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Abstract. “So why am I writing this book? Because I recognize that it is imperfect. Were I to
dream it, it would be perfection; the mere fact of writing makes it imperfect, which is why I am
writing it.

And, above all, because I defend the uselessness and the absurd - I am writing this book in order
to give the lie to myself, to betray my own theory.

And the glory of all this, my love, is the thought that perhaps this isn’t true and that perhaps
even I don’t believe it to be true.

And when the lie begins to give us pleasure, let us speak the truth in order to lie the lie. And
when it causes us anxiety, let us stop, so that suffering neither dignifies us nor brings us some kind
of perverse pleasure ... ”

“The Book of Disquiet”, Fernando Pessoa.
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1. June 2021

Something I would like to get done this month:

(1) Learn how much 2-dimensional gauge theory of finite group G tells us about representation
of G. This is firstly motivated by Frobenius formula that Nam showed few months ago,
interpreting number Hom(π1(

∑
), G) as sum over irreducible representations of G where∑

is (closed, compact?) Riemann surface. I then found a ”topological” proof using topo-
logical field theory https://math.berkeley.edu/~qchu/TQFT.pdf and https://upennig.

weebly.com/uploads/7/4/0/3/74037187/2d-tqft.pdf and https://www.math.ru.nl/~mueger/

TQFT/FQ.pdf. In topological field theory language, there is a functor Z from category of
2-cobordisms to category of vector spaces. And in our situation, it sends a manifold M to
Map(BunG(M),C) where BunG(M) is the groupoid of principal G-bundles over M , which
can then be identified with Hom(π1(M), G)/G quotient by conjugation. Roughly in the
proof of Frobenius using TQFT, somehow one can cut and glue M to get the desired for-
mula. The further question is how much Z(M) tells us about representation of G, when
one varies the manifold M .

More to read from: ”Bartlett Categorical aspects of topological quantum field theo-
ries” (arvix); https://arxiv.org/abs/1705.05734v1 and Kock ”Frobenius algebra and
2D topological quantum field theory” https://www.mat.uab.cat/~kock/TQFT/FS.pdf this
has book version; https://golem.ph.utexas.edu/category/2008/06/teleman_on_topological_
constru.html.

One can also ask why we choose BunG(M) as target for our cobordism functor and expect
it to tell something about representations of G. I think this is because one can interpret
representations of G as bundles of some sort (see wikipedia of ”induced representations”).

(2) For my thesis, I am trying to understand certain self-adjoint operator in Langlands’ com-
putation of volume of fundamental domain G(Z) \G(R). I don’t understand this operator
and all and how it is linked to Eisenstein series.

(3) Gauge theory in representation theory, geometric representation theory: https://people.
maths.ox.ac.uk/tillmann/ASPECTSbenzvi.pdf and https://web.ma.utexas.edu/users/

benzvi/GRASP/lectures/NWTFT/nwtft.pdf, also https://ncatlab.org/nlab/files/BenZviGeometricFunctionTheory.
pdf.

Daily learning

02/06/2021 Today I learnt roughly what is a ”rigid symmetric monoidal category” and how cate-
gory of n-dimensional cobordisms nCob is one, following https://arxiv.org/abs/q-alg/

9503002. To explain roughly, ”monoidal” means the category has a product ⊗ operation,
”symmetric” means we have a map a⊗ b→ b⊗ a, ”rigid” means every object x has a dual
object x∗. The main point to take away is that one can visualise the relations/commutative
diagrams in the category via cobordisms, which make it easier to remember. For example,
relations between counit and unit maps is seen as straightening the curve S (see p. 5). For
more examples of this, see p. 21 of https://arxiv.org/pdf/math/0512103v1.pdf.

Another note, on p. 4, it mentions that relations between morphisms in nCob can be
understood using Morse theory, where we can stratify a bordism N (i.e. a n-manifold N)
by giving a Morse function on N to pick up critical points (something relates to handle
decomposition in Morse theory). I see some familiar words like ”stratification” and ”Morse
function” when reading about symplectic geometry, would like to learn more about this at
some point

06/06/2021 I am trying to understand first few sections of https://ncatlab.org/nlab/files/BenZviGeometricFunctionTheory.
pdf (with the hope of getting to know more about https://ncatlab.org/nlab/show/

geometric+infinity-function+theory). Here is what I have so far:
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Given two sets X,Y with a G-action on these two and a G-equivariant map φ : X → Y .
We can pullback to give a map φ∗ of G-equivariant complex-valued functions FunG(Y ) on
Y to that FunG(X) on X. Pushforward φ∗ : FunG(X) → FunG(Y ) is a bit more tricky.
Firstly, it is better to view X,Y as groupoids, then

φ∗ : f ∈ FunG(X) 7→

y 7→ ∑
x∈|φ−1(y)|

f(x)

#Autφ−1(y)(x)

 .

Here |X| refers to isomorphic classes of objects in groupoid X. Note φ−1(y) is also a
groupoid with natural automorphisms. How to come up with this pushforward? What
condition should a good pushforward satisfy? Usually pushforward is very nontrivial to
realise, unlike pullback. Is there a general rule to come up with something like this?

The two are adjoint in following sense: One can define inner product on FunG(X) by

(f, g) =
∑

x∈X
f(x)g(x)
#Aut(x) then φ∗ and φ∗ are adjoint with respect to this inner product. What

is the relation of this with adjointness as functors? Do we have something like Frobenius
reciprocity in representation theory, where adjointness in inner product is the same as ad-
jointness as adjoint functors due to semisimplicity of representations? What constitutes a
good inner product?

Perhaps this would help: https: // golem. ph. utexas. edu/ category/ 2007/ 03/ canonical_
measures_ on_ configur_ 1. html or https: // golem. ph. utexas. edu/ category/ 2011/
09/ universal_ measures. html or https: // golem. ph. utexas. edu/ category/ 2008/

07/ news_ on_ measures_ on_ groupoids. html .

06/06/2021 Regarding item 1, I managed to figure out how to describe ZG( ) : ZG(pt) → ZG(S1)

where N = is a half-phere with boundaries pt (a point) and S1. To do this, start with
the more geometric correspondence

BunG(pt)←− BunG(N) −→ BunG(S1)

obtained by restricting G-bundles to corresponding boundaries (i.e. pull back). This gives
us morphism of groupoids

pt
p←− pt q−→ G/G.

Indeed, N is just a disk so BunG(N) = BunG(pt) = pt, a point with a G action on it. We
know π1(S1) = Z so BunG(S1) = Hom(Z, G)/G = G/G, groupoid with elements in G and
automorphisms are conjugations by G. Then p is the identity map, q sends to the identity
1 in G (as we have group hom π1(S1)→ 1 = π1(N) inducing BunG(N)→ BunG(S1)).

By definition, ZG(N) = HomC(BunG(N),C) so this gives ZG(N) := q∗ ◦ p∗ : ZG(pt) →
ZG(S1). Note ZG(pt) = C, ZG(S1) = Hom(G/G,C) = C[G]G so from pushforward de-
scribed in 06/06/2021 for groupoids, we find ZG(N) sends λ ∈ C to g 7→ λδg,1/|G| in
C[G]G.

A remark: BunG is a geometric object, but doing computation it seems to be easier to
deal with Hom(π1(·), G)/G.

16/06/2021 (Continued from 06/06/2021) It seems the idea of TQFT has been applied to study charac-
ter varieties Hom(π1(

∑
), G) by Angel Gonzalez Prieto in https://arxiv.org/abs/1812.

11575 (his PhD thesis) or https://arxiv.org/abs/1810.09714 (a relevant paper) , http:
//www.mat.ucm.es/~joseag12/investigacion/documentos/SeminarioTesis.pdf (PhD
presentation), http://www.mat.ucm.es/~joseag12/investigacion/documentos/TFMJAngelGonzalez.
pdf (his master thesis),... It seems there are many things unexplored here.

17/06/2021 (Continued from 06/06) Understand most of the computations in https://math.berkeley.

edu/~qchu/TQFT.pdf and https://upennig.weebly.com/uploads/7/4/0/3/74037187/2d-tqft.
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pdf. These two notes present a ”topological” proof of

(1)
# Hom(π1(Γg), G)

|G|
=

1

|G|χ(Γg)

∑
V

(dimV )χ(Γg).

Here G is a finite group, Γg is a closed connected orientable surface of genus g, χ(Γg) is
Euler characteristic of Γg, the sum is over all complex irreducible representions of G.

Here are the main computations:
• ZG( ) : ZG(pt) → ZG(S1). We did this on 06/06/2021. This map sends λ ∈ C =
ZG(pt) to λδg,1/|G|.
• ZG( ) : ZG(S1)→ ZG(pt) sends f ∈ ZG(S1) = C[G]G to f(1).

• ZG
( )

: Z(S1)⊗ Z(S1)→ Z(S1) sends f ⊗ g ∈ C[G]G ⊗ C[G]G to the convolution

product f ∗ g ...

• ZG
( )

: Z(S1)→ Z(S1)⊗ Z(S1)

• ZG(M1 tM ′ M2) = Z(M2) ◦ Z(M1) for surfaces M1,M2 with common boundary M ′.
• As ZG(M) = Map(BunG(M),C) so if M is homotopic to M ′ then ZG(M) = ZG(M ′).

From this, to compute ZG(Γg), it suffices to chop Γg into pieces and compute each piece,
then compose everything together. On the other hand, ZG(Γg) = Hom(π1(Γg), G)/G so we
can obtain (7).

We also have general formula when G is a Lie group (due to Witten 1991) or a quantum
group (Rouchet-Szenes 2000) (I learnt this info from reading the slide https://www2.ist.

ac.at/fileadmin/user_upload/group_pages/hausel/Aarhus07.pdf).
22/06/2021 (Things I would like to understand in a far way future) In this paper https://arxiv.

org/pdf/1511.06271.pdf of Michael Groechenig claimed to give a generalisation to Weil’s
description of correspondence between groupoid of vector bundles on algebraic curve X
(defined over algebraically closed field) and groupoid of the double quotient.

My impression of adeles is that it seems to be the right notion to study analysis on moduli
space of bundles?

22/06/2021 (Things I would like to understand in a far way future) There seems to be some myste-
rious applications of p-adic integrations (and furthermore, motivic integrations) to var-
ious sorts of problems: equal Betti numbers of birational Calabi-Yau n folds https:

//www.math.uni-bonn.de/people/huybrech/Magni.pdf, Fundamental Lemma in Lang-
lands program https://arxiv.org/abs/1810.06739, Topological Mirror Symmetry Con-
jecture by HauselThaddeus for smooth moduli spaces of Higgs bundles https://arxiv.

org/abs/1707.06417v3.
22/06/2021 I attend lectures of Geordie Williamson about Spectra in representation theory and of Anna

Romanov about Whittaker categories. I just want to write down what I understand (no
matter how vague and imprecise it can be).
(a) In Geordie’s talk: There are three ways to define cohomology H i(X,Z), one is via

map 4n → X (”maps in to X”), second is via Eilenberg-Maclane space K(Z, i)
as H i(X,Z) = [X,K(Z, i)] (maps out of X), third is via constant sheaf ZX , i.e.
H i(X,Z) = H i(RΓ(X,ZX)) (”on X”).
Geordie said that Grothendieck-Quillen’s dream is that every generalised cohomology
theory can be described as in the third way (i.e. ”on X”, without replying on 4nX or
K(Z, i)). He said Lurie has achieved this dream for K-theory. Then he goes to define
spectra, which should be seen as an analogue of Z. Then he mentioned that there is on
going research trying to generalised Geometric Satake over spectra KU (instead of over
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Z) which gives the quantum group version on the RHS (instead of just representation
of Langlands dual group).
What is spectra, KU rigorously? Do we have a visual(?) easier(?) explaination on why
KU is an analogue of Z? Why do we expect quantum groups on the RHS of geometric
Satake, or is there some sort of deformation from Z to KU that explains this?
Some notes about spectra (other than Lurie ...): by Rok Gregoric https://web.

ma.utexas.edu/users/gregoric/Spectra%20Are%20Your%20Friends.pdf, his sum-
mary of higher algebra https://web.ma.utexas.edu/users/gregoric/Appendix.pdf.
I found a table giving the analogy between Lurie’s theory and classical theory in
https://sites.duke.edu/scshgap/files/2018/05/Pandit-Imperial.pdf.
Actually, there is an even elementary question I don’t know how to answer, as I don’t
know anything about K-theory: Why K-theory is considered to be an upgraded version
of cohomology theory? (or something along this question...)

(b) In Anna’s talk: There is a lot of technical details going on so I didn’t get much out of
it. But here it is: A Whittaker module is the induced representation from the upper
Borel n to g from some character of n. The motivation for Whittaker model is that
one has an ”explicit” (?) description of representation as functions on some space.
The motivation for Whittaker module (I think explained by Masoud in the talk but I
may need to hear it again) is that Whittaker module of GLn(Fq) gives almost all the
irrep(?). What is the motivation of Whittaker story here? In what sense it is a good
generalisation of irreducible representations?
Whittaker module contains all the finite-dimensional rep of g then she studies category
N, roughly similar to category O but with simple objects being Whittaker modules.
Travis told me that the motivation of category O is that it is the nicest (?) category
that contains finite-dimensional rep of g and the Verma module. Why Verma module?
is it because all irrep of g (even infinite one) can be described from Verma module
? What sort of results do people expect when studying this category? Something like
characters of irreducible modules, Kazhdan Lusztig theory?.

23/06/2021 I learnt about some geometric constructions of representation of a group G. Let’s just say
G is finite for simplicity. Let X be a space with an action of G.

To obtain a representation of G, one can linearise by considering a vector space Fun(X)
of complex-valued functions on X (one can also choose Fun(X,V ) of V -valued functions
on X, where V is any vector space). Then G acts on f ∈ Fun(X) by (g · f)(x) = f(g−1x).
We will explain a geometric analogue of this construction as follows. Again, we are given a
space X with an action of G. The process of ”linearising”, i.e. associating X with Fun(X),
requires the language of vector bundles.

First, we recall notion of a vector bundle of rank n. It is a surjective map π : V → X
satisfying local triviality condition: for every x ∈ X, there exists open neighborhood U of
X containing x and a homeomorphism π−1(U)→ U×Cn compatible with projections to U ,
such that its restriction to x induces a vector space isomorphism Vx := π−1(x) ∼= {x}×Cn.
Intuitively, a vector bundle associate each point x ∈ X a vector space of dimension n. To
see vector bundles as Fun(X,Cn), we consider its global section Γ(X,V ), which is a vector
space because the fibers are vector spaces. Hence, one can think of vector bundle on X as
vector-valued functions on X. Then line bundle (i.e. vector bundle of rank 1) is C-valued
functions on X.

Now, go back to the definition of G action on Fun(X) and we want to interpret this in
the language of vector bundles, i.e. how much information is needed to associate an action
of G on sections Γ(X,V ) of a vector bundle π : V → X? Note that if s ∈ Γ(X,V ) then
s(x) ∈ Vx. Now we want to say something like ”(g · s)(x) = s(g−1 · x)” but LHS is in Vx,
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while the RHS is in Vg,x. Hence, what we need is a linear isomorphism g : Vx → Vg·x for
every g ∈ G, so that we can write the action as (g · s)(x) = g · s(g−1x). This motivates the
notion of G-equivariant vector bundles:

A G-equivariant vector bundle over X is a vector bundle π : V → X with an action of
G on P such that π is G-equivariant and the induced map g : Vx → Vgx is a linear map (a
priori this is just a bijection).

Thus, we have obtained a map

{G-equivariant vector bundles over X} −→ {G-representations} .

More questions:
(a) How to motivate notion of equivariant sheaf as generalisation of equivariant vector

bundle? See Chriss Ginzburg or Achar book, wikipedia.
(b) What choice of space X gives you irreducible representations or all representations?

For example, in Bott-Weil theory, X is a flag variety (so why flag varieties? Masoud
told me that on the Lie algebra version, irreducible representations appear as quotients
of Verma module, which is the induced representation from the Borel b; hence we expect
irreducible representations to appear in bundle over X = G/B, which is the geometric
way to describe induced representation) then considering certain line bundles over it
(why line bundles but not general vector bundles? Is it because the regular representa-
tion of G on Fun(G,C) contains all irreducible representations?) give you irreducible
representations. What about Ginzburg construction of irreducible representations?

(c) Is there a map going backwards? Starting from a G-representation, how to get a G-
equivariant vector bundle over some space X. Some ideas: Given G-module V , then
V × G → V is a principal G-bundle. Try to obtain a vector bundle out of this (for
example, using associated bundle construction, or replace G with vector space Fun(G),
as we know action of G on V induces action of Fun(G) on V ).

(d) What representations will appear if we consider higher cohomology groups? Global
sections is H0.

From this perspective, the construction of induced representation is quite natural. Con-
sider a representation ρ : H → GL(V ) of subgroup H of G. Then we can construct a
G-equivariant vector bundle as follows. Note π : G → G/H is a principal H-bundle, so to
get a vector bundle, we use associated bundle construction: define G ×ρ V = G × V/ ∼
where (g(g′)−1, v) ∼ (g, ρ(g′)v) then G×ρ V → G/H is a vector bundle with fiber V . Note
that G acts on G×ρ V by g(g′, v) = (gg′, v), making it into a G-equivariant vector bundle
over G/H. In our analogy, this corresponds to Fun(G/H, V ). Taking global sections should
give us back to the (analytic?) construction of induced representation.

Question:
(a) I am still a bit confused about associated bundle construction. In particular, would

the following construction be the same as associated bundle construction: Given group
hom f : G → H then we have morphism Bf : BG → BH of classifying spaces,
which induces a map from principal G-bundles to principal H-bundles. Now if we let
H = GL(V ) then is this the same as associated bundle construction?

(b) Check the details of the induced representation construction above. More is said here
https: // mathoverflow. net/ q/ 5772/ 89665 and here https: // math. stackexchange.
com/ q/ 1704622/ 58951 .

We also have the correspondence

{principal G-bundles over X}/G←→ {group hom π1(X)→ G}/G.
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I know one direction from left to right: a principal G-bundle over X corresponds to homo-
topy φ : X → BG, taking fundamental group induces π1(X)→ π1(BG) = G.

Another way to describe this without using BG: consider principal G-bundle π : P → X.
Pick x ∈ X, p ∈ P so π(p) = x. Consider a closed loop γ : [0, 1] → X in X at x, i.e.
[γ] ∈ π1(X,x). Then there exists a unique lift of γ to a curve γ̃ on P starting at p (but not
necessarily closed curve). Then as γ̃(1) = q and γ̃(0) = p have the same fiber over x, and π
is a principal G-bundle, there exists g ∈ G so q = p · g. We define π1(X) → G by sending
[γ] to g.

Questions:
(a) What is the reverse direction of this correspondence?
(b) If I choose G = GL(V ), X = BG then the RHS is representation of G. Compare

with previous correspondence, can I associate principal GL(V )-bundle over BG with
G-equivariant vector bundles this way?

(c) This seems to be irrelevant, but what is the connection between principal GLn-bundle
and vector bundle? How to get one from the other?

See more connection between vector bundles and representation theory at http: // www.

numdam. org/ item/ PMIHES_ 1961_ _9_ _23_ 0. pdf . .
23/06/2021 For a Lie group G, I learnt how to describe a connection of a principal G-bundle π : P → X

as g-vaulued 1-form on P .
First, we can define a vertical tangent bundle T vP = {(p, vp) : dπ(vp) = 0}. This gives

us short exact sequence 0 → T vP
f−→ TP

g−→ π∗TX → 0. A connection on P → X is a
choice of splitting of this short exact sequence. We have three equivantly ways to describe
this:
(a) A map s : TP → T vP s.t. s ◦ f = idT vP .
(b) A map t : TX → TP s.t. g ◦ t = idTX .
(c) A direct sum decomposition TP = T vP ⊕H.

If we use (a), then note that T vP can be identified with P ×g, i.e. (T vP )p can be identified

with g via the linear isomorphism vp 7→ d
dt

∣∣
t=0

p · exp(tvp).
What is the geometric intuition of a connection for principal G-bundle?
Read more from chapter ”Moduli Spaces of Flat Connections” of the book Torus Actions

on Symplectic Manifolds by Audin.
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2. July 2021

2.1. 07/07/2021: Kemp-Ness theorem. From 01/07 till 07/07, we have a workshop on Heron
island https://sites.google.com/view/hiwgrt/home about Kempf-Ness theorem, which gives a
link between Geometric Invariant Theory and Symplectic Geometry.

Here are some unresolved thoughts I have during this workshop:

2.1.1. GLn(C) acts by conjugation on gln(C). One of the main example is letting G = GLn(C)
acting on gln(C) by conjugation then stability of the action can be described as follows. Let
0 6= V ∈ gln(C) then V can be written as V = D + N where D is a diagonalisable matrix and N
is nilpotent.

(1) V is unstable, i.e. 0 6∈ G · V iff D = 0 6= N ,
(2) V is polystable, i.e. G · V is closed, iff N = 0 6= D.
(3) V is semistable (0 6∈ G · V ) but is not polystable (note polystable implies semistable as

V 6= 0) iff D 6= 0 6= N .

Here the topology of gln(C) is the classical topology of Cn2
. I can show the following:

(1) If V is nilpotent then 0 ∈ G · V . Indeed, because G = GLn(C) acts on V by conjugation,
every matrix is conjugate to an upper triangular matrix, we can assume V is upper triangular
with 0’s on the diagonal, V = (aij) where aij = 0 for i ≥ j. Let f(t) be a diagonal matrix
whose (i, i)th entry is ti. Then f(t)V f(t)−1 = (ti−jaij)1≤i,j≤n. Hence, as |t| → ∞ in C×,

f(t)V f(t)−1 → 0. Hence, 0 ∈ G · V .
(2) If V is not nilpotent then V is semistable, i.e. 0 6∈ G · V . Indeed, V has nonzero eigenvalue

λ ∈ C and hence gV g−1 also has nonzero eigenvalue λ for any g ∈ GLn(C). Because all
norm on a finite dimensional vector space is equivalent, we can choose the operator norm
‖.‖ on gln(C), giving ‖gV g−1‖ ≥ |λ| > 0 for all g ∈ GLn(C) (operator norm of a matrix is
at least the spectral radius, i.e. largest eigenvalue, of that matrix). Thus 0 6∈ G · V .

I don’t know how to show that if V is diagonalisable (hence we can assume V is a diagonal matrix)
with at least one nonzero eigenvalue, then G · V is closed (and vise versa).

I can do for example when n = 2, V = diag(λ, 0) with λ 6= 0. Then(
a b
c d

)
V

(
a b
c d

)−1

=
λ

ad− bc

(
ad −ab
cd −bc

)
.

Then G · V =

{(
x11 x12

x21 x22

)
∈ gl2(C) : x11 + x22 = λ, x11x22 = x21x12

}
, which is closed in gl2(C).

What is the moment map here? Can I draw a picture for this example, showing that the moment
map is some kind of critical point of some norm?

2.1.2. Torus acting on a vector space. Another example is letting T = (C×)n acting on a (finite
dimensional?) complex vector space V , equipped with a Hermitian inner product. Then V can
be decomposed as direct sum of orthogonal vector spaces

⊕
χ∈X∗(T ) Vχ where Vχ = {v ∈ V :

t · v = χ(t)v}. Let v ∈ V and v =
∑r

i=1 vi where vi ∈ Vχi , where χ1, . . . , χr ∈ X∗(T ) are distinct
characters. Note that each character can be identified with an element in Zn as X∗(T ) ∼= Zn by
sending (m1, . . . ,mn) ∈ Zn to (t1, . . . , tn) ∈ (C×)n 7→

∏n
i=1 t

mi
i . Then the stability of the action

can be described as follows:

(1) v ∈ V is unstable, i.e. 0 ∈ T · v, iff 0 does not lie in the convex hull of χ1, . . . , χr.
(2) v is polystable, i.e. T · v is closed, iff 0 lies in the interior of the convex hull of χ1, . . . , χr.

I can prove (a). It is essentially lies in the proof of Hilbert-Mumford criterion https://www.

isibang.ac.in/~sury/hilbmumf.pdf by B.Sury that I read in order to present to the workshop.
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Let me try to decode the definition of convex hull to see why it is essentially in B. Sury’s pa-
per. One definition is that it is the set {

∑r
i=1 biχi ∈ Rn : 0 ≤ bi ≤ 1,

∑
bi = 1}. Another way to

think about this is that 0 does not lie in the convex hull iff there exists a hyperplane passing
through 0, i.e.

∑
i cixi = 0, such that χi’s lie on the same half-plane separated by that hyper-

plane, i.e. 〈χi, (c1, . . . , cn〉 > 0. With this, we can choose t` = (`c1 , . . . , `cn) then ‖t` · v‖2 =∑r
i=1 |`|2〈χi,(c1,...,cn)〉‖vi‖2, which goes to 0 as ` → 0. Conversely, if 0 ∈ T · v then this is Sury’s

proof of Hilbert Mumford criterion for GLn(C). Need to write this down in case I forgot.
How to prove (b)? Can I draw a picture of this example?
Maybe two subexamples we can draw are

(1) C× acts on C2 by multiplication via t 7→
(
t 0
0 t−1

)
. The orbits are Oλ = {(x, y) ∈ C2 :

xy = λ} for λ ∈ C×, {(x, 0) : x 6= 0} and {(0, y) : y 6= 0}. One can see that the quotient
topology of this action is not Hausdorff. Ramiro mentioned that the moment map is then
somesort of shortest distance to each orbit. Need to work this out. The non-closed orbits
are the x,y-axes without the origin. If we throw out these two orbits, we expect to get a
nicer topology when taking quotient. What does this mean? Can you draw it?

(2) C× acts on C2 by multiplication t 7→
(
t 0
0 t

)
. Then the orbits are {(0, 0)} and lines through

the origin but minus the origin. When we take out the bad orbit ((0, 0)) we get P1.

2.1.3. Kempf-Ness fancy version. I don’t think I have seen the relation between Kempf-Ness theo-
rem in Kempf-Ness paper and the fancy version of this (i.e. a homeomorphism between some GIT
quotient and symplectic reduction). I would like to learn this someday. For example, I don’t know
much about the process of throwing away bad orbits to get better quotient topology. Maybe work
out the examples above or read this paper https: // arxiv. org/ pdf/ math/ 0512411. pdf in more
details. Geordie mentions that this Kempf-Ness paper essentially embeds in Atiyah-Bott paper and
I would like to understand more what did he mean by this.

2.1.4. Complexification, real vs complex. This is about complexification, real form, compact form,
R vs C structure, reductive etc... of Lie groups. During the workshop, we have done this for torus,
i.e. what is the most natural way to get a compact torus from a complex torus and vise versa?

There are two ways to define compact torus. A non-canonical way is that it is a real Lie group
diffeomorphic to U(1)n for some n, where U(1) = S1 = {z ∈ C : zz = 1}. A canonical definition is
that it is a connected compact abelian real Lie group.

There are also two ways to define complex torus. A noncanonical way is that it is a complex Lie
group diffeomorphic to (C×)n. A canonical definition is that it is a connected reductive abelian
complex Lie group (see how compact is replaced by reductive when comparing with compact torus
definition, i.e. one can think of reductive complex Lie group as complexification of compact real
Lie group).

