has left-ideal I. Then either I = {0} or there exists a 6= 0, a ∈ I
which then implies 1 = a−1a ∈ I and hence, I = R. The argument is similar with right-ideal of
R.
Conversely, if the only left- and right- ideals of R are {0} and R, then from exercise III.3.7, as
Ra left-ideal of R then either Ra = {0}, which means a = 0, or Ra = R, which means a has
left-unit. Similarly, either a = 0 or a has right-unit. This follows R is a division ring.

9. (3.9) A nonzero ring such that its only two-sided ideals are {0} and R is called simple. And
Mn(R) is simple.
Indeed, if J two-sided ideal ofMn(R) then let I ⊆ R set of (1, 1)-entries of matrices in T. From
exercise III.3.6, if I = {0} then J = {On×n}. On the other hand, if a ∈ I, a 6= 0 then since I is a
two-sided ideal of a field R, we find I = R. This implies J =Mn(R).
Thus, the only two-sided ideals ofMn(R) can be only {0n×n} orMn(R). This is also true for
ring of n× n matrices over any field k.

10. (3.10) Let ϕ : k → R is a ring homomorphism where k is a field and R is a nonzero ring. Then
ϕ is injective.
Indeed, if u ∈ ker ϕ, u 6= 0 then as ker ϕ is ideal of k, we obtain 1 ∈ ker ϕ and hence, ker ϕ = R,
which is not ring homomorphism since ϕ(1k) 6= 1R. Hence, ker ϕ = {0k} and so ϕ is injective.

11. (3.11) Let R be a ring containing C as subring. Then there are no ring homomorphism R → R.
Indeed, it suffices to show there is no ring homomorphism from C to R. Indeed, if there is such
ring homomorphism ϕ : C → R. then ϕ(i)2 = ϕ(i2) = ϕ(−1) = −ϕ(1) = −1 so ϕ(i)2 = −1, a
contradiction since ϕ(i) ∈ R.

12. (3.12) Let R be a commutative ring. Then set of nilpotent elements of R is ideal of R. The ideal
is called nilradical of R. Let such set be I(R). If a, b ∈ I(R). then an = 0, bm = 0 for some positive
integer m, n. Hence, due to commutativity of R, we have

(a + b)m+n =
m+n

∑
k=0

(
m + n

k

)
akbm+n−k = 0

7
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Hence, I(R) is an abelian group. Furthermore, for r ∈ R, a ∈ I(R) such that an = 0 then
(ra)n = rnan = 0 so ra ∈ I(R). Thus, I(R) is an ideal of R.

The case is not true when R is noncommutative, i.e. there exists noncommutative ring with set
of nilpotent elements not forming an ideal: M3(R) has two nilpotents

A =

1 −1 0
1 −1 0
0 0 0

 , B =

0 0 0
0 1 −1
0 1 −1


while (A + B)3 = −(A + B) so A + B is not nilpotent.

13. (3.13) Let R commutative ring, N be its nilradical then R/N contains nonzero nilpotent elements
(called reduced). Indeed, if R/N has nilpotent element r + N then (r + N)n = 0 or rn + N = 0 or
rn nilpotent or r nilpotent or r + N = N. Hence, every nonzero element in R/N is not nilpotent.

14. (3.14) Let R be an integral domain with charactieristic n then either n = 0 or n is a prime. If R
has nonzero characteristic n and n is composite number, there exist a, b ≥ 2 such that n = ab.
This follows 0 = n · 1R = (a · 1R)(b · 1R). As R is integral domain so either a · 1R = 0 or b · 1R = 0.
This leads to a contradiction due to definition of characteristic of R.

15. (3.15) Ring R is called Boolean if a2 = a for all a ∈ R. Then P(S) is Boolean, for every set S.
Indeed, A2 = A ∩ A = A for every A ∈P(S).

Boolean ring R is commutative and has characteric 2. Indeed, we have (a + a)2 = a + a implies
4a = 2a as a2 = a so 2a = 0. Thus, R is characteristic 2. On the other hand, we have (a + b)2 =
a+ b implies ab+ ba = 0 as a2 = a, b2 = a. However, as 2ab = 0 so ab = ba, so R is commutative.

If an integral domain R is Boolean then R ∼= Z/2Z. Indeed, a2 = a implies a(a − 1) = 0 so
a = 1 or a = 0 as R is integral domain. Therefore, R = {0, 1} ∼= Z/2Z.

