
1 FUNCTIONS BETWEEN SETS Toan Quang Pham

1 Functions between sets

1.1 Injections, surjections, bijections
Different way to see injections, surjections, bijections. One is our usual way: Function f : A → B is
injective if a 6= a′ =⇒ f (a) 6= f (a′); f is surjective if for all b ∈ B, there exists a ∈ A so f (a) = b (or
in other words, im f = B. Injections are often drawn ↪→, surjections are often drawn �. If f is both
injective and surjective then f is bijective.

The second viewpoint: For A 6= ∅ then f is injective when f has left-inverse (i.e. exists g : B→ A
so g ◦ f = idA, f is injective when f has right-inverse (i.e. exists g : B→ A so f ◦ g = idB). Thus, f is
bijection iff it has a two-sided inverse.

The previous definition of injective and surjective maps relied crucially on working di-
rectly with the elements of our sets. However, the second viewpoint shows that in fact
these properties are detected by the way functions are ’organized’ among sets. Even if
we did not know what ’elements’ means, still we could make sense of the notions of in-
jectivity and surjectivity (and hence of isomorphisms of sets) by exclusively referring to
properties of functions.

Third viewpoint: Function f is a monomorphism if for all sets Z and all functions α, α′ : Z → A if
f ◦ α = f ◦ α′ then α = α′. One can show f is injective iff it is a monomorphism. Similar thing can be
said for epimorphism and surjection.

1.2 Canonical decomposition
The reason why we focus our attention on injective and surjective maps is that they provide the basic
’bricks’ out of which any function may be constructed.

Observe every function f : A → B determines an equivalence relation ∼ on A: for all a, a′ ∈ A
then a∼a′ ⇐⇒ f (a) = f (a′).

Theorem 1.2.1. Let f : A → B be any function, and define ∼ as above. Then f decomposes as
follows:

A

f

&&
// // (A/∼) ∼

∼
f

// im f �
�

// B

where the first function is the canonical projection A→ A/∼ (mapping elements to its equivalence

class), the third function is the inclusion im f ⊆ B, and the bijection
∼
f in the middle is defined as

∼
f ([a]∼) := f (a) for all a ∈ A.

Remark 1.2.2 (From the book). While its proof is trivial, this is a result of some importance, since it
is the prototype of a situation that will occur several times in this book. It will resurface every now
and then, with names such as ’the first isomorphism theorem’.
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2 CATEGORIES Toan Quang Pham

2 Categories

2.1 Exercises

2.1.1 Aluffi Algebra chapter 0

1. (3.9) For A, B in MSet with equivalence relations ∼,∼′ respectively, recall A/∼ and B/∼′ (def-
inition 1.2.) denote set of equivalence classes of A, B with respect to ∼, respectively. We will
define morphisms in HomMSet(A, B) as follow: f is a morphism from A to B if x∼y in A then
f (x)∼′ f (y) in B.

We check that this defines a category MSet. Indeed, identity for each A exists and is the same
as identity in Set. Composition for two morphisms is also the same as in Set and the resulting
morphism is indeed belongs to MSet. ...

This category MSet has Set as full subcategory. Indeed, consider sets with equivalence relation
∼ such that each equivalence class contains exactly one element in the set. Such sets in MSet
are objects in Set.

Each object in MSet corresponds to an ordinary multiset as defined in §2.2.

2. (3.10) Since the objects of a category C are not (necessarily) sets, it is not clear how to make
sense of a notion of ’subobject’ in general. In some situations it does make sense to talk about
subobjects, and the subobjects of any given object A in C are in one-to-one correspondence with
the morphisms A→ Ω for a fixed, special object Ω of C, called a subobject classifier.

Set has subobject classifier Ω = {0, 1}. Indeed, subobjects of A in Set is subsets of A. A subset
B of A corresponds to morphism f : A→ {0, 1} such that f (B) = 0.
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3 MORPHISMS Toan Quang Pham

3 Morphisms
monomorphism,epimorphism, isomorphism, automorphism, groupoid.

Remark 3.0.1 (Example 4.10). In Set, a function is an isomorphism iff it is both injective and surjective.
But in other categories, this property is not true, i.e. a morphism being both a monomorphism and
an epimorphism does not imply that it is an isomorphism.

In Set a function is an epimorphism, that is, surjective, iff it has right-inverse. This may fail in
general category such as Grp.

3.1 Exercises
1. (4.1) Consider a choice of composing fn · · · f1. If with ( and ), our choice can be written as

h(g f ) where h, g, f are compositions of morphisms fi then by associativity, we can rewrite this
as (hg) f . Induction on n essentially.

2. (4.2) If such category is a groupoid then the relations must also be symmetric.

3. (4.3) If f has right-inverse g then f ◦ g = idB. For α, α′Hom(Z, A) where Z an object of category
C, if α ◦ f = α′ ◦ f then ...

The converse does not hold, which can be seen by considering category from Example 3.3, i.e.
category from a set endowed with a relation. According to Example 4.10, every morphism in
this category is both monomorphism and epimorphism. However, each morphism (a, b) doesn’t
have to have a right-inverse (b, a).