From a complex torus, you can take its maximal compact real Lie subgroup, which will be unique
up to conjugation (every Lie group has a unique maximal compact subgroup up to conjugation?).
From a compact torus T then the exponential map exp : t → T is surjective, i.e. T = exp(t).
Indeed, exp(t) is a subgroup of T (as T is abelian) and contains a neighborhood of the identity.
Hence, T is a disjoint union of cosets of exp(t). But as T is connected so T = exp(t). Hence,
if Γ = ker(exp) then T is diffeomorphic and group isomorphic to t/Γ. The complexification of T
is then TC = (t ⊗R C)/Γ. This way of defining complexification seems to work only for torus. In
general, it is more complicated. How to define complexification in general? Ramiro mentioned there
is a universal property about this. Masoud told us another way to define complexification, which is
based on the idea that categories of representations of compact Lie group and of its complexification
are the same (?).
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Rohin told me that real/compact form is some sort of reverse process of complexification. From
a compact Lie group, you can get a complex Lie group unique in some sense, but the reverse process
is not unique, and a real form refers to a ”real”isation of that ...

In the first line of Kemp-Ness proof for theorem in section 4: For GLn(C), one can give it an
algebraic structure over R such that its real locus is U(n). Indeed, write down the equation AA∗ = I
of U(n) as polynomials over R. The claim is that over C, this gives GLn(C). For example, when

n = 1, then U(1) = {(x, y) ∈ R2 : x2 + y2 = 1}. And we can identify

{(
x y
y x

)
: x2 + y2 = 1

}
being isomorphic to C× over C. Need to write this down. I have done this before but I forgot.

2.2. 19/07/2021: Line bundles on P1. Past few days I have been trying to learn about line
bundles on P1, how to classify topological/ holomorphic/ algebraic line bundles on P1, how to
describe their (global) sections, to compute their transition functions, how to draw some of them.

2.2.1. Transition functions of O(−1). First is the (topological) canonical line bundle O(−1) on P1

over C. Since each point in P1 corresponds to a line in C2, as a set O(−1) = {(`, x) ∈ P1×C2 : x ∈ `}
with the obvious projection p to P1.

Now, I want to compute the transition functions of this line bundle. P1 can be thought abstractly
as open cover of U0 = {[x, y] ∈ P1 : x 6= 0} and U1 = {[x, y] : y 6= 0}. Each Ui is isomorphic to
affine space C, for example, U0

∼= C via [x, y] 7→ y/x.
We have an isomorphism π0 : p−1(U0) → U0 × C sending ([1 : z`], (x, y)) to ([1 : z`], x). The

inverse π−1
0 sends ([1 : z`], c) to ([1 : z`], c(1, z`)). Notice that here we have picked a representative

(1, z`) ∈ C2 of ` = [1 : z`] to define π0. The reason for this is that we want our map to be a
homeomorphism. Visually, imagine O(−1) as collection of lines on C2 passing through 0. Choosing
representatives for elements in U0 as above means the representatives lie on the line x = 1 in C2,
which guarantee continuity (i.e. if |z`| < 1 and |c| < 1 then the image c(1, z`) is open in C2, looking
like a paper fan).

Similarly, π1 : p−1(U1) → U1 × C sends ([z`, 1], (x, y)) to ([z`, 1], y) and π−1
1 sends ([z`, 1], c) to

([z`, 1], c(z`, 1)).
The transition function g01 : U1 ∩ U0 → GL1(C) is defined via

(U1 ∩ U0)× C
π−1
0−−→ p−1(U1 ∩ U0)

π1−→ (U1 ∩ U0)× C
(` = [1, z`], c) 7→ ([1, z`], c(1, z`)) 7→ ([1, z`], cz`)

Hence, g01 sends ` = [1, z`] ∈ U1 ∩U0 to (c 7→ cz`) in GL1(C). Under identification of U1 ∩U0 with
C× via indentification U0

∼= C, i.e. ` = [1, z`] 7→ z` (we choose U0
∼= C instead of U1

∼= C because
our map is π1 ◦ π−1

0 so the domain U1 ∩ U0 lies in U0 originally) and GL1(C) with C×, g01 can be
view simply as a map C× → C× sending z to z.

Similarly, one can check the other transition function g10 : U1∩U0 → GL1(C) defined by π0 ◦π−1
1

sends z 7→ z, under identification of spaces U1 ∩U0 with C× via U1
∼= C. Let me spell this out. We

have

(U1 ∩ U0)× C
π−1
1−−→ p−1(U1 ∩ U0)

π0−→ (U1 ∩ U0)× C
(` = [z`, 1], c) 7→ ([z`, 1], c(z`, 1)) 7→ ([z`, 1], cz`)

Notice that it is true g01(`)g10(`) = 1 for all ` ∈ U1 ∩ U0, but upon correct identification of spaces,
both these maps can be viewed as z 7→ z from C× to C×.

This is the point that confuses me the most because it seems many other sources claiming that
the transition map should send z 7→ z−1 (for example, this an this, p.30 while one reference agrees
with my choice). The reason for this ambiguity seems to be because there are two ways to identify
U1∩U1 with C×, one via U0

∼= C and the second via U1
∼= C (see how I get g01 as z 7→ z). To avoid
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ambiguity, the best way to phrase this is that g01 sends [x0, x1] → x1/x0 and g10 sends [x0, x1] to
x0/x1 (later we will see that we can define line bundle O(k) with k ∈ Z with transition functions
g01([x0, x1]) = (x1/x0)k).

One may then ask why name the bundle to be O(−1) instead of O(1)? One reason, as we will later
see that algebraic/holomorphic O(−1) has no nontrivial global section, while algebraic/holomorphic
O(1) has global section being a C-vector space of degree 1 homogeneous polynomials in two variables
x0, x1. For more reasons, see https: // math. stackexchange. com/ q/ 256482/ 58951 .

2.2.2. O(−1) as a Mobius strip. How do you visualise O(−1)? I claim that you can draw this as an
”infinite” Mobius strip. At least this is the picture over R, but as a drawing, you can just pretend
that any field k is just a line.

Before drawing it out, let me first explain why O(−1) over R is the infinite Mobius strip, i.e.
[0, 1] × R/ ∼ where (0, t) ∼ (1,−t). Over R, every line in R2 intersects the circle S1 at exactly
two points, so we will define a map sending x ∈ [0, 1] to eπix ∈ S1 to indicate our line. Hence,
(x, t) ∈ [0, 1] × R is sent to a line ` in R2 passing through eπix and the corresponding point teπix

on that line. To get a bijection, we need identification (0, t) ∼ (1,−t) because both represent the
same point on the x-axis.

Now, let’s try to draw this out for 1 < t < 2. We would get fig. 1 where under (0, t) ∼ (1,−t) we

Figure 1. Visualise O(−1)

need to glue the paper fan above along the arrows on the x-axis. As you let x goes from 0 to 1 to
get back to the x-axis, by looking at the positive direction of each line, you can notice the twist.

Let me offer another explanation of O(−1) being the Mobius bundle. In the previous explanation,
I take the definition of O(−1) as lines on R2, this time I want to view O(−1) abstractly via its
transition functions. The goal would be the same, i.e. how to see the twist in O(−1), but I don’t
want to describe the homeomorphism explicitly (because it relies too much of the fact that we are
in R). If successful, I want an argument that works for any topological field.

Now, O(−1) is defined via its transition function g01 : U0∩U1 → GL1(R) sending [x0, x1] 7→ x1/x0.
This means that O(−1) is obtained by glueing U1×R and U0×R via (U1∩U0)×R→ (U1∩U0)×R
sending ([1, z], c) 7→ ([1, z], zc). Now, I would draw U0

∼= R as a circle with a point [0, 1] removed
and U1

∼= R as a circle with a point [1, 0] removed.
In U0, on one side of [1, 0] are points [1, z] with z < 0 and on the other side are those [1, z] with

z > 0. On each fiber of U0 × R→ U0, we choose the positive directions as pointing outwards from
the circle. This choice is possible because we are working over R. Now we look at those fibers in
the circle of U1 via the glueing ([1, z], c) 7→ ([1, z], zc), keeping in mind of the positive direction of
each fiber (see fig. 2).

With this, we observe that we have twisted one connected component of (U0 ∩ U1)× R by half.
Is there an easier way to see why O(−1) is not the trivial line bundle P1 × C? I would say that

intuitively, because all lines/fibers of O(−1) ”have a common point 0”, while for P1 ×C, the fibers
do not intersect each other. How to rigorously describe this phenomenon?
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Figure 2. Visualise O(−1)

2.2.3. Dual line bundle O(1). The line bundle O(1) is the dual line bundle to O(−1). What does
this mean? One could guess that it means the fibers of O(1) are the dual spaces to the fibers of
O(−1). But this is not a good enough description. To describe this vector bundle, we need to
determine its transition functions.

In general, the dual vector bundle E∗ of E → V is the vector bundle whose fibers are the
dual spaces to the fibers of E. From this information, I will (heuristically) derive that the most
natural vector bundle E∗ that has this property is the one that has transition functions g∗ij =

(gTij)
−1. Because πj ◦ π−1

i : {u} × Cn ∼−→ Eu
∼−→ {u} × Cn is an isomorphism of vector spaces so

fij := π−1
j ◦ (giju) ◦ πi ∈ GL(Eu). We want the transition functions for E∗, i.e. how to cook

up {u} × Cn ∼−→ E∗u
∼−→ {u} × Cn? This is not possible as we don’t know local trivialisations

of E∗, but we can guess f∗ij : E∗u
∼−→ {u} × Cn ∼−→ E∗u in GL(E∗u), i.e. the most natural one is

(φ ∈ E∗u) 7→ ((v ∈ Eu) 7→ φ(f−1
ij v)). Notice I put f−1

ij instead of fij because f∗ij needs to satisfy the

cocycle condition f∗jkf
∗
ij = f∗ik. We will show that f∗ij = (f−1

ij )T (note that for φ ∈ GL( V ) then φT

means φT ∈ GL(V ∗) sending f ∈ V ∗ to f ◦ φ) and therefore implying g∗ij = (g−1
ij )T .

2.2.4. Line bundles O(k). We define O(k) to be |k|-times tensor product of O(1) if k > 0 or O(−1)
if k < 0. We want to compute the transition functions of these bundles.

For vector bundles E1, E2 over V with transition functions gij : Ui ∩ Uj → GLm(Cm), fij :
Ui∩Uj → GLn(Cn), the transition functions of E1⊗E2 are gij ⊗ fij : Ui∩Uj → GLmn(Cm⊗CCn).

We show O(−1)⊗O(1) is the trivial line bundle P1⊗C. The transition function of O(−1)⊗O(1)
is g01⊗g∗01 : U0∩U1 → GL1(C), sending [x0, x1] to x1

x0
⊗ x0
x1

= 1 and similarly for the other transition
function.

The transition function of O(2) is g01⊗ g01, sending [x0, x1] to (x1/x0)2. Now, if you try to draw
out O(2) as I did for O(−1), you will notice that topologically, it is just the trivial line bundle
P1×R. Similarly, O(1) over R is also just a Mobius bundle. In fact, over P1 (or S1), there are just
two topological line bundles up to isomorphism!

Can I interpret O(k) where k means number of twists? Just like O(−1) is the Mobius strip over
R (and I think O(1) over R is also a Mobius strip)? See https: // math. stackexchange. com/

q/ 220203/ 58951 or https: // math. stackexchange. com/ q/ 2219539/ 58951 for example. For
example, can you draw O(2) or O(−2)?.

2.2.5. Only two topological line bundles over P1(R). Read https://ayoucis.wordpress.com/2014/

12/12/line-bundles-on-the-circle/.

2.2.6. What about topological line bundles over other fields?
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2.2.7. O(−1) as an algebraic line bundle over C. So far, we have describe O(−1) as a topological

line bundle, i.e. a continuous map p : O(−1)→ P1 with local trivialisations π0 : p−1(U0)
∼−→ U0×C

and π1 : p−1(U1)
∼−→ U1 × C that commutes with projections to U0, U1, respectively. Furthermore,

these local trivialisations must induce isomorphisms of vector spaces p−1(`) ∼= {`}×C of each fiber
of p.

How do we describe O(−1) as an algebraic/holomorphic/smooth/etc line bundle?
https://math.stackexchange.com/q/3481443/58951.

2.2.8. P1 as a scheme. Before, we describe P1 abstractly as a topological space over C, in fact the
construction works over any field k, by glueing two k’s, namely A0 = k and A1 = k. This is glued
via A0 \ {0} = k× → k× = A1 \ {0} sending z 7→ z−1. In particular, U is open in P1 if U ∩ A0 and
U ∩ A1 are both open.

Now we wish to equip P1 with an extra structure, i.e. P1 as a scheme. I will explain how
to construct P1 over field k as a sheaf of rings by glueing two affine pieces A0 = Spec k[t0] and
A1 = Spec k[t1]. By gluing, I mean we have two do two things: glue two topological spaces A0 and
A1 and then glue their structure sheaves OA1 and OA0 .

Compute global section of OP1 .

2.2.9. Classifying algebraic vector bundles on P1 via double cosets. Algebraic vector bundles on
P1 of degree n are classified via the transition functions gij : Spec k[t, t−1] → SpecO(GLn) which
corresponds to a point in GLn(k[t, t−1]) ...

2.2.10. O(2) as tangent bundle of P1.

2.2.11. Global sections of algebraic bundles.

2.3. 23/07/2021: Categorial measure theory. Masoud mentioned that I only defined push-
forward measures but not pullback measures in my thesis. When I googled, I found this ex-
planation https://mathoverflow.net/q/122704/89665 saying there is no pullback of general
maps. One needs extra conditions, such as being able to integrate on fibers. There is also a
way to develop measure theory categorically with pushforward and pullback available this way,
from https://mathoverflow.net/a/20820/89665. But the language is quite forgein to me. Need
to read more at some point.

2.4. 23/07/2021: Sheaf of solutions of ODE is a local system. I want to claim that local
existence and uniqueness of a differential equation is the same as saying that its sheaf of solutions
is a constant sheaf.

We have the following result for local existence and uniqueness of ODEs (cited from https:

//www.math.utah.edu/~milicic/Eprints/de.pdf, theorem 1.2): Let Ω be a simply connected
region in C, z0 ∈ Ω and A : Ω → GLn(C) a holomorphic map. For any Y0 ∈ Cn, there exists a
unique holomorphic function Y : Ω→ Cn such that dY

dz = AY in Ω, and Y (z0) = Y0.
First, we can construct a sheaf F of solutions over Ω for this equation by letting F(U) to be set

of all Y : U → C satisfying the ODE. The claim is that F is a constant sheaf Cn (note that because
Ω is simply connected so any continuous Ω→ Cn with Cn having the discrete topology must be a
constant function, meaning CnΩ(Ω) = Cn). Indeed, F(Ω)→ Cn sending Y 7→ Y (z0).

Now, if Ω is not simply connected then F is a C-local system, i.e. Ω is union of its connected
components and F restricted to each component is a constant sheaf, as shown below.
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2.5. 23/07/2021: Shrawan Kumar’s SMRI talk. I attend Shrawan Kumar’S talk ”Root com-
ponents for tensor product of affine Kac-Moody Lie algebra modules” for the Sydney Mathematical
Research Institute. Here are something news I learnt:

(1) Some history about tensor product decomposition problem for finite/affine/Kac-Moody Lie
algebras.

(2) There is a problem that I think I can work out the proof: For integral dominant weight
λ, µ, let V (λ), V (µ) be the corresponding highest weight reps. By complete irreducibility,
we can decompose V (λ)⊗V (µ) as direct sum of V (ν). Let nνλ,µ be the multiplicity of V (ν)
in nνλ,µ. The problem is that:

Show, if nνλ,µ 6= 0 then nmνmλ,mµ 6= 0 for all positive integer m.
Kumar claimed that there are two proofs of this, one use standard representation theoretic

method and the second via Borel-Weil theorem, and I would like to know how to prove this
for the above two methods.

(3) Do some google on ”ample line bundle” as this terminology is mentioned in the talk.
Roughly, a line bundle L on a proper 1 scheme X over field k is ample if L⊗n has enough
global sections to give a closed immersion (i.e. closed embedding) X → PN where N =
dimH0(X,L⊗n) − 1. From what I know, this definition is important in order to classify
algebraic varieties, i.e. describe a variety with certain properties as subvariety of certain
projective space defined by equations of certain degrees. See https://www.math.ucla.

edu/~totaro/papers/public_html/algebraic.pdf for example.
Now, let me try to explain more about the part of ”having enough global sections gives

a morphism X → PN”. I read this from wikipedia https://en.wikipedia.org/wiki/

Ample_line_bundle. Choose global sections a0, . . . , aN−1 ∈ H0(X,L) then we can defined
f : X → PN sending x 7→ [a0(x), . . . , aN−1(x)]. Note that this is well-defined if over any
x ∈ X, at least one of ai(x) is non-zero, i.e. intersection of zero sets of all global sections
is empty. This is what is called ”basedpoint-free” line bundle. ”Semi-ample” line bundle
L is when L⊗n is basedpoint-free for some n. ”Very-ample L is when X → PN is a closed
immersion. ”Ample” L is when L⊗r is very-ample. So it’s a bunch of definitions. Workout
the examples in wikipedia: O(d) on P1 is based-point free iff d ≥ 0, and very ample iff d ≥ 1.

What is the role of being ”ample” in representation theory, Kumar mentioned that L(λ)
as ample line bundle corresponding to a dominant weight λ, what does this mean?

2.6. 27/07/2021: Discriminant and different of field extension. Let A be a Dedekind
domain with field of fraction K, L/K is a finite separable extension and B is integral closure
of A in L. Recall a prime q|p of L is unramified if eq = 1 and B/q is separable extension of A/p.
A prime p of K is unramified if every prime q|p lying above it are unramified.

In this notes, we will define different DB/A and discriminant DB/A and show that these encodes
information about ramification of L/K. In particular, we would like to explain the following:

The different is B-ideal that is divisible by the ramified primes q of L, and the discriminant is
A-ideal that is divisible by the ramified primes p of K. The valuation vq(DB/A) will give us
information about the ramification index eq and its exact value when q is tamely ramified.

This is created to summarised Lecture 12 in https://math.mit.edu/classes/18.785/2019fa/

lectures.

2.6.1. The different. First, we need to define these two objects. We have trace pairing L×L→ K
defined by (x, y) 7→ TraceL/K(xy). When L/K is separable, this is a perfect pairing (i.e. it induces
K-module isomorphism L with L∨ = HomK(L,K)). B is a A-lattice in L (i.e. finitely generated

1finite dimensional of global section of line bundles on X?
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A-module that spans L as K-vector space) and we have a corresponding dual lattice for B, defined
as

B∗ := {x ∈ L : TraceL/K(xb) ∈ A ∀b ∈ B}.

It is an A-lattice in L isomorphic to dual A-module M∨ := HomA(M,A). One can show B∗ ∈ IB
(IB is the ideal class group of B, i.e. group of invertible fractional ideals of B, i.e. finitely generated
B-submodules lying of L; here fractional ideal I being invertible means IJ = B for some fractional
ideal J). We define the different DL/K of L/K (or the different DB/A of B/A) to be the inverse of
B∗ in IB. Explicitly, we have

DL/K := DB/A := (B∗)−1 = {x ∈ L : xB∗ ⊂ B}.

Note B ⊂ B∗ as TraceL/K(ab) ∈ A for any a, b ∈ B, we find that the different is an ideal of B, not
just fractional ideal.

Different respects localisation and completion:

• Let S be multiplicative subset of A. Then S−1DB/A = DS−1B/S−1A. To prove this, it
suffices to show inverses and duals commutes with localisation.
• Let q|p be a prime of B. Then DB̂q/Âp

= DB/AB̂q as B̂q-ideals. Here B̂q and Âp are

completions of B and A at q, p, respectively.

2.6.2. The discriminant. Let n := [L : K]. For B an A-lattice in L, we can define the discriminant
of L/K (or of B/A) to be the A-module DL/K (or DB/A) generated by

disc(x1, . . . , xn) := det[TraceB/A(xixj)]ij ∈ A

where x1, . . . , xn ∈ B. This is infact a fractional ideal of A. When B is free A-lattice in L (such
as when A = Z) then DB/A is a principal fractional ideals, generated by disc(e1, . . . , en) where
e1, . . . , en is K-basis for L in B.

Depending on the situations, we have few ways to compute the discriminant:

• Let Ω/K be field extension for which there are discint σ1, . . . , σn ∈ HomK(L,Ω) then for
any e1, . . . , en ∈ L, we have

disc(e1, . . . , en) = det[σi(ej)]
2
ij ,

• For polynomial f(x) =
∏
i(x−αi) of degree n, then the discriminant of extension A[x]/(f),

where α is the image of x in A[x]/(f), is generated by

disc(1, α, . . . , αn−1) =
∏
i<j

(αi − αj)2.

People also define this to be the discriminant of f .

Discriminant also respects localisation and completion:

• For S multiplicative subset of A then S−1DB/A = DS−1B/S−1A.
• For prime q|p of B then Need to learn more ... Check Serre after this.

2.7. 28/07/2021: Representations of sl2. Recall on 23/07/2021, I found the following question
on Kumar’s talk that he mentioned as an ”easy observation” (see https://youtu.be/gph8XNkpdBM?
t=368):

Problem 1. Show that if V (ν) appears in the direct sum decomposition of V (λ) ⊗ V (µ) into
irreducible representations, then V (mν) appears in the direct sum decomposition of V (mλ)⊗V (mµ)
for any positive integer m.
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As a first step to answer a question, I just want to review the construction of irreducible repre-
sentations of sl2(C) via Verma modules.

The Lie algebra sl2 has basis h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
with relations [h, e] =

2e, [h, f ] = −2f, [e, f ] = h.
The adjoint representation ad : g→ GL(g) taking (x ∈ g) 7→ (ad x : y 7→ [x, y]) gives us the root

system Φ for g and the Cartan decomposition g = h⊕
⊕

α∈Φ gα. For sl2, we find sl2 = h⊕gα⊕g−α =
Ch⊕ Ce⊕ Cf where α ∈ Φ = {±α} ⊂ h∗ is defined by α(h) = 2 (because [h, e] = 2e). We choose
α to be a simple root, so Φ+ = {α}.

Next, I want to determine the coroots, (co)weights. In order to do this, I first need an identifica-
tion between h and h∗. We have the Killing form κ : g×g→ C sending κ(a, b) = Trace(ad a◦ad b)
which is nondegenerate when restricting to h× h. This gives us an inner product on h. In our case
of sl2, we find κ(h, h) = 8.

Because of nondegeneracy of κ, we have an isomorphism h∗ ∼= h sending λ 7→ tλ ∈ h defined by
λ(h) = κ(tλ, h). Hence, we can turn κ into an inner product (·, ·) on h∗ by (α, β) := κ(tα, tβ). In
the literatures, there are two ways to define coroots. One is Bourbaki style, where the coroots lying
inside h while in Humphreys’ style, the coroots lying in h∗. In Bourbaki’s style, the coroot hλ of
λ ∈ Φ (in Bourbaki, this notation is λ∨, but we will save this for Humphreys style) is the unique
element in h such that λ(hλ) = 2 (in particular, hλ = 2tλ/(tλ, tλ)). In Humphreys style, coroot of

λ ∈ Φ is λ∨ := 2λ
(λ,λ) . One can show that 〈α, β∨〉 = 2(α,β)

(β,β) = α(hβ) ∈ Z for all β ∈ Φ. In our case of

sl2, with simple root α ∈ Φ, we find tα = h
4 as α(h) = 2. Hence hα = h and α∨ = α.

From now on, we will stick to Humphreys style. We can then define the (integral) weight lattice
by

Λ := {α ∈ h∗|〈α, β∨〉 ∈ Z ∀β ∈ Φ}.

In the case of sl2, we find Λ = 1
2Zα. Let ω = α/2 then ω is the fundamental weight of α, i.e.

〈ω, α∨〉 = 1. Upon a choice of positive roots Φ+, we can define the dominant (integral) weight
lattice Λ+ := {α ∈ h∗|〈α, β∨〉 ∈ Z>0 ∀β ∈ Φ+}. In the case of sl2, we find Λ+ = Z>0ω.

Next, we will construct the Verma module M(λ) for every λ ∈ h∗. Let b = h⊕
⊕

α∈Φ+ gα = h⊕n
to be the Borel subalgebra corresponding to the Cartan subalgebra h. In sl2, b = Ch ⊕ Ce, n =
Ce, n− = Cf . We define M(λ) := U(g) ⊗U(b) Cλ where Cλ is a 1-dimensional representation of b

with a trivial action by n and h acts on Cλ by λ. Concrely, let v+ := 1⊗ 1 ∈M(λ) then M(λ) has
C-basis U(n−)v+, with n · v+ = 0 and h · v+ = λ(h)v+. For the case sl2, M(λ) = spanC{f iv+},
e · v+ = 0 and h · v+ = λ(h)v+. Letting vi := f iv+

i! for i = 0, 1, . . . then we can show that (here we
have abused of notation to write λ for λ(h)):

h · vi = (λ− 2i)vi,

e · vi = (λ− i+ 1)vi−1,

f · vi = (i+ 1)vi+1.

M(λ) always has a maximal proper submodule L(λ) with quotient being a simple module V (λ).
V (λ) is finite dimensional iff λ ∈ Λ+. To see this for the case of sl2, we observe:

(1) If λ 6∈ Z≥1 then λ− i+1 6= 0 for all i = 1, . . ., implying M(λ) is irreducible. Indeed, starting
with any v ∈M(λ), one can keep applying e to get v0.

(2) If λ ∈ Z≥1 then e · vλ+1 = 0. This means U(g) · vλ+1 = spanC(vλ+1, vλ+2, . . .) is a maximal
submodule of M(λ) that is isomorphic to M(−λ− 2) ∼= V (−λ− 2). Its quotient V (λ) has

dimension λ+ 1 and is irreducible. In V (λ), we have f 〈λ,α
∨〉+1v0 = fλ+1v0 = 0.

Now, coming back to Kumar’s problem on 23/07/2021:
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Problem 2. Show that if V (ν) appears in the direct sum decomposition of V (λ) ⊗ V (µ) into
irreducible representations, then V (mν) appears in the direct sum decomposition of V (mλ)⊗V (mµ)
for any positive integer m.

I want to do an example for sl2, based on the description of V (λ) above.

Example 3. For sl2, I will show that V (1)⊗ V (2) = V (3)⊕ V (1). From the problem, I then should
have V (2) in V (2)⊗ V (4).

Denote V (m) := spanC{vim : i = 0, 1 . . .} where the vim’s is defined above. Then v01 ⊗ v02 is a
highest weight vector in V (1)⊗ V (2) of weight 3, implying V (3) appears in V (1)⊗ V (2). Because
V (1) ⊗ V (2) has dimension 2 × 3 = 6, V (3) has dimension 4 so it can only be V (1) ⊗ V (2) =
V (3) ⊕ V (1). In fact, we can describe V (1) explicitly as a submodule of V (1) ⊗ V (2). Note that
v01 ⊗ v12 and v11 ⊗ v02 have weight 1. When applying e to both of these, we find a highest weight
vector v01 ⊗ v12 − 2v11 ⊗ v02 of weight 1.

We can play the same game to see how V (2) appears in V (2)⊗ V (4). In particular, vi2⊗ vj4 for
i + j = 2, 0 ≤ i ≤ 2, 0 ≤ j ≤ 4 are weight vectors of weight 2 in V (2) ⊗ V (4). By applying e to
these vectors:

(1) e(v02 ⊗ v24) = (4− 2 + 1)v02 ⊗ v14,
(2) e(v12 ⊗ v14) = (2− 1 + 1)v02 ⊗ v14 + (4− 1 + 1)v12 ⊗ v04,
(3) e(v22 ⊗ v04) = (2− 2 + 1)v12 ⊗ v04.

Hence, 2v02 ⊗ v24 − 3v12 ⊗ v14 + 12v22 ⊗ v04 is a highest weight vector of weight 2.
However, I don’t know how to see V (2) lying inside V (2) ⊗ V (4) from the fact that V (1) lies

inside V (1)⊗ V (2).