16. (3.16) (i) Let S be a set and T ⊆ S. Prove that subsets of S contained in T form an ideal
of the power set ring P(S). Indeed, denote such set to be P(T) then for A, B ⊆ T then
A + B = (A ∪ B) \ (A ∩ B) ⊆ T and A + A = ∅ ⊆ T. Hence, P(T) is a subgroup of (P(S),+).

For C ⊆ S and A ∈ P(T) then CA = C ∩ A ⊆ A ⊆ T so CA ∈ S(T). Similarly, AC ∈ P(T).
Thus, P(T) is an ideal of P(S).

(ii) If S finite, then every ideal of P(S) is of the form in (i). Let J be an ideal of P(S) then
there exists T ∈ J with maximal number of elements comparing to other sets in J .

We show that P(T) = J . Indeed, for any K ⊆ T, since T ∈ J so KT ∈ J or K = K ∩ T =
KT ∈ J . Hence, any subset of T is in J . This follows P(T) ⊆ J .

Next, we show J ⊆P(T). Indeed, if there exists T′ ∈ J such that T′ 6∈P(T). Then note that
(T′ + T) ∩ (TT′) = ∅ so (T′ + T) + TT′ = T ∪ T′. As T, T′ ∈ J so T ∪ T′ = T′ + T + TT′ ∈ J .
But |T ∪ T′| > |T|, a contradiction to maximality of |T| in J . Thus, every set in J must be
subset of T, as desired.

(iii) For infinite S, there exists ideal of S that is not of the form in (i). Let T be an infinite subset
of S then an ideal I of P(S) is the set of all finite subsets of T.

Indeed, if I is obviously a subgroup of P(S). For S′ ⊆ S, I′ ∈ I then S′ I′ = I′ ∩ S′ ⊆ I′ so
S′ I′ ∈ I . Thus, I is indeed an ideal of P(S) and I is not of the form in (i).

17. (3.17) J/(I ∩ J) ∼= (I + J)/I by mapping J → R/I where j 7→ j + I.
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4 Ideals and quotients: Remarks and examples, Primes and maxi-
mal ideals

Definition 4.0.1. A commutative ring R is Noetherian if every ideal of R is finitely generated.

Definition 4.0.2. An integral domain R is a Principal Ideal Domain (PID) if every ideal of R is principal.

4.1 Exercises

1. (4.1) For family of ideals {Iα}α∈A of ring R then

∑
α∈A

Iα =

{
∑

α∈A
: rα ∈ Iαand rα = 0 for all fbut finitely many α

}

is the smallest ideal containing all of ideals Iα. Indeed, we have

r

(
∑

α∈A
rα

)
= ∑

α∈A
rrα ∈ ∑

α∈A
Iα.

and hence, ∑α∈A Iα is indeed an ideal of R. It is obviously the smallest ideal satisfying the
condition.

2. (4.2) Homomorphic image of a Noetherian ring is Noetherian. Indeed, if ϕ : R→ S is surjective
ring homomorphism and R is Noetherian, we show that S is Noetherian.

Indeed, for ideal of I of S then ϕ−1(I) ideal of R (exercise III.3.2). Since R Noetherian so the
ideal ϕ−1(I) of R is finitely generated, i.e. ϕ−1(I) = (a1, . . . , an) for ai ∈ R. This follows
ϕ(ai) ∈ I for all 1 ≤ i ≤ n and hence (ϕ(a1), . . . , ϕ(an)) ⊆ I.

For every i ∈ I then there exists r ∈ ϕ−1(I) such that i = ϕ(r) = ϕ(r1a1 + . . . + rnan) =
∑n

j=1 ϕ(rj)ϕ(aj) ∈ (ϕ(a1), . . . , ϕ(an)).

Thus, I is finitely generated and therfore, S is indeed Noetherian.

3. (4.3) Ideal of (2, x) of Z[x] is not principal. Indeed, suppose if (2, x) is generated by h(x) ∈ Z[x].
Then h(x) divides 2 and x, which implies h(x) does not exist.

4. (4.4) If k is field then k[x] is a PID.

Let I ⊆ k[x] be an ideal of k[x]. If I is nonzero then there exists a nonzero monic polynomial
f (x) (possible since k is a field) with minimal degree in I. For any g(x) ∈ I, there exists
q(x), r(x) ∈ k[x] such that g(x) = f (x)q(x) + r(x) with 0 ≤ deg r < deg f . Since g, f ∈ I so
r(x) ∈ I but as 0 ≤ deg r < deg f so r(x) = 0 or g(x) = f (x)q(x). This implies I = ( f (x)) or I
is finitely generated, as desired.