4. (4.4) One cannot define such subcategory Cnonmono because f , g being nonmonophism does not
imply f ◦ g begin nonmonophism.

5. (4.5) We will show that monomorphism in MSet is essentially monomorphism in Set.

One can first see homomorphisms in MSet as a set-function from A/∼ of object (A,∼) to
B/∼′ of object (B,∼′) where ∼,∼′ are equivalence relations. Therefore, if f ∈ Hom(A, B) is a
monomorphism in MSet then the corresponding set-function g : A/∼ → B/∼′ must also be a
monomorphism. In other words, if x, y ∈ A and x is not related to y then f (x) 6= f (y).

Next, consider object (Z,∼′′) of MSet such that a∼′′b for all a, b ∈ Z. Consider homomorphisms
α, α′ ∈ Hom(Z, A) such that f ◦ α = f ◦ α′ and that images of α, α′ are both subsets of some
equivalence class T in A. This brings us back to see α, α′ as set-function from Z to T and f as
a set-function from T to f (T). If f is an monomorphism so for all such α, α′, we obtain α = α′.
This is equivalent to f as monomorphism on equivalence class T of A in category Set. Since
the choice of equivalence class T of A is arbitrary, we obtain that monomorphism in MSet is the
same as monomorphism in Set, that is, injective.

One can also show that epimorphism in MSet is the same as surjection (or epimorphism) in Set.
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4 UNIVERSAL PROPERTIES Toan Quang Pham

4 Universal properties
A endowed with B: add extra conditions B to A. For example, Z endowed with relations ≤.

induced?

4.1 Exercises
1. (5.1) Not hard.

2. (5.2) Not hard.

3. (5.3) Similar to proof of Proposition 5.4.

4. (5.4) Initial or Final objects in the category of ’pointed set’ is set with exactly one element.

5. (5.5) Obviously function f : A→ Z where Z is any one-element set.

6. (5.6) Call such category C. Consider two arbitrary numbers a, b in Z+ and if we can show that
Ca,b has final objects then that means this category has products.

An object in Ca,b is the diagram:
a

d

??

��
b

where d | a, b. One would guess that the final object for this category is when d = gcd(a, b) and
it is indeed true. Similarly, initial objects for Ca,b is lcm(a, b) with two natural morphisms from
a, b to d.

7. (5.7) Any A ä B satisfies a universal property so it is well-defined up to isomorphism.

8. (5.8) Huh ? For any category, A× B is defined (if exists) to satisfy universal property for product
of A and B. How would one define B× A?

9. (5.9) A× B× C is final objects in category CA,B,C containing objects:

A

Z

??

��

// B

C

We will show that (A× B)× C also satisfies this universal property. Indeed, for any object Z
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4 UNIVERSAL PROPERTIES Toan Quang Pham

and morphisms
A

Z

fA

??

fC ��

fB
// B

C

we know there exists a unique morphism fA×B : Z → A× B according to the universal property
of A× B such that the diagram

A

Z
fA×B
//

fA
22

fB ,,

A× B

<<

""
B

commutes. Consider the universal property of (A × B) × C, we know there exists a unique
morphism σ from Z → (A× B)× C such that the diagram

A× B

Z σ//

fA×B
22

fC --

(A× B)× C

88

&& C

commutes. From this, we know that σ is the unique morphism from Z → (A× B)× C such
that the diagram

A

Z σ//

fA
11

fC --

fB

55(A× B)× C

99

%%

// B

C

commutes. Similarly, one can also show A × (B × C) satisfies the same universal property,
which according to Proposition 5.4, we conclude the two objects are isomorphic in CA,B,C and
according to our definition of morphism in this category CA×B×C, we find that two objects
(A× B)× C and A× (B× C) are isomorphic in C.

10. (5.10) Similar to universal property in Exercise 5.9. Such coproducts and products exist in Set,
and they are what we expect them to be.

11. (5.11) (a) Relation ∼ on A× B is an equivalence relation so (A× B)/∼ satisfies the universal
property for quotients. Note that A × B → A → A/∼A also belongs to this category since
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4 UNIVERSAL PROPERTIES Toan Quang Pham

equivalent elements in A × B have the same image in A/∼A. Since (A × B)/∼ is an initial
object of this category so there exists a unique function σA : (A× B)/∼ → A/∼A such that the
following diagram commutes

(A× B)/∼ A/∼A

A× B

σA

In particular σA sends (a1, b1) 7→ a1. Similarly, we also find a function σB : (A× B)/∼ → A/∼A.

(b) To show that (A × B)/∼ with σA, σB satisfies the universal property for the product of
A/∼A and B/∼B, for any set Z and functions fA : Z → A/∼A and fB : Z → B/∼B, we need to
construct a unique morphism σ : Z → (A× B)/∼ such that the following diagram commutes

A/∼A

Z (A× B)/∼

B/∼B

fA

fB

σ

σA

σB

Indeed, for z ∈ Z, pick a ∈ A so the equivalent class of a in A is fA(z) and we do similar
thing with b ∈ B. With that, we let σ(z) = (a, b) ∈ (A × B)/∼. Note that σ is well-defined
and it makes the above diagram commuting. Furthermore, this definition is forced by the
commutativity of the diagram so σ is unique.