Maybe it will help if I go a bit more general, suppose V (c) appears in V (a)⊗ V (b) for sl2. This
means there exists a highest weight vector of weight c in V (a) ⊗ V (b). Such vector has the form∑

i+j=(a+b−c)/2 cijvia ⊗ vjb. For this to be a highest weight vector, we need

0 = e ·

 ∑
i+j=(a+b−c)/2

cijvia ⊗ vjb

 ,

=
∑
i+j=`

cij ((a− i+ 1)vi−1,a ⊗ vj,b + (b− j + 1)vi,a ⊗ vj−1,b) , ` = (a+ b− c)/2

=
∑

i+j=`−1

(ci+1,j(a− i) + ci,j+1(b− j)) vi,a ⊗ vj,b.

To show V (mc) appears in V (ma) ⊗ V (mb) for some positive integer m, I want to find a weight
vector

∑
i+j=m` dijvi,ma⊗vj,mb of weight mc in V (ma)⊗V (mb), where dij ∈ C, ` = m(a+ b− c)/2,

such that it is of highest weight, i.e. for all i+ j = m`− 1 then di+1,j(ma− i) + di,j+1(mb− j) = 0.
Now this is where I got stuck for the sl2 case ...

2.8. More unresolved questions.

2.8.1. Functional equation of Riemann zeta function. What is the proof of the functional equation
of the Riemann zeta function using Poisson summation formula. I read the proof from Terence Tao’s
blog https://terrytao.wordpress.com/2008/07/27/tates-proof-of-the-functional-equation/,
https://math.bu.edu/people/jsweinst/Teaching/MA843/TatesThesis.pdf or https://people.
reed.edu/~jerry/361/lectures/mats.html (the continuation and functional equation sections).

Need to explain Mellin transform is Fourier transform on (R>0, ·) by transfering the usual
Fourier transform via exp : R → R>0. To learn more, read https://people.reed.edu/~jerry/
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361/lectures/mats.html (the Mellin transform section), https://people.mpim-bonn.mpg.de/
zagier/files/tex/MellinTransform/fulltext.pdf, https://mathoverflow.net/q/79868/89665.

Relate this with Tate’s thesis, read Fourier analysis on Number fields, https: // math. stackexchange.
com/ q/ 25090/ 58951 .

2.8.2. Grothendieck’s proof of classification of line bundles on P1. See Marielle Ong’s https://

drive.google.com/file/d/1yfe9lTjF48a0UiZJqEqb8PvRY5yUC2Os/view or Sabin Cautis notes
Vector bundles on Riemann surfaces.

See more things about P1 at https://math.berkeley.edu/~qchu/Notes/256B.pdf or https:

//math.stanford.edu/~vakil/725/class21.pdf.

2.8.3. Fourier transform. I want to first explain that Poisson transform is some sort of change of
basis formula, i.e. given f(x), we want to write it with respect to some basis e2πix (this choice of
basis is invariant under translation in some sense) and this is what the Fourier transform indicates
.... Where can I read more something along this line? See Jacob Lurie https://www.youtube.

com/watch?v=w3f8KEcv4RE&t=2497s.

2.8.4. Algebraic groups. I just want to verify the following facts: SOn is connected semisimple but
is not simply connected.

Some more things to learn

(1) Learn Langlands’ proof of Tamagawa: Fourier inversion https://people.reed.edu/~jerry/

311/mats.html, Mellin transform https://people.reed.edu/~jerry/361/lectures/mats.

html https://people.mpim-bonn.mpg.de/zagier/files/tex/MellinTransform/fulltext.

pdf, Riemann-Zeta functions, spectral theory https://www.math.nagoya-u.ac.jp/~richard/

teaching/s2019/Operators.pdf, https://mtaylor.web.unc.edu/wp-content/uploads/
sites/16915/2018/04/specthm.pdf, https://en.wikipedia.org/wiki/Spectral_theorem.

(2) Geometry:
(a) Learn about classification of vector bundles (Hatcher http://pi.math.cornell.edu/

~hatcher/VBKT/VBpage.html), characteristic classes (e.g. Tu’s book, https://web.
ma.utexas.edu/users/a.debray/lecture_notes/u17_characteristic_classes.pdf),
connections, equivariant cohomology (Tu’s book, Geordie’s note, see folder) -¿ Read
Atiyah, Bott paper.
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3. August 2021

3.1. 04/08/2021: Tamagawa number for GL1 over Q. I will define Tamagawa measure for
GL1 over Q and then compute its Tamagawa number.

The ideles GL1(A) = A× is the restricted product of Q×v ’s with respect to its compact open Z×v .
We have a norm map

| · | : A× → R>0

defined by sending a = (av) ∈ A× to
∏
v |av|v. The product is well-defined because av ∈ Z×v for

almost all places v of Q. Its kernel is denoted A1, which is closed in A×. In fact, we have a
homeomorphism

φ : A× → A1 × R>0,

a = (av) 7→ ((a∞/|a|, a2, a3, . . .) , |a|) ,
ra 7→(a, r).

Proof that φ is a homeomorphism. The map (a, r) 7→ ra from A1 × R > 0 → A× is continuous
because A× is a topological ring with multiplication map being continuous, and that the two maps
A1 ↪→ A× and R>0 ↪→ A× are continuous.

We just need to show its inverse φ is also continuous. A1 has basis of open sets

US :=

a = (av) ∈ U∞ ×
∏

p∈S\{∞}

bp(1 + pkpZp)×
∏
v 6∈S

Z×v :
∏
v∈S
|av|v = 1

 .

where S is a finite set of places of Q containing the infinite place. Let U be an open subset in R>0.
Then the preimage φ−1(US × U) is

U∞U ×
∏

p∈S\{∞}

bp(1 + pkpZp)×
∏
v 6∈S

Z×v

which is open. �

To define the Tamagawa measure µGL1,Q on A×, we choose a left-invariant differential form
ω = x−1dx on GL1(Q). It is left-invariant because left-multiplication by a ∈ Q gives La(x

−1dx) =
(ax)−1d(ax) = x−1dx. Over each completion of Q, this induces a left-invariant Haar measure
µGL1(Qv),ω = d|ω|v on Q×v by integrating over ω. It is left-invariant because we have the change of
variables formula, even over Qp, i.e.∫

Q×v
f(x)|x|−1

v d|x|v =

∫
Q×v

f(x)d|ω|v =

∫
Q×v

f(ax)d|Laω|v =

∫
Q×v

f(ax)|x|−1
v d|x|v,

where f(x) is a complex-valued continuous function with compact support on Q×v , d|x|v is the Haar
measure on Qv. Here Q×∞ means R×. For example, we can compute

µQ×p ,ω(Z×p ) =

∫
Z×p
|x|−1

p d|x|p =

∫
Z×p
d|x|p =

p−1∑
i=1

∫
i+pZp

d|x|p = (p− 1)

∫
pZp

d|x|p =
p− 1

p
.

Let the Tamagawa measure on A× over Q to be essentially the product measure

µR×,ω ×
∏
p

(
1− 1

p

)−1

µQ×p ,ω

In other words, there is a unique Haar measure on A× such that over the open set
∏
v∈S Uv ×∏

v 6∈S Z×v where S is a finite set of places of Q containing the infinite place, the measure is by
taking the product of measures of each local part.
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Because of the homeomorphism A× ∼= A1 × R>0, if we give R>0 the natural Haar measure
obtained by integrating x−1dx, this determines a Haar measure da1 on A1 satisfying∫

A×
f(x)µGL1,Q(x) =

∫
R>0

∫
A1

f(a1t)t
−1da1dt.

As Q× is discrete in A1, this induces a measure µ′GL1,Q on Q× \ A1. We define the Tamagawa
number for GL1 over Q to be

τ(GL1,Q) :=

∫
Q×\A1

µ′GL1,Q.

To compute τ(GL1,Q), we will determine a fundamental domain for Q× \A1, based on the following
proposition:

Proposition 4. We have

(a) Q× is dense in GL1(A∞), implying Q× \ (A×)∞/Ẑ× = {1}.
(b) We have a homeomorphism Q× \ A× ∼= ({±1} \ R×)× Ẑ×.

Proof. (a) We need to show every basis of open sets of GL1(A×) contains an element in Q×. A basis
of open sets of GL1(A×) consists of

∏
p∈S\{∞} ap(1 + pkpZp)×

∏
p6∈S∪{∞} Z×p , where S is a finite set

of places of R containing the infinite place, kp ∈ Z≥1 (as then 1 + pkpZp is open neighborhood of 1

in Q×p ), ap ∈ Q× (for any ap ∈ Q×p , you can always find a′p ∈ Q× so ap − a′p ∈ pkpZp). By Chinese

Riemander Theorem, there exists q ∈ Q× such that q ≡ ap (mod pkp) for all p ∈ S \ {∞} and q
only has primes p ∈ S \ {∞} in its prime factorisation. This implies q lies in the desired open set.

To see (A)∞ = Q× · Ẑ×, as Ẑ× is compact open in (A)×, any a ∈ (A)∞ then the open set aẐ×
must contains an element in Q×, as desired.

(b) We define the map

φ : ({±1} \ R×)× Ẑ× → Q× \ A×,
(r + {±1}, z) 7→ rz.

Note that {±1} = Ẑ×∩Q×, one can then show that φ is indeed a homeomorphism. Be careful that

Ẑ× and Q× are embedded differently into A×. �

From this proposition, as A1 ∼= A×/R>0 so Q× \ A1 ∼= Q× \ A/R>0
∼= Ẑ×. Thus, we have

τ(GL1,Q) =

∫
Ẑ×
µGL1,Q,

=
∏
p

(
1− 1

p

)−1 ∫
Z×p
µQ×p ,ω,

=
∏
p

(
1− 1

p

)−1 p− 1

p
,

= 1.

Now, something I would like to learn next:

(1) How to write the above description but for GLn.
(2) What happen over other number fields/function fields?

3.2. 07/08/2021: Global left-invariant top form of SL2. GL2 has a global left-invariant top
form det(xij)

−2dx11 ∧ dx12 ∧ dx21 ∧ dx22. I want to use this and the map SL2×Gm → GL2 to find
a global left-invariant top form of SL2.
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3.2.1. Sheaf of differentials. We want to minic the following construction in differential geometry
to algebraic geometry language: Given a smooth map φ : X → Y of smooth manifolds, this induces
map φ∗ : T ∗Y → T ∗X of cotangent bundles.

I read this from Neron models book, chapter 2, p. 33.
First, we will describe the sheaf of differentials (i.e. the cotagent bundles in differential geometry)

ΩX/k for an affine schemeX = SpecA. To do this, I will need to introduce the module of differentials
ΩA/k. It is an A-module equipped with a k-derivation d : A → ΩA/k (i.e. a k-linear map such
that d(fg) = fd(g) + gd(f) for g, f ∈ A) such that it is universal among those A-modules M
with A-derivation dM : A → M . The sheaf of differentials ΩX/k is then the sheaf of OX -modules
corresponding to the module of differential ΩA/k. In particular, over open set D(f) of X where
f ∈ A, its sections are Γ(D(f),ΩX/k) = (ΩA/k)f .

We start with φ : X = SpecA → Y = SpecB a morphism of affine schemes over k. This gives
us a ring map B → A and a morphism OY → φ∗OX of sheaves of rings over Y 2.

I claim that we have a morphism

Φ : φ∗ΩY/k → ΩX/k

of sheaves of OX -modules that resembles T ∗Y → T ∗X in differential geometry.
I will describe φ∗ΩY/k first. It is a sheaf of OX -modules obtained by pulling back ΩY/k along

φ : X → Y . Its sections over open U of X forms a OX(U)-module ΩY/k(φ
−1(U))⊗OY (φ−1(U))OX(U).

In other words, it is a sheaf of OX -modules corresponding to the A-module ΩB/k ⊗B A.
Thus, to describe Φ, we just need to know a map ΩB/k ⊗B A→ ΩA/k of A-modules.
By composing the ring map B → A with dA, we get a k-derivation map corresponding to the

B-module ΩA/k, hence by universal property of ΩB/k, this induces a map of B-modules

ΩB/k → ΩA/k

fdB(g) 7→ φ(f)dA(φ(g)), f, g ∈ B.

We then also have a morphism of A-modules

ΩB/k ⊗B A→ ΩA/k.

3.2.2. Global left-invariant top form of GL2. I want to determine a left-invariant global differential
form of top degree for GL2.

Firstly, the module of differential ΩO(GL2)/k is the O(GL2)-module generated by dxij , dt for
1 ≤ i, j ≤ 2, modulo the relation

0 = d(t(x11x22 − x21x12)− 1) = td(x11x22 − x21x12) + (x11x22 − x12x21)dt.

As in O(GL2), (x11x22 − x12x21)t = 1 so we can write

(2) dt = −t2d(x11x22 − x21x12).

Consider left-multiplication by a =

(
a11 a12

a21 a22

)
∈ GL2(k) via

La : O(GL2)→ O(GL2),

xij 7→ ai1x1j + ai2x2j ,

t 7→ (a11a22 − a12a21)−1t.

2At some point, I was confused on whether the arrow should be OY → φ∗OX or the other way around. To convince
myself on this, just view OY as functions on Y and OX as functions on X, and we know a function on Y induces a
function on X by precomposing with φ.
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This induces a morphism of O(GL2)-modules

La :

2∧
ΩO(GL2)/k →

2∧
i,j=1

ΩO(GL2)/k,

f
2∧

i,j=1

dxij 7→ La(f)
2∧

i,j=1

(ai1dx1j + ai2dx2j).

Note that we only need to specify what
∧
ij dxij is sent to because dt is determined from (2). I

want to find f ∈ O(GL2) so La(f
∧
i,j dxij) = f

∧
ij dxij , or

La(f) det(aij)
2dx11 ∧ dx12 ∧ dx21 ∧ dx22 = fdx11 ∧ dx12 ∧ dx21 ∧ dx22.

Thus, we want f ∈ O(GL2) such that La(f) det(aij)
2 = f for all a ∈ GL2(k). Note that f = t2

satisfies this.

3.2.3. Global left-invariant top form of SL2. Now, I want to focus on an example φ : SL2×Gm →
GL2, defined by ((

x11 x12

x21 x22

)
, t

)
7→
(
tx11 tx12

x21 x22

)
.

From this map and the corresponding left-invariant top form of GL2, I want to obtain a left-invariant
global top differential form of SL2.

We first have an isomorphism φ′ : O(GL2)→ O(SL2)⊗ O(Gm) of k-algebras given by

φ′ : k[xij , t]/(t(x11x22 − x21x22)− 1)→ k[xij ]/(x11x22 − x21x12 − 1)⊗k k[t, t−1],

x11 7→ tx11,

x12 7→ tx12,

x21 7→ x21,

x22 7→ x22,

t 7→ t−1.

The module of differentials ΩO(SL2)/k is the O(SL2)-module generated by dxij for 1 ≤ i, j ≤ 2,
modulo the relation

0 = d(x11x22 − x12x21 − 1) = x11dx22 + x22dx11 − x12dx21 − x21dx12.

And ΩO(Gm)/k is the O(GL1)-module generated by dt with the k-derivation dt−1 := −t−2dt.
The module of differentials ΩO(SL2×Gm)/k is the O(SL2)⊗k O(Gm)-module generated by dxij for

1 ≤ i, j ≤ 2 and dt modulo the relation d(x11x22−x21x12) = 0, with the differential dt−1 := −t−2dt.
In particular, one can show that

ΩO(SL2×Gm)/k
∼= ΩO(SL2)/k ⊗O(SL2) O(SL2×Gm)⊕ ΩO(Gm)/k ⊗O(Gm) O(SL2×Gm),

which we will write ΩO(SL2×Gm)/k
∼= ΩO(SL2)/k⊕ΩO(Gm)/k for convenience. This induces an isomor-

phism of O(SL2)⊗k O(Gm)-modules

4∧
ΩO(SL2×Gm)/k

∼= ΩO(Gm)/k ∧
3∧

ΩO(SL2)/k.

From φ′, we have a morphism of O(GL2)-module

ΩO(GL2)/k → ΩO(SL2×Gm)/k,

inducing a morphism of O(SL2)⊗k O(Gm)-module

ΩO(GL2)/k ⊗O(GL2)/k (O(SL2)⊗k O(Gm))→ ΩO(SL2×Gm)/k.
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This is the map obtained by taking global sections of

Φ : φ∗ΩGL2 /k → ΩSL2×Gm/k.

With this, we have a morphism of top forms
∧4 φ∗ΩGL2 /k →

∧4 ΩSL2×Gm/k, whose global sections
sends

2∧
i,j=1

dxij 7→ d(tx11) ∧ d(tx12) ∧ dx21 ∧ dx22,

= (tdx11 + x11dt) ∧ (tdx12 + x12dt) ∧ dx21 ∧ dx22,

= t2dx11 ∧ dx12 ∧ dx21 ∧ dx22

+ tx11dt ∧ dx12 ∧ dx21 ∧ dx22

− tx12dt ∧ dx11 ∧ dx21 ∧ dx22.

Note that x11x22−x21x12 = 1 in the O(SL2)⊗kO(Gm)-module
∧4 ΩO(SL2×Gm)/k and that d(x11x22−

x21x12) = 0 so

dx11 ∧ dx12 ∧ dx21 ∧ dx22 = (x11x22 − x21x12)dx11 ∧ dx12 ∧ dx21 ∧ dx22 = 0.

In the end, we find

t2
2∧

i,j=1

dxij 7→ t−1dt ∧ (x11dx12 ∧ dx21 ∧ dx22 − x12dx11 ∧ dx21 ∧ dx22).

From previous section, t2
∧
i,j dxij is a global left-invariant top form of GL2. We also know t−1dt

is the global left-invariant top form of Gm. This should imply that

ω = x11dx12 ∧ dx21 ∧ dx22 − x12dx11 ∧ dx21 ∧ dx22

is a global left-invariant top form of SL2. .... Is this correct? If yes, what is the quickest way to
check this?

3.3. 11/08/2021: V (mν) in V (mλ)⊗ V (mµ). I want to continue to solve the problem I had on
28/07/2021. I learnt this proof from Travis.

Lemma 5. There is a unique copy V (mλ) in V (λ)⊗m that contains v⊗m for every v ∈ V (λ).

Proof. We denote vλ to be the highest weight vector of weight λ in V (λ). Then v⊗mλ is a highest
weight vector of weight mλ in V (λ)⊗m so V (λ)⊗m contains a copy of V (mλ).

There is only one copy of V (mλ) in V (λ)⊗m because v⊗mλ is the only vector of highest weight λ
in V (λ)⊗m (up to linear independence). Indeed, suppose

∑n
i=1 civi1 ⊗ vi2 ⊗ · · · ⊗ vim is a highest

weight vector of weight mλ where 0 6= ci ∈ C and vik is a weight vector of weight λik, then from
h ·
∑n

i=1 civi1 ⊗ vi2 ⊗ · · · ⊗ vim = (mλ)(h)
∑n

i=1 civi1 ⊗ vi2 ⊗ · · · ⊗ vim, we find mλ =
∑m

k=1 λik for
every 1 ≤ i ≤ n. Because λik ≤ λ for every i, k so we find λik = λ for every i, k, as desired.
V (mλ) in V (λ)⊗m contains v⊗m for every v ∈ V (λ) because U(g) · v⊗m contains v⊗mλ . Indeed,

let v =
∑`

i=1 aivi where vi is a weight vector of weight µi ≤ λ (µi 6= µj for i 6= j) and ai ∈ C \ {0}.
Let λ− µj =

∑k
i=1 cijαi where αi’s are the simple roots, cij ∈ Z≥1.

We can choose a µ1 among µj ’s such that c11 = maxj{c1j}; c21 is maximal among those c2j ’s of
µj ’s satisfying c1j = c11; c31 is maximal among those c3j ’s of µj ’s satisfying c1j = c11, c21 = c2j ; ...

With this, by letting ei ∈ n that corresponds to the simple root αi, we find ec111 · · · e
ck1
k vj = 0 for

j 6= 1 and 0 6= ec111 · · · e
ck1
k v1 ∈ Cvλ. Thus, when g = ec111 · · · e

ck1
k then gv ∈ Cvλ, while g2v = 0.

This follows gmv⊗m = m!(gv)⊗m, as desired. �

Lemma 6. For g-modules V,W then V ⊗W ∼= W ⊗ V by sending v ⊗ w 7→ w ⊗ v.
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Proof. It suffices to check that the map f : V ⊗W →W ⊗V is a g-module homomorphism. Indeed,
f(g(v⊗w)) = f((gv)⊗w+v⊗(gw)) = w⊗(gv)+(gw)⊗v = g(w⊗v) = g ·f(v⊗w). This argument
is the same as saying that U(g) is cocommutative, i.e. comultiplication ∆ : U(g) → U(g) ⊗ U(g),
defined by ∆(g) = g⊗ 1 + 1⊗ g for g ∈ g, commutes with τ : U(g)⊗U(g)→ U(g)⊗U(g), where τ
is the permutation map. �

Back to the problem, we want to show that V (mλ)⊗ V (mµ) contains a copy of V (mν). There
exists a highest weight vector of V (ν) in V (λ)⊗ V (µ). By the construction of tensor product, we
can write it as v ⊗ w where v ∈ V (λ), w ∈ V (µ).

We also know that (V (λ)⊗ V (µ))⊗m ∼= V (λ)⊗m⊗ V (µ)⊗m sends (v ⊗ w)⊗m to v⊗m⊗w⊗m. We
have (v ⊗ w)⊗m is of highest weight mν. From the previous lemma, we know v⊗m ∈ V (mλ) and
w⊗m ∈ V (mµ) so U(g) · v⊗m ⊗ w⊗m is a submodule of V (mλ) ⊗ V (mµ) in V (λ)⊗m ⊗ V (µ)⊗m.
With this, we conclude V (mλ)⊗ V (mµ) contains a copy of V (mν).

3.4. 12/08/2021: Tate vector spaces. I read something interesting called Tate vector spaces.
It refers to an infinite dimensional vector space V equipped with a set of lattices in V such that V
is isomorphic to the inverse limit of V/L where L runs through lattices in V .

This notion generalises other spaces such as the Grassmannians, adeles, k((t)).
There are dimension theory (i.e. assign each lattice in V a number, called dimension) and

determinant theory (i.e. assign each each lattice in V a line) for Tate vector space V generalise
certain constructions in the above mentioned examples. For the determinant theory, one can use
it to construct central extensions of GL(V ) and somehow people want to do this ...

Need to read more at http: // page. mi. fu-berlin. de/ groemich/ chicago. pdf by Michael
Groechenig and https: // people. math. harvard. edu/ ~ gaitsgde/ grad_ 2009/ SeminarNotes/

Nov3-10( CentExt) .pdf by Dustin Clausen.

3.5. 13/08/2021: Inner product and Hom. Madeline pointed out to the category theory
reading group that in Etingof’s book on representation theory (p. 189 of http://www-math.mit.
edu/~etingof/reprbook.pdf), there is a myterious dictionary between a category and a vector
space V equipped with a nondegenerate inner product. In particular, an inner product (x, y) in V
is analogous to Hom(X,Y ) in a category. I wonder if we can make this analogy more formal. I
suspect it is some sort of (de)categorification, although I am not too sure about this.

Let me try to describe this analogy in the case our category is Rep(G), i.e. the category of
finite-dimensional complex representations of a finite group G. Then the vector space is vector
space V of class functions, i.e. complex-valued functions on G that is invariant under conjugation
action of G. This the space where all characters of representations live. One can equipp V with
a Hermitian inner product. For example, if χV , χW are characters of representations V,W of G,
then 〈χV , χW 〉 = dim Hom(V,W ). In some sense, Rep(G) is the categorification of V , where
orthonormal basis of V corresponds to irreducible representations.

This reminds me of a question I had on 06/06/2021 about the relation between adjoint operators
and adjoint functors.

Nasos told us that John Baez have done something related to this dictionary in this paper of his:
Higher-Dimensional Algebra II: 2-Hilbert Spaces https://arxiv.org/pdf/q-alg/9609018.pdf.
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3.6. 14/08/2021: Principal G-bundles. I want to digest the definition of principal G-bundles,
as it seems to me that there are many ways to phrase this notion and different sources define
principal bundles differently, depending on how nice the space of consideration is.

Update 30/09/2021: Brian Conrad wrote some notes with many examples on taking quotient by a
group action https://math.stanford.edu/~conrad/diffgeomPage/handouts/qtmanifold.pdf.

In this discussion, every topological space is assumed to be Hausdorff.
We start off with one definition of principal G-bundles, taken from Cohen’s lecture notes on The

Topology of Fiber Bundles or Stephen A. Mitchell’s notes https://sites.math.washington.edu/

~mitchell/Notes/prin.pdf.

Definition 7. For a topological group G, a principal G-bundle P over X is a (surjective) continuous
map π : P → X satisfying the following conditions:

(1) G acts on the right on P ;
(2) Local trivialisation: There is an open cover {U} of X such that for each such U , we have

a homeomorphism πU : π−1(U)→ U ×G that is G-equivariant satisfying

π−1(U) U ×G

U

π

∼
πU

Here g acts on U ×G by (u, g)g′ = (u, gg′).

Firstly, πU being G-equivariant tells us that G acts on fiber Px. Indeed, for a local trivialisation
(U, πU ) at x, if p ∈ Px so πU (p) = (x, g), we find πU (pg′) = πU (p)g′ = (x, gg′). Hence, pg′ ∈ Px. To
say G acts on fibers is the same as saying π : P → X is G-equivariant with trivial G-action on X.

Furthermore, πU being bijective implies G acts simply transitively on Px. Indeed, choose a local
trivialisation (U, πU ) of x, for any y, z ∈ Px, let πU (y) = (x, gy) and πU (z) = (x, gz) then there
exists a unique g ∈ G so gyg = gz, implying πU (z) = πU (y)g = πU (yg). Hence, there exists unique
g ∈ G so z = yg.

On the other hand, πU being a G-equivariant bijection implies that G acts freely (i.e. trivial
stabiliser) on P . Indeed, if we have p ∈ P and g ∈ G so pg = p then by choosing a local trivialisation
(U, πU ) of π(p), we find (π(p), g′) = πU (p) = πU (pg) = πU (p)g = (π(p), g′g). Hence, g′ = g′g so
g = 1.

Because G acts simply transitively on Px, we know that for any y ∈ Px, the map G → Px
defined by g 7→ yg is a continuous bijection 3. However, we cannot say anything more than this. In
particular, this does not imply that G is homeomorphic to Px, i.e. Px is a G-torsor, which is what
we want when we define principal G-bundles 4. Hence, we would like to add the following condition
to the definition

Definition 8. We add the following condition to our definition of principal G-bundle π : P → X.

(1) For every y ∈ Px, the morphism G→ Px defined by g 7→ yg is a homeomorphism.

In the case where our spaces are smooth manifolds and G is a Lie group, this condition auto-
matically holds, see p.5 https://www.mathi.uni-heidelberg.de/~lee/MenelaosSS16.pdf. The
reason roughly is that the map G→ Px is of constant rank and bijective, hence a diffeomorphism.

3One can show fy : G→ Px is continuous when assuming Px (or P ) is Hausdorff. Indeed, since G acts continuously on
Px via φ : Px×G→ Px, for any closed subset U of Px, we know φ−1(U)∩ ({y}×G) is closed, implying φy : G→ Px,
defined by φy(g) = yg, is continuous
4For example, consider G = R with discrete topology acts on P = R with the usual topology, then G is not
homeomorphic to Px = R.
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An equivalent way to phrase this condition is that the map φ : P × G → P × P , defined by
(x, g) 7→ (x, xg), is a homeomorphism. Indeed, for closed subset U in G then φ({x} × U) is closed.
Hence, φx : g 7→ xg is a closed map. We know φx is a continuous bijection so this implies φx is a
homeomorphism.