5. (4.5) For ideals I, J in commutative ring R such that I + J = (1) then I J = I ∩ J.

For any ideals I, J of R then I J ⊆ I ∩ J since any i ∈ I, j ∈ J then ij ∈ I ∩ J, which means the
ideal I J generated by ij is also in I ∩ J.

We use the condition I + J = (1) to show I ∩ J ⊆ I J. There exists, i ∈ I, j ∈ J such that i + j = 1.
Hence, for any ` ∈ I ∩ J then ` = ` · 1 = i`+ `j ∈ I J. Therefore, I ∩ J ⊆ I J, as desired.

6. (4.6) For ideals I, J in commutative ring, if R/(I J) is reduced then I J = I ∩ J. We know that
I J ⊆ I ∩ J so it suffices to show I ∩ J ⊆ I J. Indeed, for ` ∈ I ∩ J then `2 ∈ I J so (`+ I J)2 = I J.
However, since R/(I J) is reduced so ` ∈ I J. Thus, I ∩ I ⊆ I J, desired.

9
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7. (4.7) For a field k then every nonzero ideal in k[x] is generated by a unique monic polynomial.
Indeed, from exercise III.4.4, for any nonzero ideal I of k[x], there exists at least one monic
polynomial (with minimal degree in I) that generates I. Hence, it suffices to prove uniqueness.
If f1, f2 be two monic polynomials of minimal degree in I that generates I then f1 − f2 ∈ I but
deg( f1 − f2) < deg f1 so this happens only when f1 = f2, as desired.

8. (4.8) For ring R and f (x) ∈ R[x] a monic polynomial then f (x) is not a (left- or right-) zero-
divisor. Indeed, if f (x)g(x) = 0 then the leading coefficient of f g is the leading coefficient of g
(as f is monic) and hence, g = 0. Thus, f is not a left-zero-divisor.

9. (4.9) (Generalise exercise III.4.8) For commutative ring R and f zero-divisor in R[x] then there
exists b ∈ R, b 6= 0 such that f (x)b = 0.

Let f (x) = ∑n
i=0 aixi be zero-divisor of R[x] then there exists g(x) = ∑m

i=0 bixi ∈ R[x] such that
f (x)g(x) = 0. Suppose g is of minimal degree, i.e. if h ∈ R[x] and f h = 0 then deg g ≤ deg h.

We will show that f (x)bm = 0 by inductively showing that akbm = 0 on k ≤ n.

Note that [xm+n]( f g) = anbm = 0 so deg(an · g(x)) < deg g(x). Furthermore, f (x)(an · g(x)) = 0
so due to minimality of deg g, we obtain ang(x) = 0.

Note that if we know an−ig(x) = 0 for all 0 ≤ i ≤ k− 1 then

0 = [xn−k+m]( f g) = ∑
n≥i≥n−k

aibn−k+m−i = an−kbm

With the same argument as the case k = 0, we obtain that an−kg(x) = 0. Indcutively, we obtain
aibm = 0 for all 0 ≤ i ≤ n so f (x)bm = 0 and bm 6= 0, bm ∈ R, as desired.

10. (4.10) Q(
√

d) := {a + b
√

d : a, b ∈ Q} is a subring of C. Furthermore, Q(
√

d) is a field an in fact
the smallest subfield of C containing both Q and

√
d.

Consider the function ϕ : Q[t] → Q(
√

d) defined as f (t) 7→ f (
√

d) then ϕ is a ring homomor-
phism with ker ϕ = (x2 − d) so Q(

√
d) ∼= Q[t]/(x2 − d).

11. (4.11) For commutative ring R, a ∈ R and f1(x), . . . , fr(x) ∈ R[x]. Then as fi(x) = (x− a)hi(x)+
fi(a) for all 1 ≤ i ≤ r so

( f1(x), . . . , fr(x), x− a) = ( f1(a), . . . , fr(a), x− a).

Define ϕ : R[x] → R
( f1(a),..., fr(a)) as f (x) 7→ f (a) + ( f1(a), . . . , fr(a)) then ϕ is a surjective ring

homomorphism. We will calculate ker ϕ. Indeed, if f (x) ∈ ker ϕ then f (a) ∈ ( f1(a), . . . , fr(a))
or f (a) = ∑r

i=1 h1 f1(a) for hi ∈ R. This follows f (x) = (x − a)h(x) + f (a) = (x − a)h(x) +
∑r

i=1 h1 f1(a) so f (x) ∈ (x − a, f1(a), . . . , f1(a)) = ( f1(x), . . . , fr(x), x − a). Therefore, ker ϕ =
( f1(x), . . . , fr(x), x− a). As a result, we obtain

R[x]
( f1(x), f2(x), . . . , fr(x), x− a)

∼=
R

f1(a), . . . , fr(a)
.