(c) (A × B)/∼ ∼= A/∼A × B/∼B is true from (b) and from the fact that all final objects in a
category are isomorphic to each other (Proposition 5.4).

12. (5.12) We find the fibered products in Cα,β, i.e. terminal objects of this category. Let’s go to find
final object 1 of Cα,β first. Our final object is the following commutative diagram

A

F C

B

αfA

fB β

(4.1.1) pic:I.5.12_1

such that for any object G in Cα,β
2 then there exist a unique morphism σ : G → F such that the

following diagram commutes

A

G F C

B

α
σ

gA

gB

fA

fB β

(4.1.2) pic:I.5.12_2

1One would guess this is final object not initial object because category CA,B has final object and Cα,β is a fibered version of
CA×B.

2The object should be a commutative diagram but we write this for convenience. Look at the next diagram to spot such
object.
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4 UNIVERSAL PROPERTIES Toan Quang Pham

Similar universal property can be defined for fibered coproducts of Cα,β. The initial object of this
category is a commutative diagram

A

F C

B

fA α

βfB

(4.1.3) pic:I.5.12_3

whose universal property involves following commutative diagram

A

G F C

B

fA

gA

σ
α

βfB

gB

(4.1.4) pic:I.5.12_4

Next, we will go and find fibered product and fibered coproduct in Set. For fibered product in
Setα,β then F = {(a, b) : a ∈ A, b ∈ B, α(a) = β(b)} where fA : (a, b) 7→ a and fB : (a, b) 7→ b.
Checking this definition then one can see the diagram

pic:I.5.12_1pic:I.5.12_1
4.1.1 does indeed commutes. Next, we try

to find morphism σ for any object G as in diagram
pic:I.5.12_2pic:I.5.12_2
4.1.2. For x ∈ G, let σ(G) = (gA(x), gB(x))

then fA ◦ σ = gA and fB ◦ σ = gB so the diagram
pic:I.5.12_2pic:I.5.12_2
4.1.2 commutes. Note σ is unique since it is

forced by the commutativity of the diagram.

Next, we find the fibered coproducts of Setα,β: In order for the diagram
pic:I.5.12_3pic:I.5.12_3
4.1.3 to be commutative,

one should observe:

(a) We want to define fA on A but we only need to set up conditions for α(C) ⊆ A to achieve
a commutative diagram. Hence, for simplicity, one would guess fA(A \ α(C)) is a copy of
A \ α(C) in F that has nothing to do with fB(B) ⊆ F. Similar thing can be said for B \ β(C).

(b) The only case left is when C → α(C)→ F and C → β(B)→ F. We want these two to match
up and ends up at F. It is obvious that one should set up fA, fB so fA(α(c)) = fB(β(c)).
Note that if we have c1, c2 ∈ C such that α(c1) = α(c2) then this forces fB to fB(β(c1)) =
fB(β(c2)). This suggests us to define an equivalence relation ∼ on C such that

c1∼c2 ⇐⇒ α(c1) = α(c2) or β(c1) = β(c2).

With this, we can let fA : ϕ(c)→ [c]∼ ∈ C/∼ and fB : β(c)→ [c]∼ ∈ C/∼.

In general, we choose F = (C/∼)ä(A \ α(C))ä(B \ β(C)) and choose fA, fB as describe above.
This guarantees that

pic:I.5.12_3pic:I.5.12_3
4.1.3 is a commutative diagram.

Next, to show such object satisfies the universal property for fibered coproducts as in diagrampic:I.5.12_4pic:I.5.12_4
4.1.4, we define σ as follow:

(a) If [c]∼ ∈ (C/∼) ⊆ F then σ([c]∼) = gA(α(c)) = gB(α(c)) (the last equal sign is given since
G with gA, gB is an object of Setα,β). This condiiton shows that gA = σ fA when restricting
the domain to α(C) and gB = σ fB when restricting the domain to β(C).

(b) If a ∈ A \ α(C) then σ(a) = gA(a). Similarly, if b ∈ B \ α(C) then σ(b) = gB(b). This
guarantees that (gA)|A\α(C) = (σ fA)|A\α(C) and gB = σ fB when restricting the domain to
B \ β(C).

In general, σ is defined so gA = σ fA and gB = σ fB which implies commutativity of diagrampic:I.5.12_4pic:I.5.12_4
4.1.4. Furthermore, σ is unique on F since it is defined so gA = σ fA and gB = σ fB and we know
that one can arrive to any element in F using either fA or fB.
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4 UNIVERSAL PROPERTIES Toan Quang Pham

Question 4.1.1. Does there exist a category such that it has (finite) products but it doesn’t have (finite)
coproducts?
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