An equivalent way to say π : P → X has local trivialisations is to say it has local sections.
If π : P → X admits local sections, i.e. for every x there is a continuous section s : U → P on

some open neighborhood U of x, then this will imply local trivialisation condition. Indeed, we can
define π−1

U (u, g) = s(u) ·g. The map is bijective since G acts simply transitively on fibers. Indeed, if
s(u′)g = s(u)g′ then u = u′ and for any p ∈ π−1(U), there exists a unique g ∈ G so s(π(p)) · g = p.

The map is continuous as it is the composition of U ×G s×idG−−−−→ P ×G→ P . I cannot seem to show
that this map is a homeomorphism, i.e. it is open/closed with the current assumption on X,P? It
seems for this to be true, s needs to be homeomorphic onto its image, then π−1

U is an open map. For
this to work, I can assume extra condition that X is locally compact Hausdorff, which means we
can assume U is compact (or restrict U to a compact neighborhood). Then we have s : U → s(U)
is a bijective continuous map from compact U to Hausdorff s(U), implying s is a homeomorphism
onto its image. Thus, πU is a local trivialisation.

Conversely, if we are given a local trivialisation (U, πU ) of a principal G-bundle π : P → X, we
can define a local section s : U → P by s(u) := π−1

U (u, 1). To check s is a continuous map, given a
closed set V ⊂ π−1(U) of p ∈ π−1(U), V ∩ Pπ(p) is also a closed set of p, we have s−1(V ∩ Pπ(p)) is
either {π(p)} or ∅, hence is closed.

We know if π : P → X is a principal G-bundle then G acts freely on P . In the other direction, if
we are given a space P with a free G-action on the right of P , it is not enough to say π : P → P/G
is a principal G-bundle. For example, let R acts on the torus R2/Z2 by translating (1/2, a) where
a is an irrational number. Even though the action is free, the orbits are dense and the quotient
space is not even Hausdorff. One needs to add extra condition, for example, π having local sections.
Some references would call P a (right) free G-space if π : P → P/G is a principal G-bundle.

Given a principal G-bundle π : P → X then by the universal property of quotient spaces,
this induces a continuous bijective map φ : P/G → X, defined by [p] ∈ P/G 7→ π(p). In our
setup, I don’t think we can show φ is a homeomorphism. However, if we assume our spaces
are smooth manifolds, G is a Lie group, then φ is a diffeomorphism (see for example https:

//www.mathi.uni-heidelberg.de/~lee/MenelaosSS16.pdf).
Some more references https: // web. ma. utexas. edu/ users/ dafr/ M392C-2017/ Notes/ lecture13.

pdf , https: // ncatlab. org/ nlab/ show/ principal+ bundle
Principal G-bundles in topological setting is discussed at Tammo tom Dieck’s book Algebraic

Topology

3.7. 14/08/2021: Gufang Zhao’s first lecture: Bundles as double quotient space. Just
want to take some notes on Gufang Zhao lectures. The summary of his lecture series is as fol-
lows: One can construct certain bundles on Riemann surfaces (bundles of conformal blocks on the
configuration space of points of the Riemann surface), equipped it with a flat connection, called
Knizhnik-Zamolodchikov (KZ) connection. The solution of of the KZ equations can be obtained
by counting algebraic curves.

His first lecture is about constructing such bundles.

3.7.1. Representations from sections of equivariant vector bundles. Given a space X with a free
(right) G-action (i.e. so that π : X → X/G is a principal G-bundle) and a representation ρ : G→
GL(V ) of G, we can construct a vector bundle X ×G V → X/G by letting X ×G V := (X × V )/ ∼
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where the equivalence relation is (xg, v) ∼ (x, ρ(g−1)v) 5. It has a natural projection p : X×G V →
X/G, making it a vector bundle over X/G with fiber isomorphic to V . We can describe its global
sections H0(X/G,X ×G V ) as the space of G-equivariant functions s : X → V , i.e. s(xg) = g · s(x)
for all g ∈ G. Indeed, given such s, we can define s : X/G → X ×G V by s(x) = (x, s(x)) where
π(x) = x. This is well-defined because (xg−1, s(xg−1)) ∼ (x, g · s(xg−1)) ∼ (x, s(x)).

If we also have an action of a group H on X that commutes with the G-action, we can turn X×G
V → X/G into a H-equivariant vector bundle by letting H act on X×GV by h(x, v) := (hx, v) and
on X/G by h(xG) = hxG. This is well-defined because the action of H on X commutes with action
of G on X. This induces a representation of H on the space of global sections H0(X/G,X ×G V ).
Indeed, let s : X/G → X ×G V be in H0(X/G,X ×G V ) then (h · s)(x) := h · s(h−1x). As s
corresponds to a G-equivariant s : X → V , we have (h · s)(x) = s(h−1x).

Example 9. Consider X = C2 \{0} and G = C× acts on X by t(x, y) = (tx, ty), then X/G is P1(C).
For every d ∈ Z, we can construct a representation C(d) of G = C× on V = C by t · x = tdx.
Thus, this gives us a vector bundle O(d) := C2 \ {0} ×C× C(d) over P1. Its global sections can

be described as

H0(P1,O(d)) = {f : C2 \ {0} → C|f(tx) = tdf(x) ∀t ∈ C×}.
When we only care about holomorphic/algebraic sections then

H0(P1,O(d)) = {f ∈ C[x, y] : f(tx, ty) = tdf(x, y) ∀t ∈ C×}.
This is the space of homogeneous polynomials of degree d over two variables x, y.

Let H = SL2(C) acts on X = C× \ {0} by left-mutiplication. Then SL2(C) acts on H0(P1,O(d))
by (a · f)(x, y) = f(a−1(x, y)).

3.8. 15/08/2021: Tamagawa number for SLn over Q. I would like to sketch the computation
that the Tamagawa number of SLn over Q is 1, i.e. µSLn,Q(SLn(Q) \ SLn(A)) = 1. I learnt this
from Garrett’s notes https://www-users.cse.umn.edu/~garrett/m/v/volumes.pdf and Andre
Weil’s book Adeles and Algebraic Groups (p. 47, §3.4). From these sources, I know that Siegel
came up with this proof for SLn(Z) \ SLn(R), which was then adapted by Weil to prove it for
SLn(Q) \ SLn(A).

At the moment, to focus on describing the main idea of the proof, I will avoid analytic issues such
as convergence of integrals, measure-preserving homeomorphisms and normalisations of measures.
This is also because I haven’t managed to figure out all these technical details.

For Gn = SLn, we are able to find a copy of SLn−1 in SLn via the action of SLn on kn. This
then allows us to use induction on n. More precisely, let Gn(k) acts on kn by left-multiplication.
Let G′n(k) be the stabiliser of e1 = (1, 0, 0, . . . , 0)t ∈ kn in G(k). We then have the following
identification of spaces

(1) G′n(k) \ Gn(k) is continuously bijective to Gn(k)e1 for k = Qv or A. When k is a division
algebra, Gn(k)e1 = kn\{0} as one can write out explicitly M ∈ Gn(k) such that Me1 = y for
any y ∈ kn\{0}. Note that A is not a division algebra, but if we only care about integrating
over this quotient space, then it is good enough to know that the set An − Gn(A)e1 has
measure 0.

(2) G′n is the semidirect product of Gn−1 with Gn−1
a . In particular, elements in G′n(k) can be

described as (
1 0
0 x

)(
1 u
0 1

)
where u ∈ kn−1, x ∈ Gn−1(k).

5Some references define this equivalence relation as (xg, v) ∼ (x, ρ(g), v). I don’t think it matters which one we
choose, but we need to modify this discussion accordingly
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We start with the following formula that describe integration over G′n(Q) \Gn(A) in two ways

(3)

∫
x∈Gn(Q)\Gn(A)

∫
y∈G′n(Q)\Gn(Q)

f(xy)dxdy =

∫
z∈G′n(A)\Gn(A)

∫
t∈G′n(Q)\G′n(A)

f(zt)dzdt.

As G′n = Gn−1
a nGn−1, by inductive hypothesis on Gn, we find the Tamagawa number of G′n (i.e.

the volume of G′n(Q) \G′n(A)) is

τ(G′n) = τ(Gn−1
a )τ(Gn−1) = 1.

Therefore, if we choose f to be a function on G′n(A) \ Gn(A), i.e. trivial on G′n(A), and from the
identification of G′n(k) \Gn(k), we can rewrite (4) as

(4)

∫
x∈Gn(Q)\Gn(A)

∑
y∈Qn\{0}

f(yx)dxdy =

∫
An
f(z)dz.

The Fourier transform of f : An → C is

f̂(y) =

∫
An
f(x)χA(yt · x)dx,

where χA is the standard unitary character on A. Applying (4) for f̂ , we find∫
x∈Gn(Q)\Gn(A)

∑
y∈Qn\{0}

f̂(yx)dx =

∫
An
f(z)dz.

On the other hand, noting that for x ∈ Gn(A), as detx = 1, we find f(yx) = f̂(y(xt)−1) for y ∈ An.
Thus, combining the above two equations, we find∫

An
(f(x)− f̂(x))dx =

∫
Gn(Q)\Gn(A)

(f̂(0)− f(0))dx.

By Fourier inversion formula, the left-hand side is f̂(0) − f(0). One can choose f such that

f(0) 6= f̂(0), giving Gn(Q) \Gn(A) volume 1, as desired.

Remark 10. What I found surprising about this proof is the following:

(1) It works (almost) verbatim if we work with SLn(Z)\SLn(R) instead. An induction argument
can be used to show the answer is ζ(1)ζ(2) · · · ζ(n).

(2) Comparing this proof with the one given by describing a fundamental domain for SLn(Q) \
SLn(A), for the later one, we need to compute the volume of SLn(Zp), but this is nowhere
to be seen for this proof. In some sense, the appearance of Qp is completely suppressed.

(3) It seems to me that because this is an inductive argument, one does not have to make an
explicit choice of a left-invariant top form for G. This proof also works for any global field
I believe.

(4) The proof works mainly because for Gn = SLn, one can find a nice subgroup G′n = Gn−1
a n

Gn−1. I wonder if this phenomenon holds for other groups. For example, it is mentioned in
the references that the inductive strategy of this proof works for Sp2n, (any more?)

Update 22/09/2021: The group Gn is called the mirabolic subgroup of SLn (mirabolic = mirac-
ulous parabolic). It is important in establishing ”multiplicity-one” results in automorphic repre-
sentation theory, (see https://mathoverflow.net/q/196006/89665).
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3.9. 22/08/2021: Tamagawa number of Sp2n. Let Jn =

(
0 In
−In 0

)
be a 2n-by-2n matrix.

The symplectic group Sp2n is defined as

Sp2n(k) = {M ∈M2n×2n(k) : M tJnM = Jn}.
In this section, we show that the Tamagawa number of the symplectic group Sp2n is 1. We prove
this by induction on n. For n = 1 then Sp2 = SL2 so τ(Sp2) = τ(SL2) = 1.

LetGn = Sp2n acts on k2n by left-multiplication. LetG′n(k) be the stabiliser of e = (1, 0, . . . , 0)t ∈
k2n. Elements in G′n(k) can be written as

1 ∗ ∗ ∗
0 a ∗ b
0 0 1 0
0 c ∗ d


where

(
a b
c d

)
∈ Gn−1(k) and other entries are suitably chosen.

Determine elements in G′n. To determine other entries, let X =

(
A B
C D

)
where A,B,C,D ∈

Mn×n, then such matrix lies in Sp2n iff AtC−CtA = BtD−DtB = 0 and AtD−CtB = In. For X

to stabilises e means A =

(
1 ∗
0 ∗

)
and C =

(
0 ∗
0 ∗

)
. Hence, we find

(
A B
C D

)
=


1 x1 x x2

0 a y1 b
0 0 1 0
0 c y2 d


where (x1, x2) =

(
y1

y2

)t(
0 In−1

−In−1 0

)(
a b
c d

)
and

(
a b
c d

)
∈ Sp2n−2. �

The set g of elements in G′n(k) so

(
a b
c d

)
= I(2n−2)×(2n−2) is a normal subgroup of G′n(k). The

set of elements in g so (x1, x2) = 0 is is a normal subgroup of g. Thus, we find that G′n is isomorphic
to the semidirect product (Ga n G2n−2

a ) n Gn−1. Thus, by inductive hypothesis, the Tamagawa
number of G′n is τ(G′n) = τ(Gn−1)τ(Ga)

2n−1 = 1.
We can identify G′n(k) \Gn(k) with G′n(k)e. When k is a division algebra, G′n(k)e = k2n \ {0}.

When k = A then A2n \ G′n(A)e has measure 0. Proceeding exactly as in SLn case, we obtain
τ(Sp2n) = 1.

3.10. 22/08/2021: Tamagawa measure and restriction of scalars. I will discuss on how to
define a measure on the adelic points of a variety. After this, we will focus on the case for linear
algebraic groups and define the Tamagawa measure on the adelic points of such groups.

The references we follow are: Weil’s Adeles and Algebraic Groups, first chapter of Gaitsgory and
Lurie’s book Weils Conjecture for Function Fields I.

3.10.1. Tamagawa measure on smooth schemes. Let X be a separated 6 smooth (affine) scheme of
finite type over k. A volume form on X is a nowhere-vanishing algebraic differential form of top
degree on X. Suppose X has a volume form ω (in other words, the canonical line bundle on X has
a nonzero global section).

Over a complete valued field k, X(k) has a canonical structure of a k-analytic manifold. When k
is a local field equipped with a Haar measure, from the volume form of X, one can define a measure
on X(k).

6I don’t know that well of this separatedness condition for schemes but it will guarantee that over complete valued
field k, X(k) is Hausdorff
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Let k be now a global field. Let kv to be the completion of k with respect to a place v of k. Let
Okv to be the ring of integers of kv. Let µkv to be standard Haar measure on kv (i.e. when kv is a
nonarchimedean local field, we normalise µkv so µkv(Ov) = 1; when kv = R then it is the Lebesgue
measure; when kv = C then µkv is twice the Lebesgue measure).

From a volume form ω on X, we can define a measure ωv on X(kv), where v is a place of k and
kv is the completion of k with respect to v. Denote Okv to be the ring of integers of kv.

Let S be a nonempty finite set of places of k that contains every archimedean places of k and
let OS := {x ∈ k : x ∈ Okv ∀v 6∈ S}. Suppose there exists a smooth scheme X over OS such that
Xk = X (here Xk is an affine scheme over k such that its coordinate ring is O(Xk) = O(X)⊗OS k)
7, and suppose that X has a volume form ω. Then this induces a volume form ω|X for X. As
OS ↪→ Ov or Spec Ov → Spec OS

8, we can make sense of µω,v(X(Ov)) where µω,v is the induced

measure from ω on X(kv) ⊃ X(Ov). We can also regard∏
v 6∈S

X(Ov)×
∏
v∈S

X(kv)

as an open subgroup of X(Ak).
If the product ∏

v 6∈S
µω,vX(Ov)

converges absolutely to a nonzero real number, we say X admits a Tamagawa measure.
If X admits a Tamagawa measure, a Tamagawa measure µω on X(Ak) with respect to ω is such

that over open sets
∏
x 6∈S X(Ov)×

∏
v∈S X(kv) of X(Ak), µω is the product measure

τ(Ga)
−dim X

∏
v

µω,v.

Here τ(Ga) is the Tamagawa number for A (i.e. we define the measure µA on A to be the one such
that over open sets

∏
v 6∈S Ov ×

∏
v∈S kv, it is the product measure. We then let τ(Ga) =

∫
Q\A µA,

which is well-defined because Q \ A is compact).
This definition of µω does not depend on the choice of a set S of places of k or the choice of an

integral model X for X (because two choice of integral models become isomorphic after enlarging
S).

The reason why we add a factor τ(Ga)
−dim X is because of the following result 9

Theorem 11. Let K/k be a finite and separable extension. Let V be a separated smooth scheme of
finite type over K. Let W to be the Weil’s restriction of scalars of V with respect to K/k, i.e. W
is a scheme over k such that W (R) := V (R⊗kK) where R is a k-algebra. Under the restriction of
scalars, there is a canonical isomorphism W (Ak) ∼= V (AK). We then have

(1) W admits a Tamagawa measure iff V admits a Tamagawa measure.
(2) If the previous condition holds, the canonical isomorphism W (Ak) ∼= V (AK) is a measure

preserving map.

What to do next:

7One says X is a model for X over OS . So the point of a model is as follows: for a linear algebraic group G over Q.
We would like to describe G(Z) without having to embedd G to GLn and write G(Z) = G(Q)∩GLn(Z), which is less
functorial
8For example, when k = Q, S = {∞, 2, 3} then OS = Z[1/2, 1/3] and for v = 5 6∈ S, as 1/2 and 1/3 are invertible in
Z5, we have a map Z[1/2, 1/3]→ Z5.
9Another way for people to define Tamagawa measure is to choose Haar measures on local fields kv such that
τ(Ga) = 1. A natural choice of Haar measures on kv would be the one that is self-dual with respect to its Pontryagin

dual k̂v.
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(1) Do some more examples over number fields and function fields.
(2) Examples with restriction of scalars.

3.10.2. Tamagawa measure for semisimple algebraic groups. Let G be a connected semisimple linear
algebraic group over a global field k. The above discussion of Tamagawa measure applies for ω
being a left-invariant volume form for G. In particular, G does admit a Tamagawa measure (in
this case, Tamagawa measure for G is a Haar measure) and furthermore, such measure does not
depend on the choice of ω.

3.11. 27/08/2021: Affine Grassmannian. Today I attend a WiSe talk about affine Grassman-
nian by Alex Weeks https://sites.google.com/view/mathwise and I just want to write down
something I learnt from this talk.

We start by defining the ring of formal power series O = C[[z]] = {a0 + a1z + a2z
2 + . . . |ai ∈ C}

and its fraction field, the field of formal Laurent series K = C((z)) = {anzn + an+1z
n+1 + . . . |n ∈

Z, ai ∈ C}.
An O-lattice L ⊂ Kn is a finitely-generated O-module 10 such that K ⊗O L ∼= Kn As a set, the

affine Grassmannian of GLn is defined to be

GrGLn = {L ⊂ Kn : L is an O− lattice}.

We will later see that GrGLn has more structure.
For example, let n = 1, then GrGL1

∼= Z, where n ∈ Z 7→ znO. The set {znO : n ∈ Z} are all the
O-lattices in K because if L is an O-lattice, there exists an element of lowest degree anz

n+an+1+. . .
in L, where an 6= 0. This follows zn ∈ L and hence L = znO.

We can contruct O-lattice Lλ, where λ = (λ1, . . . , λn) ∈ Zn, in Kn, by Lλ = zλ1Oe1⊕· · ·⊕zλnOen.
Here ei = (0, . . . , 1, 0 . . . , 0).

The ind-scheme structure of GrGLn comes from the following observation: For any L1, L2 ∈
GrGLn , we can find a, b ∈ Z≥0 such that zaL1 ⊂ L2 ⊂ z−bL1. To see this, we can choose O-
basis {v1, . . . , vn} for L2 and O-basis {w1, . . . , wn} for L1. We then can write wi =

∑
aijwj with

aij ∈ K. We can choose sufficiently large n ∈ Z such that znwi ∈ L2 for every 1 ≤ i ≤ n. This
implies znL1 ⊂ L2. For the case n = 1, the following observation just says that for any integer n,
there exists a, b ∈ Z so a ≤ n ≤ b (which trivially holds ...).

From this observation, given zaOn ⊂ L ⊂ z−bOn, we find L/zaOn ⊂ z−bOn/zaOn. Furthermore,
z−bOn/zaOn is a finite dimensional complex vector space of dimension (a + b)n. Indeed, it has
basis z−bei, z

−b+1ei, . . . , z
a−1ei over all i. If we write d = dimC (L/zaOn), we find L/zaOn ∈

Gr(d, z−bOn/zaOn), our usual Grassmannian of d-dimensional subspaces in z−bOn/zaOn.
Now, we wonder if a d-dimensional subspace U ∈ Gr(d, z−bOn/zaOn) can be used to build an

O-lattice in Kn?
To see this, we first can define an operator T on z−bOn/zaOn by multiplying by z. This operator T

is nilpotent with Jordan type (a+b, . . . , a+b). Indeed, T a+b(zjei) = 0 where 1 ≤ i ≤ n,−b ≤ j ≤ a
and T (zjei) = zj+1ei for −b ≤ j ≤ a− 2.

If L is an O-lattice where zaOn ⊂ L ⊂ z−bOn then L/zaOn is a T -invariant subspace of
z−bOn/zaOn. Back to our question: The converse also holds, i.e. U ∈ Gr(d, z−bOn/zaOn) de-
fines an O-lattice in Kn if it is T -invariant.

Indeed, let L to be the kernel of

L := ker
(
zbOn → z−bOn/zaOn →

(
z−bOn/zaOn

)
/U
)

10Zhu’s note on affine Grassmannian put finitely generated projective O-module, which is a free module as any finitely
generated projective module over a PID (e.g. O) is free. This then means we can choose an O-basis e1, . . . , en for L,
i.e. L = Oe1 ⊕ · · · ⊕ Oen.
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We claim that L is a O-lattice in Kn. Firstly, L is an O-module because U is T -invariant. It is
finitely generated because it is an O-submodule of finitely generated module zbOn (O = C[[z]] is
Noetherian as C is, and any submodule of finitely genenerated module over a Noetherian ring is
also finitely generated). L contains zaOn so L⊗O K = Kn, as desired.

In summary, we have a bijection from d-dimensional O-lattices zaOn ⊂ L ⊂ z−bOn to d-
dimensional subspaces of z−bOn/zaOn.

Thus, the task of finding an O-lattice L (of dimension d) between zaOn and z−bOn boils down
to find a d-dimensional subspace of z−bOn/zaOn.

Example 12. When n = 2, a = 2, b = 0 then T =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 by identifying basis ze1, e1, ze2, e2

of z2O2/O2 with (e1, e2, e3, e4) of C4. To find O-lattices z2O2 ⊂ L ⊂ O2 of dimension 2, we want
to find T -invariant 2-dimensional subspaces of C4. Note that kerT is 2-dimensional, so it is one
candidate. If T -invariant subspace U is not kerT , then there exists v ∈ U so T (v) 6= 0. Then
U = spanC(v, Tv) because T has only eigenvalue 0 with eigenvector Tv, but v 6∈ kerT so v and Tv
are linearly independent.

These are all the 2-dimensional subspaces of C4 that are T -invariant.

Our problem of finding 2-dimensional T -invariant subspaces is related to the nilpotent cone. Let
Nil2 to be the set of all 2× 2 nilpotent matrices over C. Equivalently, we can write

Nil2 =

{(
a b
c −a

)
∈ SL2(C) : a2 + bc = 0

}
.

It is called a ”cone” because under change of variables b = x − y, c = x + y then the equation
becomes a2 + x2 = y2, which is a cone over the real points.

We can define a map

Nil2 → GrGL2(
a b
c −a

)
7→ L := O(z + a, c)⊕ O(b,−a+ z).

We notice z2O2 ⊂ L ⊂ O2. L is a free O-module because a2 + bc = 0. To see dimC(L/z2O2) = 2,
by identifying z2O2/O2 ∼= C4 via (ze1, e1, ze2, e2) 7→ (e1, e2, e3, e4), we can write

L/z2O2 = C(1, a, 0, c)⊕ C(0, b, 1,−a).

This vector space is T -invariant because a2 + bc = 0.

35



3.12. Some unanswered questions.

(1) Masoud asked what happen if we do not choose the standard character in identifying k with

k̂ where k is a local field, what would be the dual Haar measure on k and k̂ in the Fourier
inversion formula.

(2) What happen to Haar measure on local field under field extension. For example C/R?
(3) Learn Borel-Weil-Bott construction of irreducible representations. See book Complex ge-

ometry and Representation theory. See notes by Joel Kammitzer (already print out).

(4) Why the non-split maximal torus of GL2(Fq) is

{(
x εy
y x

)}
where x, y, ε ∈ Fq and ε is

non-square.
(5) Learn about moduli (very short note by Ivan Mirkovic algebraic geometry course).
(6) Why adeles can be used to compute cohomology? See 12/08/2021 and https://webusers.

imj-prg.fr/~matthew.morrow/Morrow,%20M.,%20Introduction%20to%20HLF.pdf.
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4. September 2021

4.1. 01/09/2021: Algebraic function fields. I want to take some notes on ways to describe
algebraic function fields. I learned this from Salvador’s book Topics in the Theory of Alebraic
Function Fields.

A global function field k is a field of characteristic p that is a finitely generated extension of
transcendental degree 1 over Fp.

Some digestion on the definition of transcendance: Let L/K be a field extension. A transcendental
basis of L over K is a maximal subset of L algebraically independent over K (i.e. for any n elements
s1, . . . , sn in the basis, there does not exist f ∈ K[x1, . . . , xn] so that f(s1, . . . , sn) = 0). One
can show that S is a transcendental basis of L over K iff L/K(S) is an algebraic extension 11,
and the cardinality of S is called the transcendental degree of L over K. For example, the field
L = K(X)[Y ]/(X2−Y − 1) has transcendental basis {x} or {y}, where x = X mod (X2−Y − 1),
as there does not exist f ∈ K[x] so f(x) = 0 in L. Furthermore, L/K(x) is algebraic as y2 = x+ 1.

Back to our global function field k/Fp. If T ∈ k is transcendental over Fp then k/Fp(T ) is a finite
(algebraic) extension 12. If we choose a different transcendental basis T ′ for k/Fp then [k : Fp(T )]
does not necessarily equal to [k : Fp(T ′)]. This is one of the principal differences with number fields,
i.e. there is no natural choice of a base field. For example, take L = Q(x)[z]/(x2 + z4 − 1) then
[L : Q(x)] = 4, [L : Q(z)] = 2, [L : Q(x2)] = 8.

4.2. 03/09/2021: Tamagawa number of orthogonal groups. In this section, we will show
that the Tamagawa number of orthogonal group is 2. We follow Igusa’s chapter 4 of Lectures on
Forms of Higher Degrees and Hida’s notes on Siegel-Weil Formulas.

4.2.1. Orthogonal groups. Let V be a vector space over Q of dimension n ≥ 3. A map q : V → Q
is called a quadratic form on V over Q if it satisfies the following conditions:

(1) The function b : V × V → Q, defined by

b(x, y) := q(x+ y)− q(x)− q(y),

is a symmetric bilinear form.
(2) For λ ∈ Q and x ∈ V , we have q(λx) = λ2q(x).

Throughout this section, we will always assume that q is nondegenerate, i.e. b is nondegenerate.
A morphism between two quadratic forms q, q′ is a linear map f : V → V such that q′ ◦ f = q.

The automorphism group of a quadratic form q over Q is denoted as Oq(Q), called the orthogonal
group of (V, q).

For any Q-algebra R, q induces a quadratic form qR : V ⊗QR→ R over R by extension of scalars.
Its automorphism group is denoted by Oq(R). Thus, we have defined an algebraic group Oq over
Q corresponding to the quadratic form q : V → Q.

Furthermore, Oq is an affine algebraic group. Indeed, we fix a choice of basis {e1, . . . , en} for
V , a quadratic form q on V then corresponds to a symmetric matrix Bq defined by (Bq)ij :=
1
2(q(ei+ ej)− q(ei)− q(ej)). One can show that two quadratic forms q, q′′ on V are isomorphic over
Q if Bq′ = T tBqT for some T ∈ GLn(Q). Thus, for any Q-algebra R, we can describe Oq(R) as

Oq(R) = {x ∈ GLn(R) : Bq = xtBqx}.