12. (4.12) For commutative ring R and a1, . . . , an ∈ R, define the map ϕ : R[x1, . . . , xn]→ R defined
as f (x1, . . . , xn) 7→ f (a1, . . . , an). ϕ is obviously a surjective ring homomorphism. We will go
and find ker ϕ. If f (x1, . . . , xn) ∈ ker ϕ then f (a1, . . . , an) = 0. View f as a polynomial over one
variable x1 then there exists q1(x1, . . . , xn), r1(0, x2, . . . , xn) ∈ R[x1, . . . , xn] such that

f1(x1, . . . , xn) = (x1 − a1)q1(x1, . . . , xn) + r1(0, x2, . . . , xn).

10
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Then r1(0, x2, . . . , xn) ∈ R[x2, . . . , xn] and we can repeat the same process to conclude that
f ∈ (x1 − a1, x2 − a2, . . . , xn − an). Hence, ker ϕ = (x1 − a1, . . . , xn − an) and we obtain

R[x1, . . . , xn]

(x1 − a1, x2 − a2, . . . , xn − an)
∼= R.

13. (4.13) If R is an integral domain then from exercise III.4.12, we have R[x1,...,xn ]
(x1,...,xn)

is an integral
domain so (x1, . . . , xn) is prime ideal of R[x1, . . . , xn].

14. (4.14) Show maximal ideal is prime without using quotient rings. Indeed, if I is maximal ideal
of ring R. For any ab ∈ I, suppose a 6∈ I, then I ⊂ I + (a) but as I is maximal, we must have
I + (a) = R. Hence, there exists x ∈ I, y ∈ R such that x + ay = 1 =⇒ b = bx + bay ∈ I (as R
is commutative so ab = ba ∈ I and also x ∈ I). Thus, for any a, b ∈ R so ab ∈ I then either a ∈ I
or b ∈ I, which makes I a prime ideal of R.

15. (4.15) For ring homorphism ϕ : R → S of commutative rings, I ⊆ S an ideal. If I is prime in S
then ϕ−1(I) is a prime ideal in R. We know ϕ−1(I) is an ideal of R (exercise III.3.2) so it suffices
to show ϕ−1(I) is prime. Indeed, if a, b ∈ R such that ab ∈ ϕ−1(I) then ϕ(ab) ∈ I so as I is
primes, either ϕ(a) ∈ I or ϕ(b) ∈ I. Thus, either a ∈ ϕ−1(I) or b ∈ ϕ−1(I), as desired.

11
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5 Modules over a ring

5.1 Submodules and quotients

Definition 5.1.1 (Submodules). A submodule N of an R-module M is subgroup preserved by the action
of R. That is, for all r ∈ R, n ∈ N then rn (defined by the R-module structure of M) is in N. Put
otherwise, N is itself an R-module, and the inclusion N ⊆ M is an R-module homomorphism. 1

Example 5.1.2. We can view R it self as a (left-)R-module. The submodule of R are precisely the
(left-)ideas of R.

Indeed, recall
algchap0
[1, Exp III.5.6] that the left-action on N is ρ(r, s) = rs for all r, s ∈ R. Hence, with

n ∈ N, submodule N of R must satisfies ρ(r, n) = rn ∈ N for any r ∈ R, i.e. rN ⊆ N. Thus, N is a
left-ideal on R. y

Example 5.1.3. Both the kernel and the image of a homomorphism ϕ : M → M′ of R-modules are
submodules (of M, M′, respectively).

Indeed, if s ∈ kerϕ then ϕ(rs) = rϕ(s) = r0M = 0M so rs ∈ kerϕ. If s = ϕ(t) ∈ imϕ then
rs = rϕ(t) = ϕ(rt) ∈ imϕ. y

Example 5.1.4. If r is in center of R and M an R-module then rM = {rm : m ∈ M} is a submodule of
M. If I is any ideal of R then IM = {∑i rimi : ri ∈ I, mi ∈ M} is a submodule of M.

Indeed, the first part is obvious since for any r′ ∈ R we have r′(rm) = (r′r)m = (rr′)m = r(r′m) ∈
rM. For the second part, we have r (∑i rimi) = ∑i r(rimi) = ∑i(rrimi) ∈ IM since rri ∈ I. y

Remark 5.1.5 (Turn M/N into an R-module). As mentioned in
algchap0
[1, §III.5.3], one can define an action

of R on M/N by r(m + N) := rm + N to turn M/N into a R-module. Note that we need N to be
submodule of M (instead of just an abelian group) in order for the above action to make sense, i.e.
r(N) = N.