11If L/K(S) is an algebraic extension then for any x′ 6∈ S, there exists f ∈ K(S)[x] so f(x′) = 0, i.e.∑
i fi(s1, . . . , sn)x′i = 0 for some s1, . . . , sn ∈ S and fi ∈ K[x1, . . . , xn]. This means {x′} ∪ S is algebraically

dependent, i.e. if S is an algebraically independent set of L/K, then S is a transcendental basis of L
12finitely generated algebraic extension is finite
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4.2.2. Tamagawa measure of Oq. As an algebraic group, Oq,Q has an algebraic left-invariant dif-
ferential form ω of top degree over Q. Hence, for each place v of Q, ω defines a left-invariant Haar
measure µOq(Qv),ω on Oq(Qv). As we know that Need to state this for general semisimple group∏

p<∞
µOq(Qp),ω(Oq(Zp)) <∞

so this defines a Tamagawa measure µOq ,Q on Oq(A).

4.2.3. Tamagawa number of Oq. In this section, we will prove the following result

Theorem 13. τQ(Oq) = 2.

To prove this, we induct on n = dim V . We will take for granted that τQ(Oq) = 2 for n = 3, 4.
The proof for these cases can be found at Weil’s book, p. 65, theorem 3.7.1.

4.2.4. Stabilisers of the action of Oq on Gn
a . For any Q-algebra R, we denote

Ov,q(R) = {g ∈ Oq(R) : vg = v}

to be the stabiliser of v ∈ VR := V ⊗QR. In particular, for v ∈ VQ, Ov,q is an affine algebraic group
over Q. In this section, we will describe the structure of Ov,q(R) in the two cases where q(v) = 0
and q(v) 6= 0. For convenience, we will restrict the discussion for Ov,q(Q), as the case Ov,q(R) for
any Q-algebra R is completely similar.

If q(v) 6= 0 then we will show Ov is an orthogonal group of dimension n− 1. Let Wv = (Qv)⊥ :=
{v′ ∈ V : q(v, v′) = 0} then Wv is a Q-vector space of dimension n−1. Indeed, we know q(v) 6= 0 so
q(v, v) 6= 0. Hence, for any basis v, v1, . . . , vn−1 of V , one can choose ci ∈ Q so that q(v, vi+civ) = 0.
This means Wv = spanQ{v1 + c1v, . . . , vn−1 + cn−1v}.

We note that if g ∈ Ov then g preserves Wv, as 0 = q(v, v′) = q(gv, gv′) = q(v, gv′) for v′ ∈ Wv.
This means Ov ⊂ Oq|Wv . Conversely, given g ∈ Oq|Wv then we can extend g to action on V by
letting gv = v, as v 6∈Wv. Thus, Ov = Oq|Wv , i.e. Ov is the orthogonal group corresponding to the

quadratic form q|Wv .
If q(v) = 0 but v 6= 0, q restricts to Qv is trivial. Since q is nondegenerate, there exists v′ ∈ V

independent from v such that q(v, v′) = 1. Then q(v′ − xv) = 1
2q(v

′ − xv, v′ − xv) = q(v′) − x
for x ∈ Q. Thus, by taking x = q(v′) and replace v′ by v′ − xv, we may assume that q(v′) = 0.
This follows W = (Qv ⊕ Qv′)⊥ has dimension n − 2, as for any w ∈ W , we can find c, c′ ∈ Q so
q(w + cv + c′v′, v) = q(w + cv + c′v′, v′) = 0. Thus, under a choice of basis v, v1, . . . , vn−2, v

′ of V
where v1, . . . , vn−2 is a basis of W , q has the matrix form

Bq =

0 0 1
0 S 0
1 0 0


where S is a (n − 2) × (n − 2) symmetric matrix corresponding to q|W . From this, one can show
that Ov,q is the semidirect product Gn−2

a n Oq|W , i.e. element in Ov,q(Q) has the form1 w −1
2w

tSw
0 1 −Stw
0 0 1


where w ∈ Gn−2

a (Q).
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4.2.5. An evaluation of integral. We will assume the following results

(1) Hasse-Minkowski theorem: For every n ≥ 1, if q−1
A (x) 6= ∅ then q−1

Q (x) 6= ∅ for every x ∈ Q.

(2) Witt’s theorem: For n ≥ 3, if we have 0 6= vi ∈ q−1
Q (i) then vi · Oq(Q) = q−1

Q (i) − {0} and

vi ·Oq(A) = q−1
A (i)− {0} for every i ∈ Q.

Next, similarly to the case of SLn and Sp2n, we want to rewrite the following integral∫
Oq(Q)\Oq(A)

∑
x∈Qn

f(xg)

 dµOq(g).

where f : VA → C is a Schwatz-Bruhat function, so that we can see the appearance of τQ(Oq).
From Witt’s theorem, we have

VQ − {0} =
⊔
i∈Q

(
q−1
Q (i)− {0}

)
=
⊔
i∈Q

vi ·Oq(Q).

Furthermore, Ovi(Q) \Oq(Q) ∼= vi ·Oq(Q) via γ 7→ viγ, we find∫
Oq(Q)\Oq(A)

 ∑
x∈VQ\{0}

f(xg)

 dµOq(g) =

∫
Oq(Q)\Oq(A)

∑
i∈Q

∑
v∈q−1

Q (i)−{0}

f(vg)dµOq(g),

=
∑
i∈Q

∑
γ∈Ovi (Q)\Oq(Q)

∫
Oq(Q)\Oq(A)

f(viγg)dµOq(g),

=
∑
i∈Q

∫
Ovi (Q)\Oq(A)

f(vig)dµOq(g),

=
∑
i∈Q

τQ(Ovi)

∫
Ovi (A)\Oq(A)

f(vig)dµOq(g),

=
∑
i∈Q

τQ(Ovi)

∫
q−1
A (i)\{0}

f(v)dv,

=
∑
i∈Q

τQ(Ovi)

∫
q−1
A (i)

f(v)dv

By induction on n and from the previous descriptions of Ovi , we find τQ(Ovi) = 2 for all 0 6= vi,
implying

(5)

∫
Oq(Q)\Oq(A)

∑
x∈Qn

f(xg)

 dµOq(g) = f(0)τQ(Oq) + 2
∑
i∈Q

∫
q−1
A (i)

f(v)dv.

4.2.6. A second evaluation of integral. We show that∑
i∈Q

∫
q−1
A (i)

f(v)dv =
∑
i∈Q

∫
VA

f(v) expA(q(v)x)dv.

For any x, y ∈ A× and 0 6= v ∈ q−1
A (x), there exists g ∈ GLn(A) such that q(vg) = y. Hence,

q−1
A (x) × A× ∼−→ VA − q−1

A (0) by sending (v, y) 7→ vg. This follows that from a volume form

ω = dx1 ∧ · · · ∧ dxn on VA, one can split ω = ωx ∧ dx where ωx is the volume form on q−1
A (x).

For x = 0, if there exists 0 6= v ∈ VA so q(v) = 0, then there also exists a volume form on q−1
A (0).

Indeed, ... Need to learn this
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With this, we can define Ff (x) =
∫
q−1
A (x) fd|ωx|, we find that

F̂f (x) =

∫
A
Ff (y) exp(yx)dx =

∫
VA

f(v) expA(q(v)x)dv.

By the Poisson summation formula, we find∑
i∈Q

Ff (i) =
∑
i∈Q

F̂f (i).

Thus, (5) can be rewritten as

(6)

∫
Oq(Q)\Oq(A)

∑
x∈Qn

f(xg)

 dµOq(g) = f(0)τQ(Oq) + 2
∑
i∈Q

∫
VA

f(v) expA(q(v)i)dv.

4.2.7. A Poisson summation formula. Letting φg(x) := f(xg), we have

φ̂g(x) :=

∫
VA

f(yg) expA(q(x, y))dy,

=

∫
VA

f(yg) expA(q(xg, yg))dy (y 7→ yg−1),

=

∫
VA

f(y) expA(q(xg, y))dy,

= φ̂(xg)

By the Poisson summation formula, we find∑
x∈VQ

f(xg) =
∑
x∈VQ

f̂(xg).

This says that the left hand side of (6) is invariant under f 7→ f̂ .
On the other hand, we know that∫

VA

f̂(v) expA(q(v)i)dv =

∫
VA

f̂(v) expA(−i−1q(v))dv.

This follows∑
i∈Q

∫
VA

f(v) expA(iq(v))dv −
∑
i∈Q

∫
VA

f̂(v) expA(iq(v))dv =

∫
VA

(f(v)− f̂(v))dv,

= f̂(0)− f(0).

Hence, it follows from (6) that

(τQ(Oq)− 2)(f(0)− f̂(0)) = 0.

We can choose f ∈ S(VA) such that f(0) 6= f̂(0), implying τQ(Oq) = 2.
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4.3. 05/09/2021: Holomorphic maps between Riemann surfaces. I want to give a summary
of properties of holomorphic maps between two Riemann surfaces, learned from Forster’s Lectures
on Riemann Surfaces.

Our Riemann surfaces are always assumed to be connected and Hausdorff.

4.3.1. Global behaviour. There are a few results on the global behaviour of a holomorphic function,
obtained by looking at its domain of definition:

(1) Riemann’s Removable Singularities Theorem: Let U be an open subset of a Riemann surface
X and a ∈ U . Suppose f is a holomorphic function on U \ {a} that is bounded on some

neighborhood of a. Then f can be extended uniquely to a holomorphic function f̃ on U .
(2) Identity theorem: Let f1, f2 be two holomorphic maps which coincide on a set A having a

limit point a ∈ X. Then f1 and f2 are identically equal.

These properties can be obtained via similar results for holomorphic functions on C.
What are the higher dimensional results for the above?

4.3.2. Local behaviour: Ramification. Let f : X → Y be a non-constant holomorphic map. We
would like to study the behaviour of f locally at a point in X. A point a ∈ X is called a ramification
point of f if f is not locally injective at a. We call b ∈ Y a branch point of f if f−1(b) has a
ramification point. If f has no ramification point then f is called unramified/unbranched 13.

There is another way to describe ramification for non-constant holomorphic maps by noting that
for any a ∈ X, there exists k ∈ Z≥1 such that under certain choices of charts near a and f(a), f
is given by z 7→ zk (Forster §2.1). Then f is ramified at a ∈ X iff k ≥ 2, and such k is called the
ramification index of a ∈ X. Indeed, observe that the map pk : C → C, defined by z 7→ zk for
k ∈ Z≥2, has only one ramification point 0, as for any ε > 0, if a ∈ Bε>0(0) then ae2πin/k ∈ Bε(0)
where n ∈ Z, 1 ≤ n ≤ k.

An example of an unramified map is the exponential map exp : C→ C×. This map is unramified
because for any a ∈ C, one can choose ε > 0 so Bε(a) does not contains any two points that differ
by an integer multiple of 2πi. Here is another example of unramified morphism: Let Γ be a lattice
in C, i.e. Γ = Zω1 + Zω2 where ω1, ω2 ∈ C are linearly independent over R, then the projection
p : C→ C/Γ is a local homeomorphism under the quotient topology on C/Γ. One can equipp C/Γ
with a complex structure inherited from C via p, making it into a Riemann surface and p is then
unramified (as p is a local homeomorphism).

The local behaviour z 7→ zk of f allows one to deduce many local properties of f . For example,
we find that f is an open map. Some more properties from this local behaviour when you add extra
conditions of f,X and Y :

(1) If f is injective and holomorphic, then f : X → f(X) is biholomorphic.
(2) If X is compact then f is surjective and Y compact. Indeed, as f(X) is both open (since f

is open) and closed (since X is compact) and Y is connected, we find f(X) = Y is compact.
In particular, every holomorphic function on a compact Riemann surface is constant.

Study some more specific examples of holomorphic functions: Why meromorphic functions on
P1 is rational?; What do functions f : C/Γ → P1 on the torus look like?; What is Weierstrass
functions?;What are some example of ramified morphism?

4.3.3. Local behaviour: Covering maps. Let f : X → Y be a non-constant holomorphic map. In
contrast to the previous section, we would like to study the behaviour of f locally at a point in Y .
Firstly, f is a discrete map, i.e. the fiber f−1(y) for any y ∈ Y is discrete in X, or else f would be
equal to y by the Identity theorem.

13Some references such as Griffths and Harris or Forster would not distinguish between branch points and ramification
points, i.e. both are elements in X that are not locally injective
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Locally at a ramification point x ∈ X, f can be represented by z 7→ zk for some k ∈ Z>1, and as
that 0 is the only ramification point of pk : C→ C, pk(z) = zk, the set A of all ramification points
of f is discrete and closed in X.

If we require that f is proper 14 i.e. the preimage of every compact set is compact, then the
set B := f(A) of branch points of f is also closed and discrete in Y 15. Let Y ′ := Y \ B and
X ′ := X \ f−1(B) then f : X ′ → Y ′ is an unramified proper holomorphic map.

A proper, non-constant unramified holomorphic map f : X → Y is a n-sheeted covering map,
i.e.

(1) There exists a positive integer n such that for any y ∈ Y , f−1(y) is a discrete set consisting
of n points.

(2) For any y ∈ Y and f−1(y) = {x1, . . . , xn}, there exists an open neighborhood U of y so that
f−1(U) is a disjoint union of open neighborhoods Ui’s of xi’s, and f |Ui is a homeomorphism
for every 1 ≤ i ≤ n.

We give a brief explanation on why a proper, non-constant, unramified holomorphic map f : X → Y
has these properties:

(1) Because f is proper and discrete, we find f−1(y) is finite for every y ∈ Y . In particular,
this does not use the unramified condition.

(2) Because f is unramifed, f is a local homeomorphism. Combining with the fact that f−1(y)
is finite and discrete, we find that f is a (finite) covering map.

(3) Our Riemann surface Y is connected (hence path connected because Y is locally path
connected) and f is a finite covering map so from the theory of covering maps (where one
has curve lifting properties), f−1(y) and f−1(y′) have the same cardinality for any y, y′ ∈ Y .
(See Forster §4 for more elaborations).

Thus, for a non-constant proper surjective holomorphic map f : X → Y , by removing all the branch
points, we find that f : X ′ → Y ′ is a n-sheeted covering map. One may wonder if f−1(y) also has
cardinality n for a branch point y ∈ Y . If one takes into account of ramification index, the answer
is yes. For x ∈ X, we let ν(f, x) to be the ramification index of x ∈ X with respect to f .

Theorem 14. Let f : X → Y be a proper, non-constant holomorphic maps between connected
Riemann surfaces, then there exists a positive integer n, called the number of sheets of f , such that

n =
∑

x∈f−1(y)

ν(f, x)

for any y ∈ Y .

Proof. Note that if x ∈ X is unramified then ν(f, x) = 1. Hence, we let n be the number of sheets
for the unramified map f : X ′ → Y ′ that is obtained from f : X → Y .

Let y ∈ Y be a branched point, f−1(y) = {x1, . . . , xr} and kj := ν(f, xj). From the local
behaviour of non-constant holomorphic map, for any 1 ≤ j ≤ r, there exists disjoint neighborhoods
Uj of xj and Vj of y such that for any c ∈ Vj \ {y}, the set f−1(c) ∩ Uj contains exactly kj points.

14See https://en.wikipedia.org/wiki/Proper_map for the motivation of properness
15f(A) is closed because any proper mapping between locally compact spaces f : X → Y is closed. Indeed, let C be
a closed subset of X, we want to show f(C) is closed in Y or Y \ f(C) is open. Let y ∈ Y \ f(C) and because Y is

locally compact, y has an open neighborhood V with compact closure V . Because f is proper, f−1(V ) is compact,

hence E = f−1(V ) ∩ C is also compact (it is closed in the compact set f−1(V )). It follows that f(E) is compact,
hence closed in Y (as Y is Hausdorff). Let U = V \ f(E) then U is a neighborhood of y that is disjoint from f(C),
as desired.
On the other hand, as A is discrete, every subset of A is closed, hence every subset of f(A) is closed, meaning f(A)
is discrete.
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Because f is proper, hence closed, we can find a neighborhood V ⊂ V1 ∩ · · · ∩ Vr of y such that
f−1(V ) ⊂ U1 ∪ · · · ∪ Ur. Indeed, let X \ ∪jUj is closed in X, hence f(X \ ∪jUj) is closed and does
not contain y, implying V := Y \ f(X \ ∪jUj) is the desired open neighorborhood of y.

This means for every unbranch point c ∈ V , f−1(c) consists of k1 + · · ·+ kr points, which should
be n. We are done. �

To do: Learn some examples and calculations:

(1) https://math.stackexchange.com/q/403923/58951

(2) https://math.stackexchange.com/q/702538/58951

(3) https://math.stackexchange.com/q/119699/58951

(4) https://math.stackexchange.com/q/144748/58951

(5) https://math.stackexchange.com/q/740414/58951

(6) https://en.wikipedia.org/wiki/Analytic_continuation

(7) https://en.wikipedia.org/wiki/Covering_space

(8) https://people.math.wisc.edu/~robbin/951dir/algebraicCurves.pdf

(9) http://www.tjsullivan.org.uk/pdf/MA475_Riemann_Surfaces.pdf

(10) https://people.brandeis.edu/~igusa/Math101bS07/Math101b_notesB2.pdf

(11) https://users.math.yale.edu/~td276/lecture3.pdf
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4.4. 07/09/2021: Adeles over function fields. Need to define this from perspective of P1 over
Fp.

4.4.1. Completions of Fp(T ). The rational function field Fp(T ) over Fp has the following equivalence
classes of nontrivial absolute values and completions

(1) Fix a monic irreducible polynomial Q ∈ Fp[T ]. Any f ∈ Fp(T ) is uniquely written as
f = Qrg for some r ∈ Z and g ∈ Fp(T ) such that Q does not divide the numerator or

denominator of g. We can define an absolute value | · |Q on Fp(T ) by |f |Q = p−r deg(Q) and
|0|Q = 0.

The completion of Fp(T ) with respect to | · |Q is the field of formal Laurent series Fq((Q))

in the variable Q with coefficients in Fq, where q = pdegQ:

Fq((Q)) =

{ ∞∑
i=N

aiQ
i : N ∈ Z, ai ∈ Fq

}
.

The absolute value on Fq((Q)) is defined by∣∣∣∣∣
∞∑
i=N

aiQ
i

∣∣∣∣∣
Q

= q−N (aN 6= 0).

(2) For f = P1/P2 ∈ Fp(T ) where P1, P2 ∈ Fp(T ) then we define

|f |∞ = pdeg(P1)−deg(P2), |0|∞ = 0.

The completion of Fp(T ) with respect to this absolute value | · |∞ is Fp((1/T )), the field of
formal Laurent series in the variable 1/T . This field has an absolute value defined by∣∣∣∣∣

∞∑
i=N

ai

(
1

T

)i∣∣∣∣∣
∞

= p−N (aN 6= 0).

For any f ∈ Fp(T )×, one can check that
∏
v |f |v = 1 where the product runs over all places v

of Fp(T ). In fact, this is simply a restatement of the fact that if f =
∏
QQ

eQ ∈ Fp(T )×, then

deg f =
∑

Q eQ degQ, where the sum/product is over all monic irreducible polynomials in Fp[T ].

4.4.2. Adeles over Fp(T ). For a place v of k = Fp(T ), denote Ov := {x ∈ kv : |x|v ≤ 1} to be the
valuation ring of kv. In particular, we find

OQ =

{ ∞∑
i=0

aiQ
i : ai ∈ Fq

}
,

O∞ =

{ ∞∑
i=0

ai

(
1

T

)i
: ai ∈ Fp

}
,

where Q ∈ Fp[T ] is a monic irreducible polynomial. We define the adeles AFp(T ) over Fp(T ) to be
the restricted product of Fp(T )v’s with respect to the subgroups Ov. We can embed Fp(T ) ↪→ AFp(T )

diagonally.

Proposition 15. Under the action of Fp(T ), Fp(T ) \ AFp(T ) has a fundamental domain

(T−1O∞)×
∏
Q

OQ.
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Proof. We will first show that Fp(T ) is dense in A∞Fp(T ), i.e. for any non-empty finite set S of monic

irreducible polynomials in Fp[T ], then any open set∏
Q∈S

(aQ + bQOQ)×
∏

Q 6∈S∪{∞}

OQ

of A∞Fp(T ), where aQ, bQ ∈ Fq((Q)), contains an element of Fp(T ). Without loss of generality, we can

assume that bQ = QcQ for cv ∈ Z, and av ∈ Fp(T ). By the Chinese Riemander Theorem, there
exists f ∈ Fp(T ) such that f ≡ aQ (mod QcQ) for all v ∈ S and f does not have monic irreducible
polynomials Q 6∈ S as factors. This implies f lies in the desired open set.

Because Fp(T ) is dense in A∞Fp(T ), and
∏
Q OQ is an open set of A∞Fp(T ), we find

Fp(T ) +
∏
Q

OQ = A∞Fp(T ).

Next, we will show that

Fp(T ) + (T−1O∞)×
∏
Q

OQ = AFp(T ).

Indeed, we consider (x∞, x) ∈ AFp(T ), where x∞ ∈ Fp((1/T )) and x ∈ A∞Fp(T ). We can write

x = x1 + x2 where x1 ∈ Fp(T ) and x2 ∈
∏
Q OQ. Furthermore, we can choose x3 ∈ Fp(T ) such that

x3−x∞ ∈ T−1O∞ and x3−x1 ∈ Fp[T ], i.e. there exists a positive integer N and x3 =
∑N

i=−N aiT
i

with ai ∈ Fp so that
∑−1

i=−N aiT
i − x1 ∈ Fp[T ] and

∑N
i=0 aiT

i − x∞ ∈ T−1O∞. Thus, we find

(x∞, x) = x3 + (x∞ − x3, x1 − x3 + x2) lies in Fp(T ) + (T−1O∞)×
∏
Q OQ, as desired.

Finally, note that if x, x′ ∈ (T−1O∞)×
∏
Q OQ and x− x′ ∈ Fp(T ) then as Fp(T ) ∩ (T−1O∞)×∏

Q OQ = {0}, we find x = x′. �

4.4.3. Unitary characters. For a place v of Fp(T ), we can define the standard unitary characters
on Fp(T )v and on AFp(T ) as follows:

(1) If v =∞ then ψ∞ : Fp((1/T ))→ C× is defined by

ψ∞

( ∞∑
i=N

ai(1/T )i

)
= e−2πia1/p.

In this definition, a1 is any lift of a1 ∈ Fp to Z. Note that ψ∞(T−2O∞) = 1.
(2) If v corresponds to a monic irreducible polynomial Q ∈ Fq[T ] then ψQ : Fq((Q)) → C× is

defined by

ψQ

( ∞∑
i=N

aiQ
i

)
= e2πi(a−1 mod T )/p.

In this definition, we have identified a−1 ∈ Fq with an element in Fp[T ]/(Q(T )), then
a−1 mod T ∈ Fp. Note that ψQ(OQ) = 1.

(3) For x = (xv) ∈ AFp(T ), we can define an adelic unitary character ψ : AFp(T ) → C× by

ψ(f) =
∏
v

ψv(xv),

where ψv’s are the local characters on Fp(T )v as defined before. It is clear that ψ is
nontrivial.

Proposition 16. For f ∈ Fp(T ), we have ψ(f) = 1.
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Proof. Observe that ψ∞(f) only carries the information about the coefficient of 1/T in the ex-
pansion of f with respect to the variable 1/T . To see how this relates to ψQ, we first write f
as

f(T ) =
∑
Q

bQ(T )

Q(T )eQ
=
∑
Q

eQ∑
i=1

bi,Q(T )

Q(T )i

where the finite sum is over all monic irreducible polynomials such that the order of Q in the
factorisation of f into irreducible polynomials is −eQ < 0; deg bi,Q(T ) < degQ(T ).

Note that ψQ(f) = e2πi·[TdegQ−1]b1,Q/p, where [T degQ−1]b1,Q ∈ Fp denotes the coefficient of

T degQ−1 in b1,Q. This does not look right

We have Q(T ) = T degQFQ(1/T ) for some FQ ∈ Fp[T ], hence

bi,Q(T )

Q(T )i
=
bi,Q(T )T−i degQ

FQ(1/T )i

As FQ(1/T )−i ∈ O∞ (furthermore, as Q is monic, FQ(1/T )−i has constant coefficient 1 in the
expansion with respect to the variable 1/T ) and as deg bi,Q(T ) < degQ(T ), we find that the
coefficient of 1/T in the expansion of bi,Q(T )Q(T )−i with respect to 1/T is 0 if i ≥ 2 and if i = 1,

it is the coefficient of T deg(Q)−1 in b1,Q(T ). �

4.4.4. Fourier transform. From the standard unitary characters ψv on Fp(T )v, we can define the
Fourier transforms on Fp(T )v as follows:

Proposition 17. Let µ∞ be a Haar measure on on Fp((1/T )) so that µ∞(O∞) = p and for each
monic irreducible polynomial Q ∈ Fp[T ], let µQ be a Haar measure on Fq((Q)) such that µQ(OQ) = 1.
For each place v of Fp(T ), we can define the Fourier transform of a Bruhat-Schwartz function
f : Fp(T )v → C by

f̂(x) =

∫
Fp(T )v

f(y)ψv(xy)dµv(y).

Then f̂ is Bruhat-Schwartz and that the Fourier inversion formula holds

ˆ̂
f(x) = f(−x) ∀x ∈ Fp(T )v.

Proof. A Bruhat-Schwartz function f : Fp(T )v → C is a locally constant compactly supported
function. Every such function on Fp(T )v is a finite linear combination of characteristic functions
on compact open sets a+QnOQ with a ∈ Fp(T )Q and n ∈ Z (when v =∞ then the open sets are
a+ (1/T )nO∞). Hence, it suffices to prove this proposition for the case f = 1a+QnOQ when v = Q
or f = 1a+(1/T )nO∞ when v =∞.

We check this for the case v = Q. The other case v = ∞ is completely similar. Firstly, we will
show that ∫

QnOQ

ψQ(xy)dµQ(x) =

{
q−n y ∈ Q−nOQ,
0 otherwise.

Indeed, if y ∈ Q−nOQ then xy ∈ OQ for all x ∈ QnOQ. As ψQ(OQ) = 1, the integral becomes
µQ(QnOQ) = q−n. If y 6∈ Q−nOQ then there exists x0 ∈ Fq((Q)) such that ψQ(x0y) is nontrivial.
By invariance of the Haar measure µQ, we find∫

QnOQ

ψQ(xy)dµQ(x) =

∫
QnOQ

ψQ((x+ x0)y)dµQ(x) = ψQ(x0y)

∫
QnOQ

ψQ(xy)dµQ(x).

As ψQ(x0y) is nontrivial, we find the integral for y 6∈ Q−nOQ is 0.
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From this calculation, we find

1̂a+QnOQ(x) =

∫
Fq((Q))

1a+QnOQ(y)ψQ(xy)dµQ(y),

=

∫
a+QnOQ

ψQ(xy)dµQ(y),

=

∫
QnOQ

ψQ(x(y + a))dµQ(y),

= ψQ(xa)q−n · 1Q−nOQ(x)

Hence, we have

ˆ̂1a+QnOQ(x) =

∫
Fq((Q))

1̂a+QnOQ(y)ψQ(xy)dµQ(y),

= q−n
∫
Q−nOQ

ψQ(x(y + a))dµQ(y),

= 1QnOQ(y + a) = 1a+QnOQ(−y).

We are done. �

This proprosition allows us to define a Haar measure on AFp(T ) and define the Fourier transform
on the space of Bruhat-Schwartz functions on AFp(T ). We also have the Fourier inversion formula,
which gives us the Poisson summation formula.

Proposition 18 (Poisson summation formula). Let f ∈ S(AFp(T )) be a Bruhat-Schwartz function
on AFp(T ). Then ∑

x∈Fp(T )

f(x) =
∑

x∈Fp(T )

f̂(x).

Similar to the number field case, the Poisson summation formula implies that the volume of
Fp(T ) \ AFp(T ) (with respect to the Haar measure on AFp(T )) is 1.

4.4.5. Riemann-Roch theorem. We will prove the Riemann-Roch theorem for P1 over Fp using the
Poisson summation formula.

The divisor group of P1 is the free abelian group generated by the the places v of Fp(T ). A
divisor D can be written

∑
v nvv with dv ∈ Z and dv = 0 for all but finitely many v. We define the

degree of a place v to be

deg(v) :=

{
1, v =∞,
deg(Q), v = Q is a monic irreducible polynomial.

The degree of a divisor D =
∑

v nvv is defined by

deg(D) :=
∑
v

nv deg(v).

Any nonzero ω ∈ ΩP1/Fp corresponds to a divisor K =
∑

v κvv, where κv is the “order of vanishing
of ω at v” Need to find the precise definition of κv. For example, ω ∈ ΩP1/Fp defined by −du ∈
Γ(U0,ΩP1/Fp) and w−2dw ∈ Γ(U1,ΩP1/Fp) gives rise to a divisor Kω = −2 · ∞.

For a divisor D =
∑

v nvv, we can define OA(D) :=
∏
v p
−nv
v ⊂ A. Let L(D) := K ∩ OA(D)

then L(D) is Fq-vector space of functions on P1 having at worst a pole of order nv at v for each v.
Indeed, for f, g ∈ L(D) and α ∈ Fp then

vv(f + g) ≥ min{vv(f), vv(g)} = −nv, vv(αf) = vv(f).
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Furthermore, L(D) is finite-dimensional since for f ∈ L(D) with factorisation f =
∏
QQ

eQ into
irreducible monic polynomials, then

eQ ≥ −nQ,deg(f) =
∑
Q

eQ deg(Q) ≤ n∞.

We can then let `(D) = dimFp L(D). For example, `(Kω) = 0 is the genus of P1.

Theorem 19 (Riemann-Roch). Let K = −2 · ∞ to be the divisor corresponding to the differential
ω ∈ ΩP1/Fp, defined by −du ∈ Γ(U0,ΩP1/Fp) and w−2dw ∈ Γ(U1,ΩP1/Fp). Then for any divisor D

on P1,
`(D)− `(K −D) = deg(D) + 1.

Proof. For a divisor D =
∑

v nvv, we find that

1̂p−nvv
= pnv deg v−κv/21pnv−κvv

,

which implies
1̂OA(D) = pdegD−deg(K)/21OA(K−D),

as OA =
∏
v p
−nv
v . On the other hand, as L(D) has p`(D) elements so∑

x∈Fp(T )

1OA(D)(x) = p`(D).

Similarly, we can also compute∑
x∈Fp(T )

1̂OA(D) = pdegD−deg(K)/2
∑

x∈L(K−D)

1 = pdegD−deg(K)/2+`(K−D).

Thus, by Poisson summation formula, we find

`(D) = `(K −D) + deg(D) + 1.

�

Can one write this in such a way that does not depend on the choice of charts?
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4.5. 10/09/2021: The theta correspondence and the Siegel-Weil formula. I want to take
a quick notes on the theta correspondences and the Siegel-Weil formula. At the moment, I just
want to sketch the big picture (so some of what I write below may be incorrect), and leave the
technical details later in the future. Some references

(1) Proof of a simple case of the Siegel-Weil formula by Paul Garrett, https://www-users.
cse.umn.edu/~garrett/m/v/easy_siegel_weil.pdf

(2) A brief survey on the theta correspondence by Dipendra Prasad http://www.math.tifr.

res.in/~dprasad/dp.pdf

(3) On the local theta correspondence https://www.math.u-bordeaux.fr/~ybilu/algant/

documents/theses/Zou.pdf.

We start with a symplectic vector space W over a global/local field k. Reductive dual pairs
(G1, G2) are certain paris of subgroups of Sp(W ). For example, if V is an orthogonal vector space
then V ⊗W is a symplectic vector space, and we have a pair (O(V ),Sp(W )) as a reductive dual
pair of Sp(V ⊗W ). So we have a correspondence O(V ) ← Sp(V ⊗W ) → Sp(W ) (I think this is
true only when we consider two fold covers of these groups but let me ignore this at the moment).

The (lobal) theta correspondence roughly says that there is a one-to-one correspondence between
certain irreducible representations of O(V ) and certain irreducible representations of Sp(W ) from
the Weil representations of Sp(V ⊗W ).

For the global theta correspondence, one can realise Weil representation of Sp(V ⊗W ) as a rep-
resentation of Sp(V ⊗W ) on the space of nice functions on V (A)n. Then the theta correspondence
is roughly obtained by push-pull functions from the correspondence O(V )← Sp(V ⊗W )→ Sp(W ),
i.e. how to get a function on O(V ) to a function on Sp(W ) given a function on Sp(V ⊗W ). This
is called the theta lifts (i.e. it maps automorphic forms on O(V ) to automorphic forms on Sp(W )).

The Siegel-Weil formula says that this theta lift at the constant function 1 on O(V ) is the Siegel
Eisenstein series on Sp(W ).

4.6. 13/09/2021: Mystery point counting. From my naive point of view, there is something
so mysterious of doing counting points over finite fields. Let me try to give out some links this
time, as I am unable to explain much

(1) Hausel and Rodriguez-Villegas: https://arxiv.org/pdf/math/0612668.pdf (look more
into papers of these two), “counting absolutely indecomposable quiver representations, vec-
tor bundles with parabolic structure on a projective curve, and irreducible etale local sys-
tems”, https://arxiv.org/pdf/1612.01733.pdf

(2) Motivic integration: A theorem of Weil relates p-adic integration with point counting over
finite fields; p-adic integration is used to prove many conjectures
(a) Birational Calabi–Yau n-folds have equal Betti numbers, https://arxiv.org/abs/

alg-geom/9710020

(b) Topological Mirror Symmetry Conjecture by HauselThaddeus for SLn and PGLn,
https://arxiv.org/abs/1707.06417; Later these people use p-adic integration to
reprove Ngo’s fundamental lemma https://arxiv.org/abs/1810.06739

(c) Igusas theory of local zeta functions. https://people.math.harvard.edu/~mpopa/

571/chapter3.pdf, https://link.springer.com/book/10.1007/978-1-4939-7887-8
chapter 0

(d) What is the relation between p-adic integration with p-adic Hodge theory https:

//mat.uab.cat/~masdeu/wp-content/uploads/2017/04/padicint.pdf?
Motivic integration is is some kind of generalisation of p-adic integration. In one direction,
it seems people are trying to use this to define nonabelian Fourier transform (see Kazhdan,
Braveman, ...) , also orbital integrals in the Langlands program.
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(3) Weil’s conjecture and this Weil’s conjecture https://www.math.ias.edu/~lurie/papers/
tamagawa-abridged.pdf, point counting via `-adic cohomology.

(4) Topological Quantum Field Theory: This reminds me of my digging around what’s called
”geometric function theory” by David Ben-Zvi on 02-06/06/2021 and 16-17/06/2021. My
question back then is roughly like this: Given a map φ : X → Y , it is usually easy
to define pullback φ∗ : Fun(Y ) → Fun(X), but what characterise a nice pushforward
φ∗ : Fun(X) → Fun(Y )? In the discrete case, 06/06/2021, I think this is doing some
sort of weight count. In the other case(?), I think this is some sort of integration along
fibers as pullback, something like this https://golem.ph.utexas.edu/category/2010/

11/integral_transforms_and_pullpu.html. Overall, it certainly relates point counting
and integration, and I think it relates to the theory of sheaves with better operations of
pushforward (and hence relates to Weil’s conjecture?).

4.7. 17/09/2021: Again with left-invariant differential form of SL2. On 07/08/2021, I used
a map SL2×Gm → GL2 to find a global left-invariant top form for SL2 from a global left-invariant
top form of GL2. To be honest, I am not satisfied with this computation as I suspect there is
a different way to do this without relying on GL2 (because the way I found a left-invariant top
form for GL2 is an educated guess, i.e. it should have the form f(x)dx11 ∧ dx12 ∧ dx21 ∧ dx22, and
f(x) = det(xij)

−2 is guessed from the left-invariant property).
Masoud pointed out a Math Stack Exchange answer https://math.stackexchange.com/q/

2907521/58951 saying that the k-vector space of left-invariant differential forms of SL2 has basis
x22dx11 − x12dx21, x22dx12 − x12dx22 and −x21dx11 + x11dx21. Upon taking exterior product, this
should gives us the global left-invariant top form of SL2. Today, I want to explain a way to get
this basis. In particular, I want to explain a natural way to get from an element of the dual Lie
algebra sl∗2 to a left-invariant differential form of SL2, following a proof on page 100 of the book
Neron models. This also helps me to digest this proof in the book (although I cannot understand
it completely, at least now I can follow it with an example of SL2 in mind).

I will use the same notation as on 07/08/2021. Let’s start. The group scheme SL2 over Spec k is
a group object in the category of k-schemes (equivalently, it gives O(SL2) the structure of a Hopf
algebra). In particular, we have

(1) A unit section ε : Spec k → SL2 is given by the algebra map O(SL2)→ k, defined by sending
xij 7→ δij (to see this, view xij as function on SL2(k) → k output the (i, j)-th position, by
precomposing with the unit map 1→ SL2(k), we get a map 1→ k that either is 0 if i 6= j
or 1 if i = j).

(2) The multiplication m : SL2×SL2 → SL2 is given by the algebra map O(SL2)→ O(SL2)⊗k
O(SL2), sending f ∈ O(SL2) (viewed as function SL2(k) → k) to a function SL2(k) ×
SL2(k)→ k, defined by (a, b) 7→ f(ab). For example, x11 7→ (yz)11 := y11z11 + y12z21 where
(yij) are generators for the first O(SL2) in O(SL2)⊗k O(SL2).

We can pullback ΩSL2 /k along ε to get a sheaf ε∗ΩSL2 /k of OSpec k-modules. Its global section
is the k-module ΩO(SL2)/k ⊗O(SL2) k, defined by O(SL2) → k by ε. In particular, it is a k-module
generated by dxij , modulo the relation dx11 + dx22 (this is obtained from the relation x22dx11 +
x11dx22 − x12dx21 − x21dx12 = 0 in ΩO(SL2)/k by letting xij 7→ δij). This is isomorphic to the dual
Lie algebra sl∗2.

Now, I want to identify an element in Γ(Spec k, ε∗ΩSL2 /k)
∼= sl∗2 with a left-invariant differen-

tial form of SL2. Let’s choose dx11 ∈ Γ(Spec k, ε∗ΩSL2 /k). One can view dx11 as an element in
Γ(SL2,ΩSL2 /k). On the other hand, from the multiplication map m : SL2×SL2 → SL2, we can
pullback to obtain a section m∗(dx11) of ΩSL2× SL2 /k, i.e.

m∗(dx11) = d(y11z11 + y12z21) = y11dz11 + z11dy11 + y12dz21 + z21dy12.
50

https://www.math.ias.edu/~lurie/papers/tamagawa-abridged.pdf
https://www.math.ias.edu/~lurie/papers/tamagawa-abridged.pdf
https://golem.ph.utexas.edu/category/2010/11/integral_transforms_and_pullpu.html
https://golem.ph.utexas.edu/category/2010/11/integral_transforms_and_pullpu.html
https://math.stackexchange.com/q/2907521/58951
https://math.stackexchange.com/q/2907521/58951


We also have ΩSL2×SL2 /k
∼= p∗yΩSL2 /k⊕ p∗zΩSL2 /k where py, pz is the projection of SL2×SL2 to the

first and second factor, respectively. This means

m∗(dx11) = ωy + ωz = (z11dy11 + z21dy12) + (y11dz11 + y12dz21).

Now, consider the twist diagonal map δ : SL2 → SL2×SL2 given by δ 7→ (δ−1, δ). The claim in the
proof is that δ∗ωz is a left-invariant different form for SL2. Let’s describe δ∗ωz explicitly.

First, note that δ corresponds to the map δ′ : O(SL2) ⊗k O(SL2) → O(SL2), defined by sending
yij ⊗ zkl to the to the function SL2(k) → k, taking a 7→ (a−1, a) 7→ (a−1)ijakl. In particular, it
sends

δ∗ωz = δ∗(y11dz11 + y12dz21) = δ′(y11)d(δ′(z11)) + δ′(y12)d(δ′(z21)) = x22dx11 + (−x12)dx21.

This is one of the left-invariant differential form for SL2 given in the Math Stack Exchange answer.
I will stop here for today.

A further nore that in differential geometry, to find left-invariant differential form of a Lie group,
there is something called the Maurer-Cartan equations/form that can be used. But I haven’t had
the time to understand what this means, so I will refer to p.190 of the book Differential Geometry
and Lie Groups by Jean Gallier and Jocelyn Quaintance for the future.
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4.8. 19/09/2021: Tamagawa measure on function fields.

4.8.1. Function field of P1. In this section, we aim to describe P1 over a field k as a smooth,
projective, geometrically connected algebraic curves. We then define the function field kP1 of P1

and completions of kP1 .
The projective k-scheme P1

k := Proj k[x0, x1] can be described as follows:

(1) The points of P1 consist of homogeneous prime ideals of the Z-graded ring k[x0, x1] 16.
(2) For a homogeneous polynomial of positive degree f ∈ k[x1, x2], let D(f) be the set of

homogeneous prime ideals of k[x0, x1] not containing f . These sets form a basis of open
sets for P1. Furthermore, one can think of D(f) as Spec(k[x0, x1]f )0, the spectrum of the
algebra of elements in k[x0, x1]f having degree 0. For example, one can identify D(xi) with
the affine scheme Spec k[x0/i, x1/i]/(xi/i − 1), where xi/j is identified with xi/xj .

(3) The structure sheaf of P1 is obtained by giving D(f) the structure sheaf of Spec(k[x0, x1]f )0.
In particular, OP1(D(x0)) = k[x1/0],OP1(D(x1)) = k[x0/1] and the glueing of the structure
sheaves on D(x0) ∩D(x1) = D(x0x1) is obtained by sending x0/1 7→ x1/0.

Being an integral scheme (i.e. OP1(U) is an integral domain for every nonempty subset U of P1),
P1 has a generic point η (i.e. a point that is dense in P1), corresponding to the homogeneous prime
ideal (0) in Fp[x0, x1] (because every open set D(f) contains (0)). The stalk OP1,η of P1 at η, and
hence the residue field κ(η), is noncanonically isomorphic to k(T ) (i.e. if we view η as an element
of SpecFp[x0/1] ↪→ P1, its stalk is then k[x0/1](0) = k(x0/1)). We denote this as kP1 and call it the

function field of P1 over k.
A point in P1 is closed if it is closed in each open set D(xi) of P1. Furthermore, a point in an affine

scheme SpecA is closed if it corresponds to a maximal ideal in A, and the maximal ideals of k[x]
are in bijection with monic irreducible polynomials in k[x]. Thus, closed points of P1 corresponds
to homogeneous polynomials Q(x0, x1) ∈ k[x0, x1] so that either Q(x0/1, 1) is monic irreducible in
x0/1 or Q(1, x1/0) is monic irreducible in x1/0.

For a closed point x ∈ P1 corresponding to a homogeneous polynomial Q(x0, x1) ∈ k[x0, x1], the
stalk OP1,x of P1 at x is k[x0/1](Q(x0/1,1))

∼= k[x1/0](Q(1,x1/0)). The residue field κ(x) at x is then

noncanonically isomorphic to k[t]/(Q(t, 1)), which is a finite extension k. We denote Ox to be the
completion of the local ring OP1,x then Ox is a complete discrete valuation ring with residue field
κ(x), noncanonically isomorphic to the power series ring κ(x)[[t]]. Let kx be the fraction field of
Ox.

4.8.2. Group scheme over P1. Let X = P1
Fp . Let G0 be a linear algebraic group over kX .

Definition 20. An integral model of G0 is an affine and smooth group scheme π : G → X whose
generic fiber (i.e. let η be a generic point of X then we have a morphism Specκ(η)→ SpecOX,x →
X, giving us the generic fiber G×X Specκ(η) as a scheme over κ(η)) is isomorphic to G0.

Example 21. An integral model SL2 → P1 for SL2 can be obtained by base change SL2 =
SL2×SpecFqP1.

Example 22. Masoud mentioned that a nontrivial example of an integral model is parahoric group
scheme. I couldn’t understand that much from googling around, but let me put something down
first and leave this for later.

Question: Give an example of a parahoric group scheme P over P1 whose generic fiber is a linear
algebraic group G.

Most references refer to Bruhat Tits papers http://www.numdam.org/item/PMIHES_1972__41_
_5_0/. Benedict Gross wrote an expository paper about parahoric subgroups at https://abel.

16an ideal of k[x0, x1] is homogeneous if it is generated by homogeneous polynomials
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math.harvard.edu/~gross/preprints/parahorics.pdf. There are also some answers on Math-
OverFlow about this. I want to construct one from the suggestions given in https://www.math.

lsu.edu/~pramod/selie/10/mcninch.pdf, i.e. from what I read, the κ(x)[[t]] = Ox-points of a
parahoric group scheme is the stabiliser of x in the Bruhat-Tits building (some geometric gadget
that G(kX) acts).

Given such a group scheme, for every commutative ring R equipped with a map u : Spec(R)→ X,
we can associate a group G(R). If u factors through the generic point η of X, we can equipp R
is the structure of kX -algebra via u, and G(R) can be identified with G0(R). A choice of integral
modeal gives additional structures:

(1) For each closed point x ∈ X, we have a morphism SpecOx → SpecOX,x → X 17, so we can
consider the group G(Ox) of Ox-valued points of G.

(2) For a closed point x ∈ X, we have a morphism Specκ(x) → SpecOX,x → X, so we
can consider the group G(κ(x)) of κ(x)-valued point of G. We have a surjective map
G(Ox)→ G(κ(x)) because G is smooth 18.

(3) For a finite set S of closed points of X, we have a morphism SpecASX → X so we can consider
the group G(ASX) of ASX -valued point of G. It is an open subgroup of G(AX) = G0(AX) and
as SpecASX =

∏
x∈S Spec kx ×

∏
x 6∈S SpecOx, G(ASX) is isomorphic to the direct product∏

x∈S G(kx)×
∏
x 6∈S G(Ox).

4.8.3. p-adic integration and point counting over finite fields. In this section, we will focus on
explaining a theorem of Weil that links between p-adic integrations and point counting of algebraic
varieties over finite fields. We follow the following reference

(1) p-adic Integration and Birational Calabi-Yau Varieties by Pablo Magni.
(2) First chapter about p-adic integration of the book Motivic Integration by A. Chambert-Loir,

J. Nicaise, and J. Sebag.

Let k be a nonarchimedean local field, Ok be its ring of integers, Fq be the residue field where
q is a prime power of a prime p. Let X be a smooth scheme of relative dimension n over Ok and
ΩX/Ok be the sheaf of differentials.

We will define a canonical measure on X(Ok), called the Weil measure. Because X is smooth
over Ok, Ωn

X/Ok
is a locally free sheaf of OX -modules of rank 1, there exists an affine open cover

{Ui} of Ok-schemes of X such that we have a trivialisation Ωn
X/Ok

|Ui ∼= OX |Ui over each Ui. A

trivialisation of Ωn
X/Ok

|Ui corresponds to a nowhere-vanishing differential form ωi ∈ Γ(Ui,Ω
n
X/Ok

).

From this, we can define a (Radon) measure d|ωi| on Ui(Ok) by integrating with respect to ωi. We
also have X(Ok) =

⋃
i Ui(Ok), so in order to define a (Radon) measure on X(Ok), the measures

d|ωi|’s must agree on overlaps. This is true because for two nowhere-vanishing differential forms
ωi|Ui∩Uj and ωj |Ui∩Uj on Ui ∩ Uj , there exists a nowhere-vanishing function f ∈ OX |Ui∩Uj (hence
invertible) so that ωi = fωj on Ui ∩ Uj . This gives us the relation d|ωi|(x) = |f(x)|kd|ωj |(x) of
measures on Uj(Ok) ∩ Ui(Ok) = (Ui ∩ Uj)(Ok). However, as f : (Ui ∩ Uj)(Ok) → Ok is invertible,
|f(x)|k = 1 for all x ∈ (Ui ∩ Uj)(Ok), meaning d|ωi| = d|ωj | on (Ui ∩ Uj)(Ok).

Remark 23. The Weil measure is canonical in the sense that its construction does not depend on
the existence of a global differential form. The main reason for this is because our scheme X is

17For example, let X = SpecZ, a prime number in Z corresponds to a closed point of X, we find OX,p = Z(p) is a
local ring with maximal ideal mX,p = pZ(p). The completion of OX,p with respect to this maximal ideal is Op = Zp.
Thus, we have Z→ Z(p) → Zp, giving us SpecOx → SpecOX,x → X
18Smoothness implies a condition on the Jacobian of the local coordinates at a point, and by a generalisation of
Hensel’s lifting lemma, we have surjectivity. For more details, see p.20 of See Weil’s book Adeles and Algebraic
Groups
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over Ok, hence any invertible function f , defined on an open set U of X, must have |f(x)|k = 1 for
all x ∈ U(Ok). This also means that one may not be able to repeat this construction to define a
measure on X(k). However, if we have a global differential form ω ∈ Γ(X,Ωn

X/Ok
), we can define a

measure on X(k) whose restriction to X(Ok) is the Weil measure.
In the literature (see Batyrev’s paper Birational Calabi-Yau n-folds have equal Betti numbers), it

seems that the name Weil measure is given when X has a global nowhere-vanishing differential form,
and the measure we have constructed is called the canonical measure, and in fact, the two measures
are the same if the Weil measure (as defined in the literature) exists. Thus, for convenience, we
will stick with our definition of Weil measure.

Theorem 24 (Weil). Let X be a smooth scheme of dimension n over Ok. Let µ be the Weil
measure on X(Ok), then ∫

X(Ok)
dµ =

|X(Fq)|
qn

.

Sketch. Consider the surjective reduction map ϕ : X(Ok)→ X(Fq) sending x 7→ x, we then have∫
X(Ok)

dµ =
∑

x∈X(Fq)

∫
ϕ−1(x)

dµ.

It suffices to show
∫
ϕ−1(x) dµ = q−n for all x ∈ X(Fq). We view x ∈ X(Fq) as an element of X

by taking the value x(η) at the generic point η ∈ SpecFq. Because X is smooth and ΩX/Ok is
locally free, there exists an affine open set U ∼= SpecOk[x1, . . . , xn+m]/(f1, . . . , fm) of x such that
ΩX/Ok |U is trivialised and the Jacobian matrix (∂fi/∂xn+j)1≤i,j≤m is invertible at ϕ−1(x) ⊂ U(Ok)

(ϕ−1(x) ⊂ U as any open set of x contains x ∈ ϕ−1(x), viewed an element of X by evaluating at the
generic point η ∈ SpecOk). We consider the map g : U(Ok)→ An+m

Ok
defined by g(x1, . . . , xn+m) =

(x1, . . . , xn, f1(x), . . . , fm(x)). Observe that the Jacobian of g at ϕ−1(x) is a unit in Ok. Therefore,
by forgetting the last m coordinates, g induces an etale morphism h : U → AnOk , which induces a

k-analytic isomorphism from ϕ−1(x) to pn by Hensel’s lemma, where p is the maximal ideal of Ok.
Furthermore, because ΩX/Ok |U ∼= OnX |U , we can find a global nowhere-vanishing differential form

ω ∈ Γ
(
U,
∧n ΩX/Ok |U

)
. We then have h∗(dt1 ∧ dt2 ∧ · · · ∧ dtn) = fω, where f is invertible in U ,

hence has p-adic norm 1 when viewed as a function f : U(Ok) → Ok. By definition, fω defines a
Weil measure on the neighborhood U(Ok). Thus, we find∫

ϕ−1(x)
dµ =

∫
pn
dt1 ∧ · · · dtn = q−n

by the change of variables formula. �

4.8.4. Tamagawa measure for function fields. For a linear algebraic group G0 over kX , we will
define the Tamagawa measure on G0(AX) in this section. We follow §1.3 of Gaitsgory and Lurie’s
book https://www.math.ias.edu/~lurie/papers/tamagawa-abridged.pdf.

Let π : G→ X be an integral model of G0 (such an integral model always exists), let ΩG/X be the

relative cotangent bundle of π. Then Ωn
G/X :=

∧n ΩG/X is a line bundle on G, where n = dim(G0).

Let L be the pullback of Ωn
G/X along the identity section e : X → G. Sections of L can be identified

with left-invariant differential forms on G via the canonical isomorphism π∗L ∼= Ωn
G/X (see Neron

models p.100). Let L0 := Spec kX ×X L be the generic fiber of L, whose global sections form
a 1-dimensional kX -vector space. A non-zero global section ω of L0 can be viewed as a global
left-invariant nowhere-vanishing algebraic differential form on G0. For every closed point x ∈ X, ω
induces a left-invariant Haar measure dµω,x on G(kx).
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For an invertible sheaf L of OX -modules and a nonzero global section ω of its generic fiber L0,
one can associate a divisor on X as follows. For a closed point x ∈ X, we consider the stalk Lx ⊂ L0

at x, which is a Ox-module of rank 1 inside a 1-dimensional kX -vector space. Then ωOx is also a
rank 1 Ox-submodule of L0. Let tx ∈ Ox be a uniformiser element then ωOx = t−nxx Lx for some
integer nx. We define vx(ω) := nx to be the order of vanishing of ω at x.

Proposition 25. For every closed point x ∈ X, We have

µω,xG(Ox) =
|G(κ(x))|
|κ(x)|n+vx(ω)

,

where vx(ω) ∈ Z denotes the order of vanishing of ω at x.

Sketch. If we view ω as a left-invariant differential form on G(kx) via the isomorphism π∗L ∼= Ωn
G/X ,

vx(ω) can be described as follows. At the neighborhood U of the identity e ofG(kx), ω can be written
as ω = f(t)dt1 ∧ · · · ∧ dtn where t1, . . . , tn are the local coordinates at e, f : U → kx is an invertible

rational function. Then f(e)Ox = t
−vx(ω)
x Ox. In other words, the image of ω(e) ∈

∧n T ∗e (G(Ox))

under
∧n Te(G(Ox)) generates a fractional ideal p−vx(ω) of kx. Because ω is left-invariant so for

any g ∈ G(Ox), the image of ω(g) ∈
∧n T ∗g (G(Ox)) under

∧n Tg(G(Ox)) generates the fractional

ideal p−vx(ω) of kx. In other words, under a new local coordinates y1, . . . , yn at the neighborhood

of g ∈ G(Ox), ω = f ′(y)dy1 ∧ · · · ∧ dyn where f ′ is a rational function so that f ′(g)Ox = t
−vx(ω)
x Ox.

By the definition of Weil measure, we then find that t
vx(ω)
x ω defines the Weil measure on G(Ox), or

ω defines a measure |κ(x)|−vx(ω)µWeil on G(Ox). Thus, by Weil’s theorem, we find

µω,x(G(Ox)) = |κ(x)|−vx(ω)µWeil(G(Ox)) =
|G(κ(x))|
|κ(x)|n+vx(ω)

.