1

Why these two definitions are equivalent. Let ρn, ρm be left-action on N, M, respectively. Let σ : N → M be the inclusion map and
also R-module homomorphism. Then for r ∈ R, n ∈ N we have ρn(r, n) = σ(ρn(r, n)) = ρm(r, σ(n)) = ρm(r, n). This concludes
action on M is preserved in N.
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6 Products, coproducts, etc., in R-Mod

6.1 Products and coproducts

6.2 Kernals and cokernels

6.3 Free modules and free algebras

Proposition 6.3.1. R[A] is a free commutative R-algebra on the set A.

Proof. Elaborate.

Remark 6.3.2. The proof for free modules and free commutative algebras are different because, unlike
R⊕A whose elements can be written uniquely as finite sum ∑a∈A ra j(a), not every element of R[A]
can be written as ∑a∈A raxa.

6.4 Submodule generated by a subset; Noetherian modules

The module M is finitely generated if M = 〈A〉 for a finite set A.

6.5 Finitely generated vs. finite type

In this subsection, R, S are commutative rings.

Proof of ’finite’ =⇒ ’finite type’. We want to show that if commutative ring S is finite as an R-module
over finite set A = {1, 2, . . . , n} then S is a finite-type R-algebra over A. From previous sections, S is
finite generated as an R-module if

S = 〈A〉 =
{

∑
1≤i≤n

rii|ri 6= 0 for only finitely many elements i ∈ A

}
,

where 〈A〉 is the submodule generated by A in S, or the image of onto homomorphism of R-modules
R⊕A � S.

Now, going back to our unique homomorphism of R-algebras ϕ : R[A]→ S which sends ji := xi to
i for 1 ≤ i ≤ n. As an homomorphism of R-module, ϕ sends ∑1≤i≤n ri ji 2 to ∑1≤i≤n rii where ri ∈ R.
Therefore, ϕ is surjective homomorphism of R-algebras, which means S is a finite-type R-algebras
over A.

Remark 6.5.1. Perhaps the motivation (or maybe a cleaner proof) for the above proof is to notice that
there is an injection (homomorphism of R-modules) R⊕A ↪→ R[A] sending ki ∈ R⊕A (ki(i) = 1 and
ki(l) = 0 for l 6= i) to ji := xi ∈ R[A], which can be seen in following diagram

R⊕A

S

R[A]

And perhaps why the converse is not true because there reverse map R[A] → R⊕A cannot be in-
jective(?) since "size of R[A] is much bigger than of R⊕A"(?). Don’t have words to describe this
yet.

2Note that ri ji does not mean rixi ∈ R[A] but rather ri ji is the result when we see R[A] as an R-module, i.e. ri ji = (σ(ri))(ji)
where σ is a left-action of R on R[A]. With this then ϕ(ri ji) = ri ϕ(ji) = rii as ϕ is an homomorphism of R-modules.
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Example 6.5.2. The polynomial ring R[x] is a finite-type R-algebra, but it is not finite as an R-module.
y
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7 Complexes and homology

Example 7.0.1. A complex

· · · 0 L M · · ·α

is exact at L iff α monomorphism. y

7.1 Exercises

1. (7.1) Complex

· · · 0 M 0 · · ·α β

is exact. Since α a R-module homomorphism so it is also group homomorphism so imα = {0}.
Since the complex is exact at M so imα = ker β but ker β = M so M = 0.

2. (7.2) Complex

· · · 0 M M′ 0 · · ·α

is exact then M ∼= M. Indeed, exactness at M implies α is injective and at M′ implie α is
surjective. Thus, α is a R-module isomorphism so M ∼= M′.

3. (7.3) The complex

· · · 0 L M M′ N 0 · · ·α ϕ β

is exact then up to natural identifications, L = ker ϕ and N = cokerϕ. Indeed, exactness at L
implies α is injective so one can view L as submodule of M, or L ∼= imα. Exactness at M implies
ker ϕ = imα ∼= L, as desired.

Exactness at N implies β is surjective so by cannonical decompositions of β, we have N = imβ ∼=
M′/ ker β. On the other hand, due to exactness at M′ so ker β = imϕ so N ∼= M′/imϕ = cokerϕ.

4. (7.4) Construct short exact sequence of Z-modules

0 Z⊕N Z⊕N Z 0

and
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