�

The Tamagawa measure µG0,X of G(AX) = G0(AX) is

τX(Ga)
−n
∏
x∈X

′µω,x.

We have τX(Ga) = qg−1, where g is the genus of X need to learn this. We also have∏
x∈X
|κ(x)|vx(ω) =

∏
x∈X

qdeg(x)vx(ω) = q
∑
x∈X deg(x)vx(ω) = qdegL = qdeg ΩG/X .

Here deg(x) := [κ(x) : Fq], degL :=
∑

x∈X deg(x)vx(ω) where the sum is over all closed points of

X 19, degL = deg ΩG/X = n because of the isomorphism π∗L ∼= Ωn
G/X (see Stack project https:

//stacks.math.columbia.edu/tag/0AYQ, we have degL = deg π∗L = deg Ωn
G/X = deg ΩG/X).

Thus, we find

µG0,X(G(A∅X)) = qn(1−g)−deg(ΩG/X)
∏
x∈X

|G(κ(x)|
|κ(x)|n

.

4.9. 22/09/2021: Cayley transform carries conjugacy classes in G to adjoint orbits
in g. The classical Cayley transform gives a bijection between the real skew-symmetric matrices
(At = −A) to the orthogonal matrices (AtA = I) by sending

A 7→ I −A
I +A

.

19note that this does not depend on the choice of ω because for any two nonzero global sections ω and ω′ of L, there
exists a nowhere-vanishing function f ∈ OX(X) so ω = fω′, and one can show

∑
x∈X vx(f) deg(x) = 0.
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One define this Cayley transform for other classical groups (and I think for reductive groups?).
In general, a Cayley transform is a bijection from a (reductive) group G to its Lie algebra g
(see https://www.mat.univie.ac.at/~michor/kostant.pdf The Generalized Cayley Map from
an Algebraic Group to its Lie Algebra by Bertram Kostant and Peter W. Michor for complex,
reductive, which says that we have the Cayley map whenever we have a faithful representation of
our group G). One property of this map is that it carries conjugacy classes in G to adjoint orbits
in g, allowing one to study conjugation action of G via the adjoint action in g.

It seems that this transform plays some role in the theory of Harish-Chandra characters, Fourier
analysis on orbital integrals (see https://arxiv.org/abs/1111.7057, which is where I first found
the term). I am intestered in the application of this to the study of orbital integrals appearing in
the Fundamental lemma of the Langlands program. It seems to me that this is a way to reduce
the group theoretic version about orbits to the Lie algebra theoretic version about orbits. But I
cannot make it more precise than this.

I don’t know if this has anything to do with the orbit method of Kirillov (https: // ncatlab.
org/ nlab/ show/ orbit+ method ) in representation theory?.

4.10. 22/09/2021: Category theory: Adjunctions and String diagrams. Some notes on
what I have learn from the category theory reading group, following Tom Leinster, Basic Category
Theory.

There are many ways to describe adjoint functors F,G between two categories A,B (where
F : A→ B is left-adjoint to G : B→ A):

(1) First way: For any A ∈ A, B ∈ B, we have bijections HomB(FA,B) ∼= HomA(A,GB)
(called this taking conjugations) satisfying some natural compatibility conditions.

(2) Second way: We have units η : 1A =⇒ GF and counits ε : FG =⇒ 1B satisfying triangle
identities.

(3) Third way: We have unit η such that for any A ∈ A, ηA : A→ GF (A) is an initial object in
the comma category (1A ⇒ G), where 1A : 1→ A is a functor defined by A. To define the
comma category: For functors P : A→ C and Q : B→ C, the comma category (P ⇒ Q) is
the ‘pullback’ of the diagram of categories

(P ⇒ Q) B

A C

Q

P

Concretely, it consists of a category (P ⇒ Q) with projections functors pB : (P ⇒ Q)→ B

and pA : (P ⇒ Q) → A, together with a natural transformation PpA ⇒ QpB (Search
‘2-limit’ for more of this).

In the category theory reading group, we learn how to draw functors between categories and
natural transformations between functors as string diagrams. I am a bit lazy to write down the
way to see this but let me link to the videos by TheCatsters https://youtube.com/playlist?

list=PL50ABC4792BD0A086. The main idea is that one can turn a natural transformation to a
string diagram by Poincare duality, treating 2-morphisms (i.e. natural transformations) as points,
1-morphisms (i.e. functors) as a line and 0-morphisms (objects) as 2-dimensional spaces.

Although up to this point, I am still not that convinced on how one can see triangle identities in
adjunctions as string diagrams, i.e. https: // ncatlab. org/ nlab/ show/ triangle+ identities

with the above rules of drawings?
What is the relation of string diagrams with Feymann diagrams?
I think I refer to the following reference on June 2021 already (related to Topological QFT) but

let me link it again: https://arxiv.org/abs/math/0512103.
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4.11. 22/09/2021: Characters in representation theory. I read the section about trace for-
mula in representation theory from https://arxiv.org/abs/1009.1862v3

Some things I don’t understand: For a finite-dimensional representation π V of a finite group G,
one can define the character of V by taking the trace of your representation, which can be view as
a linear functional on C[G]. One can generalise the definition of character for compact G and the
application of characters in representation theory in both cases are similar: irreducible characters
are orthonormal basis of the space of class functions; knowing these irreducible characters help
to determine decomposition of any G-representation V into irreducibles (see Folland, Abstract
harmonic analysis, §5.3 for example). A generalisation of this for semisimple G is Harish-Chandra
character, i.e. it is a distribution of G, defined by

Θπ : f 7→ Tr

(∫
G
f(x)π(x)dx

)
.

What is the role of this character theory in representation theory ofG? Is there an even more general
context of character theory? e.g. categorical version, locally compact version, p-adic version? Is
there a conceptual explanation of why taking trace is a natural thing to do? Update 28/09/2021:
See Terence Tao’s comment in https://mathoverflow.net/a/13527/89665, where he said trace
is a linearised version of dimension-counting operator. So I guess some sort of decategorification
functor (if this makes any sense) ... See also the comment on how this idea fails in characteristic
p > 0.

Maybe this has something to do with the discussion on 13/08/2021, where character theory is
some sort of decategorification of the category Rep(G).

Another related thing is that I don’t know too much of the analytic side of representation
theory: distributions, Plancherel formula, ... Hopefully, this will motivate me to read something
like http: // math. uchicago. edu/ ~ ngo/ Rep-p-adic. pdf more carefully.
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4.12. More things to learn.

(1) From 19/09/2021: What is the definition of divisors, the correspondence between divisors
and invertible sheaves, Weil divisors, Cartier divisors ? Divisors of locally free sheaves over
a curves? See Vakil’s book or Wedhorn’s book on AG.

(2) Analogy of SpecZ as a 3-manifold? https://mathoverflow.net/q/4075/89665 See also
Ben-Zvi’s Relative Geometric Langlands duality from https://www.msri.org/workshops/

918/schedules/28233 and https://math.ucr.edu/home/baez/week257.html.
(3) Motivic characters of SL2: https://arxiv.org/abs/math/0609260, see also 22/09/2021.
(4) Just found some links https://ncatlab.org/nlab/show/functorial+field+theory to

topological QFT, functorial field theory. This is something I managed to learn a bit on
06/2021, hopefully I have later time to revisit this. See also string diagrams on 22/09/2021.
The book ”Towards the Mathematics of Quantum Field Theories” is also following this
direction I believe (probably the best place to learn).

(5) (22/09/2021) I found a very nice notes by David Nadler in https://arxiv.org/abs/1009.

1862v3, titled ‘The Geometric Nature of the Fundamental Lemma’. I only managed to read
the first three sections of his notes, but even so, I loved the way he presented the materials
on these sections.

Need to write some notes on what I learnt from this notes. In particular,
(a) Trace formula in representation theory, starting from finite group example (see also

22/09/2021).
(b) Chevalley restriction theorem and characteristic polynomials.
(c) Reductive groups generality.
(d) A study of orbits under group action.
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5. October 2021

5.1. 01/10/2021: Hecke algebra, groupoid version. I learnt how to describe the Hecke alge-
bra as a groupoid from David Ben-Zvi’s lectures Between electric-magnetic duality and the Lang-
lands program (p. 122). I remembered trying to understand something like this on 06/06/2021
(what Ben-Zvi called ‘geometric function theory’), but at the time I couldn’t figure out what
pt/G means in Ben-Zvi’s notes back then. Now thanks to the category theory reading group (see
22/09/2021), I can make some sense out of this (at least when G is finite).

First, let me try to restate the question in Ben-Zvi’s lectures: Let G be a finite group acting on
a space X, and let K ⊂ G be a subgroup.

What is the symmetry of C[X/K], i.e. what acts on C[X/K]?

One views C[X/K] as K-invariant functions C[X]K on X, and we have a K-invariant functor of
G-representations

(−)K : Rep G→ Vect.

To study the action on (−)K means to understand its endomorphism End
(
(−)K

)
. By Frobenius

reciprocity (or Hom-⊗ adjunction), the functor (−)K is representable by

VG,K = IndGKC = C[G]⊗C[K] C = C[G/K].

The Hecke algebra HG,K is

HG,K := End
(
(−)K

)
= EndRep(G)(VG,K , VG,K) = (VG,K)K = C[K\G/K].

Have I really answered the question of what is the symmetry of C[X/K]? The third equal sign
follows follows from the fact that a G-homomorphism φ : VG/K → VG/K is determined by the
image φ(1K), where 1K ∈ C[G/K]. We also know K fixes 1K when acting on C[G/K]. This
description tells us that the double coset has a canonical algera structure via the endomorphism
ring.

The functor (−)K factors through HG,K-mod, which is equivalent to the subcategory of Rep(G),
consisting of spherical G-representations, i.e. its irreducible components V has non-trivial K-
invariants V K 6= ∅. The word ‘spherical’ goes back to the study of spherical harmonics, i.e. L2(S2)
being acted on by SO3, where noting that S2 = SO3 / SO2.

One has a concrete way to describe the algebra structure of HG,K as follows. We first start by
describing the algebra structure of the group algebra C[G].

In fact,
Now, we want to describe a canonical algebra structure on C[G] from the multiplication map

µ : G×G→ C. We first write down all the information we know about G: Technically this is not
all information, we are missing something about identity map, associativity, ... but why are they
missing when defining the algebra structure on C[G]?

G×G

G G

G

π1

π2

µ

Does this link to finite Fourier transform?

Remark 26. We start of by discussing pullback and pushforward of a given map f : X → Y between
two spaces X and Y . For convenience, we take X,Y to be finite.
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For a map Φ : X → Y , it is not hard to define pullback Φ∗ : C[Y ] → C[X], when we view
C[Y ] as the space of functions on Y . However, to define pushforward Φ∗ : C[X]→ C[Y ], a natural
definition of Φ∗(f) for f ∈ C[X] is sending

y 7→
∫

Φ−1(y)
fdx :=

∑
x∈Φ−1(y)

f(x).

From this, to define pushforward, it is better to view C[X] as the space of measures on X, i.e. given
f ∈ C[X], one can (noncanonically) associate a measure on X by sending open U ⊂ X to

∫
U fdx.

Now Φ∗(f) is a measure on Y , defined by sending open V ⊂ Y to
∫

Φ−1(V ) fdx ∈ C.

When X is locally compact Hausdorff, by Riez representation theorem, there is a canonical way
to view a measure on X as a linear functional C[X] → C. In other words, two identify measures
and functions on X, we have essentially identify C[X] with its dual C[X]∗. 20 In our case where
X is finite, to see the duality between functions C[X] on X and measures C[X]∗ on X, we have
fixed a measure on X, i.e. a linear functional

∫
X : C[X] → C, defined by f 7→

∑
x∈X f(x). From

this, recall we have noncanonically identified a function f ∈ C[X] with a measure µf on X, sending
open U ⊂ X to µf (U) =

∫
U fdx. One view this measure as a linear functional C[X] → C by

g 7→
∫
X g(x)µf (x) =

∫
X f(x)g(x)dx. Thus, in other words, the duality between C[X] and C[X]∗ is

obtained by choosing a linear functional
∫
X : C[X] → C (i.e. a measure on X) by f 7→

∑
X f(x)

and then define an inner product on C[X] by

〈f, g〉 =

∫
X
f(x)g(x)dx :=

∑
x∈X

f(x)g(x).

I don’t see the point where the Hermitian condition of the inner product comes in naturally This
inner product also gives the compatibility between pullback and pushforward, where they are adjoint
with respect to this inner product.

So the duality allows one to work with one space (instead of with itself and its dual). Usually it
is easier to define pullback on the spaces X and easier to define pushforward on the dual spaces.
Having a self-duality allows one to define pullback and pushforward on the same space. 21 22

This then reminds me of the discussion on 13/08/2021 and 22/09/2021.
Under the identification C[X] with C[X]∗, we want to check that the pushforward Φ∗ is really

coming from C[X]∗ → C[Y ]∗. Need to check this
A final comment: A lesson I learnt from this computation is that adjointness is like an approxi-

mation for duality. Normally it is difficult to determine left-adjoint of some operator/functor, but
once we have duality (between C[X] and C[X]∗) then constructing the adjoint is easier.

Remark 27. We would like to discuss the G-equivariant case of the previous remark, i.e. we would
like to describe pullback and pushforward of Φ : X → Y when we have an action of G on X and Y .
Again, we assumeX,Y are finite first, and we considerG-equivariant functions onX and Y , denoted
C[X/G] or C[X]G. If Φ is G-equivariant then one can define pullback Φ∗ : C[Y/G]→ C[X/G].

One should view pushforward as something coming from taking the dual of pullback, i.e. C[X/G]∗ →
C[Y/G]∗. Thus, to define pushforward Φ∗ : C[X/G]→ C[Y/G], our task is to find a way to identify
C[X/G]∗ with C[X/G]. Similar to the previous remark, we first need to choose a linear functional

20In functional analysis language, a linear functional Fun(X)→ C is called a distribution (or generalised function)
21 Another remark: I think another place where we have the duality between measures and functions on X is when X
is a smooth manifold. A tangent vector is roughly a linear map C∞(X)→ C, a differential form is dual to a tangent
vector, so something like Func(C∞(X))→ C. One can define a measure with respect to a differential form. We can
then define pullback and pushforward of differential forms as analogues of pullback and pushforward of measures.
Make precise
22 Another place where we have that self-duality is the case of Hilbert space, where we are given a Hermitian inner
product that identifies the Hilbert space H with its dual.
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∫
X/G : C[X/G] → C. We define f 7→

∑
x∈|X/G|

f(x)
#Aut(x) for the case X is finite. Here |X/G| is the

set of isomorphism classes of elements in X, #Aut(x) is the size of the isotropy group of x.
After identifying C[X/G] with C[X/G]∗, we will now define the pushforward map. Need to do

The algebra structure on C[G] (called convolution) can be described in terms of the multiplication
map µ as follows.

f1 ∗ f2 := µ∗(f1 � f2) := µ∗(π
∗
1f1 · π∗2f2).

5.2. 05/10/2021: References: Aaron Mazel-Gee, factorisation homology, ∞-categories.
The website of Aaron Mazel-Gee has many good notes about ∞-categories. For example his intro-
ductory lecture notes to Higher Algebra https://etale.site/teaching/w21/math-128-lecture-notes.
pdf, his guidelines for topics in∞-category https://etale.site/teaching/f16-infty/seminar-infty-2.

pdf, a syllabus about factorisation homology https://etale.site/teaching/s19-fact-hlgy/

fact-hlgy-outline.pdf and his lecture notes, another lecture notes about factorisation homology
https://nilaykumar.github.io/static/pdf/factorization_homology.pdf by John Francis.

What caught my interest is that he mentioned factorisation homology as generalised integration
theory. I would like to learn on what he meant by that.

Some more references about factorisation homology:

(1) Lectures on Factorization Homology, Infinity-Categories, and Topological Field Theories:
https://arxiv.org/abs/1907.00066

(2) Claudia Isabella Scheimbauer PhD thesis http://www.scheimbauer.at/ScheimbauerThesis.
pdf

5.3. 19/10/2021: Tamagawa number as Pic/Sha. So for connected reductive group over

number field, we have τ(G) = Pic(G)
X(G) .

See discussion at https://mathoverflow.net/q/44184/89665.
I would like to understand this statement for SLn or GLn.

5.3.1. Picard group. Let G be a (split) connected semisimple linear agebraic group over a (al-
gebraically closed) field k (of characteristic 0). The Picard group PicG of G is the group of
isomorphism classes of line bundles on X. In this section, we will focus on proving the following

Theorem 28. If G is simply connected then PicG = 0.

Trying for SL2. One way to show Pic(SL2) is to show O(SL2) = k[xij ]/(x11x22 − x12x21 − 1) is a
unique factorisation domain, and the fact that the Picard group of SpecA for a unique factorisation
domain A is trivial. But proving O(SL2) is a UFD for any k seems to be nontrivial (in fact this
is usually considered as a consequence of the theorem proved via other methods). See https:

//math.stackexchange.com/q/173021/58951.
A second way, following Milne p. 69 https://www.jmilne.org/math/CourseNotes/RG.pdf, is

as follows: Consider T ⊂ B ⊂ SL2. We have a group homomorphism

X∗(T )→ Pic(SL2 /B)

χ 7→ L(χ)

A character χ : T → Gm induces a B-equivariant line bundle SL2×A1 on SL2 by letting B acts on
SL2×A1 by

(g, x)b = (gb, χ(b−1)x), g ∈ G, x ∈ A1, b ∈ B.
This decends to a line bundle L(χ) = SL2×SL2A1 on G/B = P1. In fact, this is an isomorphism
X∗(T ) ∼= Pic(G/B) = Pic(P1) ∼= Z.

Milne claimed that the following sequence is exact

0→ X∗(SL2)→ X∗(T )→ Pic(SL2 /B)→ Pic(SL2)→ 0
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Milne didn’t prove this. I tried to look elsewhere for the proof of exactness of this sequence
and found this https://www-fourier.ujf-grenoble.fr/~mbrion/enney.pdf, which I couldn’t
understand ... For example, is there a way to see Pic(SL2 /B)→ Pic(SL2) is surjective?

From the exactness of the above sequence, we find Pic(SL2) = 0.

Trying to understand the general proof. I found the proofs to be given in:

(1) Section 4 (Proposition 4.6) of Local properties of algebraic group actions by F. Knop, H.
Kraft, D. Luna and T. Vust [in: ”Algebraische Transformationsgruppen und Invarianten-
theorie” (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhuser Verlag
(Basel-Boston) (1989), pp. 63-76]

(2) Another proof by Iversen 19 sketched in p.70 Milne Reductive groups notes. There are some
similarities between the two proofs.

(3) Another proof in Voskresenskii’s Algebraic Groups and Their Birational Invariants, p. 45
using Kummer exact sequence and etale cohomology.

A sketch of what I understand about the first two proofs:

(1) Show PicG is finite.
An ‘independent’ proof I found in Voskresenskii’s Algebraic Groups and Their Birational

Invariants, p. 45: By the theory of split semisimple group, there exists g ∈ G(k) so
NgB is open in G (N is a nilpotent group, B is a Borel) and V = G \ NgB is the

union
⋃l
i=1 Fi of closed irreducible subsets of G of codimension 1 (i.e. prime divisors

of G), where l = rank G = dimT . Because G is smooth, PicG can be identified with
(Weil?Cartier?) divisors, so the above implies (see p.312 of the book Ulrich Grtz, Torsten
Wedhorn, Algebraic Geometry I: Schemes) an exact sequence

l⊕
i=1

Z · [Fi]→ Pic(G)→ Pic(NgB)→ 0

As NgB ∼= N×T×N so Pic(U) = 0 (I think this goes roughly as Pic(Ga) = Pic(Gm) = 0?).
This means Pic(G) is the quotient of Zl by principal divisors on U , i.e. regular invertible
functions on U , which is k(U)∗ ∼= k∗×X∗(T ) (Voskresenskii didn’t explain this but I guess
it roughly goes like this: N is Gr

a so invertible functions on U = N × T ×N are the same
as invertible functions on T because invertible function on Ga is trivial?).

All of this implies Pic(G) is finite.
(2) Identify Pic(G) with central extensions Ext(G,Gm) of G by Gm. This implies for any

L ∈ Pic(G), there exists a finite covering π : G′ → G of algebraic groups so π∗(L) = 0.
I am still trying to understand this step. For example, in Lemma 4.3 of Knop, Kraft,

Luna, I don’t understand the definition of µ : L × L → L, i.e. how to map L × L →
p∗1(L)⊗ p∗2(L).

People commented that this step is similar to the abelian variety case. See Serre Algebraic
groups and class fields VII. §16.

(3) Because Pic(G) is finite with elements L1, . . . , Lk. By previous step, there exists finite
covering G′i → G of G, then

∏
G′i → G is a finite covering of G such that the induced map

Pic(G)→ Pic (
∏
G′i) = 0.

(4) If G is simply connected, meaning any finite covering G′ → G is an isomorphism, giving an
isomorphism Pic(G)→ Pic(G′) Hence, we can choose G′ =

∏
G′i from previous step to get

Pic(G) = 0.

For more general G. There is a formula of Pic(G) for more general reductive G. See https:

//mathoverflow.net/q/296965/89665 or https://mathoverflow.net/a/297093/89665.
A discussion of the proof is given in https://mathoverflow.net/a/273883/89665.
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See also Voskresenskii’s p. 45.

5.3.2. Tate-Shafarevich set. I would like to mention of historial facts I learnt about this.
For a global field k and algebraic group G, there is a natural map

H1(k,G)→
∏
v

H1(kv, G)

The kernel of this map is called Tate-Shafarevich set, denoted X(G). Its geometric meaning is all
G-torsors X so X(kv) 6= 0 for all places v.

(1) When G is a linear algebraic group, X(G) is shown to be finite in

J-J. Sansuc, Groupe de Brauer et arithmetique des groupes algebriques lineaires sur un
corps de nombres

(2) When G is an abelian variety, this is a group. But it seems that the finiteness of this is still
a conjecture, and this directly ties with the Birch and Swinnerton-Dyer conjecture.

(3) When G = SLn or GLn, there is a simple proof that H1(k, SLn) = 1 given in Voskresenskii
p 28 but I didn’t have enough time to learn this.

(4) For simply-connected algebraic group, X(G) = 0 and this is the Hasse principle for algebraic
groups.

5.4. 21/10/2021: Mednykh’s formula, TQFT, character varieties, skein algebra. The
story from 06/06/2021, 13/09/2021 and 01/10/2021 again, about Mednykh’s formula and TQFT.
Maybe also 05/10/2021.

There is an open question on MathOverflow asking a modular analogue of Mednykh’s formula
https://mathoverflow.net/q/313599/89665.

Until now, I still don’t understand the proof of this seminar and historical background (https:
//arxiv.org/pdf/math/0703073.pdf), what kind of generalisations can it get.

Sam Gunningham asked what aspects of character theory that can be simplified using TQFT.
I get a bit more motivated about this topic because I just learned about Madeline’s research

which is Temperley Lieb algebra, which leads me to related topics like skein theory: https://

arxiv.org/pdf/1908.05233.pdf.
I wonder if one can always described this sort of algebra (Hecke, Temperley Lieb) as some TQFT?

What advantage can this point of view give?
Another link between skein algebra as quantization of algebra of functions on a character va-

rieties: https://youtu.be/GF5PXRkEn3w. There are connections to mirror symmetry but I don’t
understand this.

What is the precise relation here between TQFT, skein, character varieties, Mednykh’s formula?

5.5. 23/10/2021: Condensed mathematics and functional analysis. Peter Scholze and
Dustin Clausen are using condensed mathematics to rewrite the theory of functional analysis that
have better functional properties. Condensed sets are analogues of compactly generated space
(which includes locally compact topological spaces). I wonder what is the right notion of measures
of a (locally comact) topological spaces in this setting, and then Fourier transform? What is adeles
in this setting? What is R? What is the difference between R and Qp in this setting? For a talk,
see https://youtu.be/cDkuhXD7hn0. See also Scholze’s notes https://www.math.uni-bonn.de/

people/scholze/Condensed.pdf for locally compact abelian groups. Here we have Pontryagin
duality.
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5.6. 23/10/2021: How to discover Hecke algebras: Knot invariants. First motivation is
through the study of the algebra of B-equivariant functions on G = GLn(Fq). See 01/10/2021. A
blog post here explains how to categorify this idea https://sbseminar.wordpress.com/2009/04/

09/interpreting-the-hecke-algebra-ii-the-sheafification/.
Second motivation is through knot invariants https://sbseminar.wordpress.com/2009/04/

13/how-to-get-an-algebra-from-a-knot-invariant/ and https://mathoverflow.net/a/12986/

89665. What exactly does this mean? i.e. how to one sees the quadratic relation of the Hecke al-
gebra from knot invariants? It seems the quadratic relation comes from skein relation? And then
what is the motivation for skein relation? What is the stuff about fundamental groups of a torus
mentioned in https://mathoverflow.net/a/13461/89665?

5.7. More things to learn.

(1) For a Lie group G, let LG = Map(S1, G) be a Lie group of all morphisms between manifolds
f : S1 → G. The group structure is given by pointwise multiplication. Why the Lie algebra
of this is Lg = g ⊗ C((t)). Why does this group has trivial central extension? Taking the
Lie algebra of the central extensions, we should get affine Lie algebras.

(2) Principles between cohomology as classifying obstructions: https://math.stanford.edu/

~conrad/210BPage/handouts/gpext.pdf (Brian Conrad has so many good notes)
(3) Spectral sequences, computing cohomology. What is a good motivation to do this? Perverse

sheaves?
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6. More things to learn

(1) Everthing about SL2,GL2: Representations of SL2(R), SL2(Fq), SL2(Qp), U(sl2), quantum
affine sl2, ... Some links:
(a) https://jenseberhardt.com/teaching/S21Seminardata/plan.pdf, https://jenseberhardt.

com/teaching/W2021Seminardata/plan.pdf, https://www.maths.usyd.edu.au/u/

romanova/Talks/TwistSheavessl2.pdf

(b) Rep of SL2(Fq), book by Cedric Bonnafe (see rep lie group of finite type folder).
(c) automorphic representations of SL2,GL2 over adeles https://virtualmath1.stanford.

edu/~conrad/conversesem/refs/NgoGL2.pdf, trace formula https://www.math.stonybrook.
edu/~aknapp/pdf-files/355-405.pdf (see more at folder about automorphic forms),
Anton Deitmar book Automorphic forms looks very introductory

(d) More general refs: https://virtualmath1.stanford.edu/~conrad/conversesem/,
(e) Langlands fundamental lemma for SL2 (Bill Casselman Essays on the Fundamental

Lemma).
(2) Geometric Langlands and its connection to mathematical physics: https://web.ma.utexas.

edu/users/vandyke/notes/langlands_sp21/langlands.pdf; Quantization problem https:

//arxiv.org/pdf/math/0210466.pdf.
(3) Perverse sheaves, Kazhdan-Lusztig conjectures. See Archar’s book, Chriss Ginzburg, Go-

erdie and Anna’s notes, Humphreys book, https://chenhi.github.io/math7390-s21/,
Gelfand and Manin books, any many more ...

(4) Algebraic geometry, complex geometry
(a) do Vakil exercises. Learn sheaf cohomology in more details.
(b) Moduli space of vector bundles over Riemann surfaces, over P1 (see Sabin Cautis notes).

(5) Something is myterious to me about ”hypergeometric”, as it seems appear in many ar-
eas. Some references: Zoladek The Monodromy Group (see Geometry folder), Kapranov
Hypergeometric functions on reductive groups (Hypergeometric folder), Macdonald hyper-
geometric functions, Hypergeometric functions over finite fields by Jenny Fuselier, Ling
Long, Ravi Ramakrishna, Holly Swisher, Fang-Ting Tu.

I would like to at least understand all the application in terms of the .2F1 hypergeometric
function.
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7. November 2021

7.1. 07/11/2021: Coxeter systems. Today I read the book Introduction to Soergel bimodules,
up to §1.1.5. Learnt some interesting ways to describe Coxeter systems type A,B,D via strand
diagrams.

7.2. 08/11/2021: Stoke’s theorem. Read Bott Tu Differential forms in Algebraic topology.
Learn about Stoke’s theorem and its proof.
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7.3. 10/11/2021: Valuation theory. Revise about valuation theory of fields, in particular
nonarchimedean valuation from the book Introduction to non-Archimedean Geometry by Piotr
Achinger. The goal would be to learn some nonarchimedean geometry and its applications.

7.4. 11/11/2021: Poincare lemmas: De Rham and compactly supported cohomology
of Rn. Today I read some more pages of Bott Tu’s book. In particular, I learned on how one
computes De Rham and compactly supported cohomology of Rn. Importantly, one needs to prove
the Poincare lemma, saying that

H∗dR(Rn × R) ∼= H∗dR(Rn)

and
H∗c (Rn × R) ∼= H∗−1

c (Rn).

For the de Rham cohomology, one can show that the projection map Rn×R→ R and the inclusion
R ↪→ Rn×R via r 7→ (r, 0) induce the isomorphism.in cohomology, i.e. p∗e∗ and e∗p∗ are homotopic
to the identity map.

For the compactly supported cohomology, we have the integration-over-fibers map that induces
map H∗c (Rn×R)→ H∗−1

c (Rn) on cohomology. Together with the map Ω∗c(Rn)→ Ω∗+1
c (Rn×R) by

adding dt in the R component of Rn × R, these two map induces the isomorphism H∗c (Rn × R) ∼=
H∗−1
c (Rn) on cohomology. The compositions of these two maps are homotopic to the identity maps,

although the construction of homotopic operators doesn’t seem to be trivial to me.
Poincare lemma also holds for any smooth manifold M instead of Rn.
I also learned about degree map: given a proper map of smooth real manifolds f : Rn → Rn,

one can define pullback of compactly supported cohomology f∗ : Ω∗c(Rn) → Ω∗c(Rn). Choose a
compactly supported n-form α ∈ Ωn

c (Rn) ∼= R with volume 1 when integrating over Rn. The degree
map is deg f :=

∫
Rn f

∗α. Surprisingly, this turns out to be an integer. The proof uses Sard’s
theorem. Actually this situation is very much the same as the compact Riemann surface case, see
05/09/2021.

7.5. 16/11/2021: Tamagawa numbers and unfinished questions. I finished my honours
about Tamagawa numbers today. I still have quite a lot of questions unanswered regarding this
topic (see Tamagawa folder). I just want to record some of those questions here and move on first.
Hopefully when I get back I can understand more.

(1) Learn Weil’s computation of Tamagawa for other groups.
(2) Learn Langlands’s proof of computation of Tamagawa number

• Eisenstein series, then explicit computations in the notes
• Rewrite Langlands proof in functorial point of view to see the main idea. See Braveman,

Kazhdan Representations of affine Kac-Moody groups over local and global fields: a
survey of some recent results.
• geometric Eisenstein series? There is a notion of geometric Eisenstein series, can this be

be used to compute Tamagawa https://web.ma.utexas.edu/users/benzvi/GRASP/

lectures/drinfeldEisen.pdf?

(3) Yang-Mills theory and Tamagawa Numbers: Read Atiyah Bott paper, Harder -¿ What is
the connection with Tamagawa?
• Connections on principal bundles, Yang Mills, https://www.math.toronto.edu/mein/
teaching/moduli.pdf and http://www.math.columbia.edu/ thaddeus/papers/odense.pdf
• Equivariant cohomology -¿ Tu’s book, Goergie’s book.

(4) Lurie Gaitsgory proof:
• Moduli stack of vector bundles. Weil’s conjecture -¿ Frank Neumann; Behrend, The

Lefschetz trace formula for algebraic stacks; Algebraic stacks and moduli of vector
bundles Frank Neumann; Alper Introduction to Stacks and Moduli.
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• Higher algebra: Lurie’s lecture notes on Tamagawa. https://web.ma.utexas.edu/

users/gregoric/Appendix.pdf

(5) (3.5) More: affine Tamagawa (Braveman, Kazhdan), Tate-Shafarevich groups, condensed
mathematics (it seems to define better space to do Haar measure), Tamagawa in Higgs
bundles, characteristic varieties, Siegel Weil Formula https://www.math.ucdavis.edu/

~mulase/texfiles/charvar.pdf, p-adic integration, motivic integration, height zeta func-
tions https://www.youtube.com/watch?v=ngwax1V1Bgg&t=1529s,

(6) condensed mathematics: how to test this with Tamagawa numbers? Class field theory?
Langlands’ proof? Adeles? Cohomology using adeles? The point of condensed set is to have
good cohomology theory, where do we use cohomology theory in the proof of Tamagawa
number? How Haar measures change under exactness of functions? Can we use Lurie
Gaitsgory proof for the number field case? Can we use Langlands proof for number field
case? What is analogue of Haar measures here? Can we define Haar measure for not
just locally compact? For example G(C((t)))? See Frenkel Analytic theory of langlands
over complex curves, section 3,4. ”The representation theories of the corresponding groups,
such as G(Qp) and G(C), are known to follow different paths: for the former we have,
in the unramified case, the spherical Hecke algebra and the Satake isomorphism. For the
latter, instead of a spherical Hecke algebra one usually considers the center of U(g) (or,
more generally, the convolution algebra of distributions on G(C) supported on its compact
subgroup K”

(7) Relative Langlands: The principle of Tamagawa numbers is that integrating over adelic
quotient gives you values of L-functions. This has another name of ‘periods in automorphic
forms’, where we integrate a function instead of just taking the volume. Recently, Yiannis
Sakellaridis and Akshay Venkatesh define periods this for spherical varieties, https://

arxiv.org/pdf/1203.0039.pdf. The question is whether there is a Tamagawa number
formula for general spherical varieties.

(8) There is a general formula τ(G) = |Pic(G)|/|Sha(G)|. Is is valid over function fields? Do we
have a description of this in terms of G-bundles? Just like for semisimple simply connected
G, we can formulate τ(G) = 1 in terms of G-bundles.

Now, let’s learn something different!

7.6. 17/11/2021: Poincare duality, Kunneth formula and Poincare duals. Last few days
I read about Poincare duality, Kunneth formula and Poincare duals from Bott and Tu book. A few
technical points:

(1) For oriented manifold (without boundary) M of dimension n, we have a pairing Hq(M)⊗
Hn−q
c (M)→ R, obtained by taking wedge product and then integrating over M . Poincare

duality states that this pairing induces an isomorphism Hq(M) ∼= (Hn−q
c (M))∗. Bott and

Tu only proved this for the case M has finite good cover and use Mayer-Vietoris in §5.
Interestingly, one does not always have Hq

c (M) ∼= (Hn−q(M))∗. But in the case of M
having finite good cover (cover of M where intersection of any two is Rk), we do have this.

(2) Kunneth formula says that H∗(M × F ) = H∗(M) ⊗H∗(F ) as graded R-vector spaces for
manifolds M,F where one of them has finite good cover. This can be generalised to Leray-
Hirsch theorem about cohomology of fiber bundle where the base space has a finite good
cover.

(3) For any closed submanifold S of manifold M of dimension n, via Poincare duality, one can
associate to S a Poincare dual [ηS ] ∈ Hn−k(M) for any 0 ≤ k ≤ n. If S is compact, one
can associate compact Poincare dual [η′S ] ∈ Hn−k

c (M) to S.
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7.7. 24/11/2021: Fourier analysis and rep theory. I read a nice overview from https://

mathoverflow.net/a/37189/89665, which describes Fourier analysis in a representation theoretic
viewpoint.

(1) For locally compact group G, we want to describe L2(G) as Hilbert space direct integral of
matrix coefficients of irreducible unitary reps (not sure what this means), and for this, one

has to find the correct measure (Plancherel measure) on set Ĝ of irreducible unitary reps.

(2) When G is “Type I”, we have such measure of Ĝ and a decomposition of L2(G), but such
measure is not explicitly given.

(3) When G is a real semisimple Lie group, Harish-Chandra describes Plancherel measure ex-
plicitly. Those irreducible unitary reps appearing in the spectral decomposition of L2(G)
are called tempered. Among those tempered, a rep that have positive spectral measure is
called discrete series rep. The principal series representations are non-discrete tempered
and account for the spectral decomposition of functions supported on the hyperbolic ele-
ments of the group. The complementary series are those irreducible unitary reps that are
not tempered.

7.8. 28/11/2021: Tate’s thesis I: From Dirichlet characters to quasicharacters on Q×\A×.
I read this from Stephen S. Kudla notes on Tate’s thesis. From Dirichlet characters to quasichar-
acters on Q×\A×:

(1) A classical Dirichlet character χ
N

: Z→ C modulo N is a function obtained from a character

χN : (Z/n)× → C× by extending to 0 on Z/n and then pulling back to Z.

(2) Every Dirichlet character χ
N

can be viewed as a continuous character χ on Ẑ× by pulling

back via Ẑ× = lim←−n(Z/n)× → (Z/n)×.

(3) As A× ∼= Q× × R×+ × Ẑ× so any Dirichlet character defines a continuous character ω :
Q×\A× → C×, called a quasicharacter. An example of a quasicharacter is ωs(x) = |x|sA for
s ∈ C.

(4) A character ωp : Q×p → C× is unramified if it is trivial on Z×p , hence can be written in the

form ωp(x) = t
ordp(x)
p for some tp = tp(ω) ∈ C×.

(5) A quasicharacter on Q×\A× induces quasicharacters ωp on Q×p via the embedding Q×p ↪→
A×. There are finite set of places S(ω) containing the archimedean places such that ωv
is unramified for all v 6∈ S(ω). If ω corresponds to a Dirichlet character χ

N
then S(ω) =

∞∪ {p : p | N}.
(6) It is harder to define Dirichlet character when the number field is not Q, as one does not

simply have A× = Q× × R×+ × Ẑ× but need to take into account of global units and ideal
class group being nontrivial. This is why the adelic point of view is better.

(7) For a quasicharacter ω, one can associate a partial L-function by taking the Euler product

LS(s, ω) =
∏

v 6∈S(ω)

(1− tv(ω)q−sv )−1,

which is absolutely convergent in the half plane Re(s) > 1. The factors

Lv(s, ωv) := (1− tv(ω)q−sv )−1

are called local L-factors associated to ωv.
(8) The goals are to complete LS to include local L-factors for v ∈ S(ω), and then to prove

meromorphic analytic continuation and functional equation of the completed L-function.

Some more definition: The conductor of χ : Ẑ× → C× is the smallest N0 for which χ is trivial on

the kernel of Ẑ× → (Z/N0)×, i.e. χ is the pullback of a unique Dirichlet character χN0 .
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7.9. 28/11/2021: Torus, elliptic curves and double cover of CP1. A very rough ideas of
what I learned today. We have the correspondences between:

A = {torus}
with

B = {elliptic curve}
with

C = {double cover of P1 ramified at four points}.
(1) To go between A and B, one uses Weierstrass function: for an elliptic curve y2 = (x −

a)(x − b)(x − c), one can parametrise its points by (x, y) = (P (t), P ′(t)) for t ∈ C where
P is Weierstrass function of this curve, which is doubly periodic. Hence, the map t 7→
[P (t), P ′(t), 1] ∈ E ∪ {∞} defines isomorphism between a torus and an (compactified)
elliptic curve. See https://www.math.purdue.edu/~arapura/graph/elliptic.html for
more details.

(2) To go between B and C: Take the projection to x-axis. Then the ramified points are a, b, c
and infinity (after compactifying elliptic curve). A more detailed check that this is indeed
a ramified covering is at https://math.stackexchange.com/a/177564/58951. A rough
idea is that the fiber at x = a, b, c gives y2 = 0.

(3) To go between A and C: Quotient the torus T = C/Λ by relation z ∼ −z to get CP1.
This gives a double cover T → CP1 ramified at 4 points (these 4 coincide at ”infinity” in
T). A segment between two of these points form a loop in the torus. For the converse, one
can use branch-cut constructions, which I still don’t quite understand. See for example
https://math.stackexchange.com/q/3474041/58951.

7.10. 28/11/2021: Construction of derived categories. The classical way to define derived
functors: For a left exact functor F : C→ D where C has enough injectives, its i-th derived functor
RiF : C → D applied to A ∈ C is the ith cohomology of 0 → F (I0) → F (I1) → · · · where
0→ A→ I0 → I1 → · · · is an injective resolution of A.

Two fundamental examples of this:

(1) For R-modules A,B, the functor Tor(·, B) is the left derived functor of ·⊗RB and Ext(A, ·)
is the right derived functor of Hom(A, ·).

(2) Category Sh(X) of sheaves of vector spaces/abelian groups over X has enough injectives.
Since taking global section Γ is left exact, it has a right derived functor RiΓ. When X is
Hausdorff and paracompact, RiΓ(F) can be seen to be the Cech cohomology H i(X,F).

The goal of derived categories is to find a better way to talk about derived functors, i.e. we
want to compute cohomology in terms of complexes and neglect morphisms between complexes
that induce isomorphisms on cohomology.

(1) We start with an abelian category A. We define category C(A) as category of complexes
in A. We have cohomology functor H i : C(A)→ A.

(2) As two homotopic morphisms in C(A) induce the same cohomology map, and as we only
care about cohomology map, we define the homotopy category K(A) over A as: objects same
as C(A), but morphisms are morphisms in C(A) modulo f : A• → B• that is homotopic to
0. The cohomology functor descends to H i : K(A)→ A.

(3) K(A) is additive but not abelian, so one cannot speak of short exact sequences in the
category. However, K(A) is close to being abelian in the sense that it is a triangulated
category.

(4) K(A) can be seen as a triangulated category as follows:
(a) We have a suspension functor Σn : K(A) → K(A) sending A• 7→ A[n]• which is the

shift functor of complexes: (A[n])i = Ai+n and differential diA[n]• = (−1)ndiA• .
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(b) In general, a triangulated category consists a class of distinguished triangles, i.e. se-
quences X → Y → Z → X[1] where composition of any two adjacent arrows is 0, that
satisfy 4 axioms. If one sees see Z[−1]→ X as homotopy kernel of X → Y and Y → Z
as homotopy cokernel of X → Y , these four axioms will say that

(i) The identity map has zero homotopy kernel and cokernel.
(ii) Every map has a homotopy kernel and cokernel.

(iii) Any map is the homotopy kernel of its homotopy cokernel and every map is the
homotopy cokernel of its kernel.

(iv) Homotopy kernels and cokernels are ‘functorial’.
A morphism f : A• → B• in K(A), induces a distinguished triangle

A•
f−→ B• → cone(f)→ A[1]•,

hence giving K(A) the structure of a triangulated category.
(5) Lastly, we would like to consider quasi-isomorphism on K(A) to be invertible, as those

induces isomorphism on cohomology. This uses localisation construction of category: take
S the set of all quasi-isomorphisms in K(A), one can define a unique localisation category
K(A)[S−1] of K(A) at S with a functor Q : K(A) → K(A)[S−1], that satisfy the similar
localisation property for modules. This gives us the derived category D(A) of A.

(6) In this case of taking localisation of a triangulated category K(A), we can describe D(A)
quite explicitly as follows: Its objects are the same as C(A), but morphisms are given by
equivalence classes of roofs. A roof from X• to Y • is a diagram

X•

A• B•

f g

where f, g ∈ K(A), f is a quasi-isomorphism. Two roofs A• → B• are equivalent if there is
a third roof such that we have a commutative diagram

Z•

X• Y •

A• B•

Note that there is some checking needed for the above description of D(A) to make sense.

7.11. 30/11/2021: Mayer-Vietoris argument. I noticed many results (Poincare duality, Kun-
neth formula) have two main ingredients in their proofs: first is to establish the result in the case of
Rn (Poincare lemma), then use the Mayer-Vietoris argument to deal with the general case (given
that the manifold has finite good cover).

After realising the importance of the Mayer-Vietoris argument, I want to sketch it here.
First is the case of de Rham cohomology,
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8. December 2021

8.1. 06/12/2021: Sato’s hyperfunctions. Today I read a bit about Sato’s hyperfunctions that
somehow generalise distribution theory of Schwarz et al. The hyperfunctions B(U) on U ⊂ R are

defined by holomorphic functions on Ũ\U for open Ũ ⊂ C satisfying Ũ∩R = U , modulo holomorphic

functions on Ũ . This definition does not depend on Ũ , so one should think of hyperfunctions as
“boundary values” of holomorphic functions.

This B is actually a sheaf of modules over sheaf of real analytic functions. There is a linear
injection from the space of distributions D′(R) to the space of hyperfunctions B(R). So hyper-
functions includes Schwartz distributions as a special case and is more explicit in the sense that
it is not based on some dual spaces of some smooth functions. Furthermore, with the definition
of hypergeometric functions, one can make sense of differentiation and integration using complex
analysis. This means one can make sense of integration of distributions, which seem to be of use
to physicists.

Some references to read more. What are the applications of these functions to the theory of
differential equations? How to define Fourier transform on these? What are the differences between
distribution theory and hyperfunctions?

(1) Urs Graf Introduction to Hyperfunctions and Their Integral Transforms
(2) Henrik Schlichtkrull Hyperfunctions and Harmonic Analysis on Symmetric Spaces.

8.2. 15/12/2021: Connection and curvature. Given a vector bundle π : V →M of (C∞-real
manifolds, complex analytic, smooth algebraic varieties, smooth rigid analytic variety). I learnt of
various ways to interpret/define connection and curvature (see wikipedia on connection):

(1) A connection (in the sense of Ehresmann connection) on π tells you how to move between
fibers of the bundle in a horizontal direction, i.e. tells you what paths in V are considered
‘horizontal’. This is achieved by identifying a ‘horizontal’ subspace Hx of Vx for each x ∈M .
If one starts with a path on the base M then a horizontal lift of this path on V is not unique,
and the failure of uniqueness is measured by curvature. If curvature vanishes, we say the
connection is integrable. This interpretation allows one to link integrable connection with
monodromy representations. This interpretation of connection is more topological and is
in fact valid for any fiber bundle.

Equivalently, Ehresmann connection is a vector bundle hom v : TV → TV that is a
projection (i.e. v2 = v). The ‘horizontal’ subundle can then be identified with ker v. One
should view this v as TV -valued 1-form on V , i.e. v as section of TV ⊗(TV )∗ = TV ⊗Ω(V )1.

(2) A connection (in the sense of Koszul/linear connection) as family of differential operators
acting on sections of V : by choosing open U of M so V |U is affine, with local coordinates
x1, . . . , xn on U of M , one can define action of ∂

∂xi
on Γ(U, V ). Curvature is then the measure

of commutativity of these differential operators, i.e. curvature vanishes if ∂
∂xi

commute with
each other.

A more formal definition: A connection on V is a bundle map ∇ : V → V ⊗Ω1
M which is

additive and satisfies Leibniz rule: for any open U ⊂ X, any f ∈ Γ(U,OU ) and s ∈ Γ(U, V ),

∇(fs) = f∇(s) + s⊗ df.

A section s is called horizontal if ∇(s) = 0.
Let TX be the tangent bundle on X then for ξ ∈ TX(U), we can define a (differential)

operator

∇ξ : Γ(U, V )→ Γ(U, V ),∇ξ(φ) = 〈∇φ, ξ〉.
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We view ∇ξ as differentiating sections of V along vector fields ξ. This is the global version
of differential operator as defined before. A connection is said to be integrable if the map
ξ 7→ ∇ξ is a Lie algebra homomorphism TX → End(V ).

Let ∇1 : V ⊗ Ω1
M → V ⊗ Ω2

M be the map

s⊗ w 7→ ∇(s) ∧ ω + s⊗ dω.
The curvature is the map ∇1 ◦ ∇. A connection is integrable is same as saying curvature
vanishes (actually I haven’t check this).

(3) A connection as vector-valued differential forms (Cartan connection): Note that (Koszul)
connection is a map V → V ⊗Ω1

M , where one should view Ωp
M (V ) := V ⊗Ωp

M as V -valued
p-form on M . Similar to how we define ∇1 in the definition of curvature, we can define

d∇ : Ωr(V )→ Ωr+1(V )

by

d∇(s⊗ ω) = s⊗ dω + (−1)degωω ∧∇s.
In this sense, a connection defines a sequence of morphisms Ω∗(V ). It is not a complex as
d2
∇ 6= 0. In fact, d2

∇ = 0 is equivalent to the fact that the curvature vanishes (see more
at wikipedia vector bundle). So, if the connection is integrable, how much de-Rham theory
can be applied to flat connection?

8.3. 17/12/2021: Algebraic de Rham and Hodge-de Rham spectral sequence. I learned
about the algebraic de Rham and the Hodge-de Rham spectral sequence from Kiran S. Kedlaya
notes ‘p-adic cohomology: from theory to practice’ (see more technical notes at the edited pdf file).
The main example would be to use the Hodge-de Rham spectral sequence to compute de Rham
cohomology of projective spaces.

8.3.1. Algebraic de Rham. Let X be a smooth variety over a field k of relative dimension n (smooth
scheme of finite type which is reduced and separated). We have the de Rham complex of sheaves
on X:

0→ Ω0
X/k → Ω1

X/k → · · · → Ωn
X/k → 0.

We define the algebraic de Rham cohomology of X, denoted H i
dR(X), as the hypercohomology of

the de Rham complex.

(1) By definition, take any quasi-isomorphism Ω∗X/k → I∗ where I∗ is a complex of injective

elements. The hypercohomology H i(Ω∗X/k) is defined to be the cohomology of the complex

Γ(I∗) where Γ is the global section functor.
(2) Instead of using injective resolution to compute de Rham, one can use acyclic resolution.

The point is that it is easier to construct acyclic resolution by using Cech complexes.
(3) For a quasi-coherent sheaf F of OX -modules on X, we can construct an acyclic resolution

of F as follows: Let {Ui}i∈I be a finite open cover of X by affine open subschemes with I a
totally ordered set. Since X is separated, any nonempty finite intersection of Ui’s is affine.
For J ⊂ I, let UJ =

⋂
i∈J Ui. Let jJ : UJ → X be the open submersion, which is affine and

hence, (iJ)∗ is exact. Since every quasi-coherent sheaf on affine space is acyclic, (jJ)∗j
∗
JF

is acyclic on X. The acyclic resolution F∗ of F is then
(a) Fi =

⊕
J(jJ)∗j

∗
JF over all (i+ 1)-elements subset J of I.

(b) The map Fi → Fi+1, sends xJ ∈ (jJ)∗j
∗
JF to element of Fi+1 whose component in

∈ (jL)∗j
∗
LF with L = {j0 < · · · < ji+1} is

i+1∑
h=0

(−1)hxL\{jh}.
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In particular, the sheaf cohomology of F is the given cohomology of this complex after
taking global sections. In ith position of this complex is the direct sum of Γ(UJ , j

∗
JF)

over all (i+ 1)-elements subsets J of I.
(c) From the previous point, we have an acyclic resolution Di,• for each Ωi

X/k. This

gives us a double complex Dp,q =
⊕

J Γ(UJ ,Ω
p
X/k) where the sum is over all (q + 1)-

element subsets J of I. To construct an complex of acyclic objects to Ω∗X/k: Let Di =⊕
j+k=iD

j,k, define Di → Di+1 by sending an element of Di with component xj,k ∈
Dj,k to one with component in Dj,k being dhorizontal(xj−1,k) + (−1)jdvertical(xj,k−1)
(here vertical is just restriction maps, horizontal is the differential). Then D• is an
acyclic resolution of Ω•X/k.

(d) An example of a computation using this method is given by Kedlaya: Suppose P (x) =
x3 + ax + b ∈ k[x] has no repeated roots. Let X = Projk[X,Y,W ]/(Y 2W − X3 −
aXW 2 − bW 3) be the complete elliptic curve. Compute de Rham cohomology of X.

8.3.2. Hodge-de Rham spectral sequence. We continue our theme of developing methods to compute
the de Rham cohomology. Recall we have reduced the task to computing the cohomology of D•.

The complex D• has a filtration, i.e. a decreasing sequence of complexes:

D• = F 0D• ⊃ F 1D• ⊃ · · ·FnD• ⊃ Fn+1D• = 0,

where F pDi =
⊕

p′+q=i,p′≥pD
p′,q. From a filtered complex F •D•, we can construct a spectral

sequence in the following sense: it is a sequence {Er, dr}∞r=r0 where each Er is a bigraded group

Er =
⊕
p,q≥0

Ep,qr

and

dr : Ep,qr → Ep+r,q−r+1
r , d2

r = 0

is a map such that Ep,qr+1 = Hp,q(Ep,qr , dr). In particular, from our filtered complex F iD•, we get

Ep,q0 =
F pDp+q

F p+1Dp+q
, Ep,q1 = Hp+q(GrpD•), . . .

where GrpD• = F pD•

F p+1D• .
In fact, this spectral sequence converges to E∞, i.e. there exists r > 0 s.t. Er = Er+1 = . . . = E∞.

And we can describe E∞ as associated graded cohomology

Ep,q∞ := GrpHp+1(D•) :=
F pHp+q(D•)

F p+1Hp+q(D•)
,

where F pHq(D•) is the filtered cohomology of D•, defined as

F pHq(D•) = image(Hq(F pD•)→ Hq(D•)).

In our case where D• comes from the de Rham complex, we find

Ep,q1 = Hq(X,Ωp
X/k)

and it is a theorem that this Hodge-de Rham spectral sequence degenerates at E1 (i.e. E1 = E2 =
. . . = E∞). Therefore, if we know the sheaf cohomology of Ωi

X/k, we know E∞. Then, by using

the formula for E∞ and that Fn+1 = 0, we can compute the filtered cohomology, in particular, we
know F 0Hq(D•) = Hq(D•).

An exercise of this method would be to compute the de Rham cohomology of Pn.
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8.3.3. More things.

(1) See more of algebraic de Rham at Stack Project: https://stacks.math.columbia.edu/

tag/0FK4

(2) A blog post of Alex Youcis: https://ayoucis.wordpress.com/2015/07/22/algebraic-de-rham-cohomology-and-the-degeneration-of-the-hodge-spectral-sequencethe/.
(3) Future exercise: Deduce Picard-Fuchs equations from Gauss-Manin connection. Why do we

care about these? A reference https://virtualmath1.stanford.edu/~conrad/shimsem/

2013Notes/Littvhs.pdf.

8.4. 17/12/2021: Derived functors of sheaves. Just want to make a summary about the
story of derived functors of sheaves. For the reference, say I learned this from Konstanze Rietsch,
An introduction to perverse sheaves, Achar Introduction to Perverse sheaves. You can say it is a
continuation from 28/11/2021.

We always assume X is a nice topological space (locally compact, Hausdorff, paracompact, with
a countable basis, locally simply connected).

(1) The right-derived functor RF : Db(A) → Db(B) (of bounded derived categories) of a left-
exact functor F : A → B is defined as RF (F•) = F (I•), where F• → I• is an injective
resolution (i.e. a quasi-isomorphism with I• consists of injective elements). For this to
make sense, we also need A to have enough injectives.

(2) The category of sheaves of vector spaces/abelian groups/modules on X has enough injec-
tives. This is done by using Godement resolution. It follows that every complex of sheaves
has an injective resolution (Cartan-Eilenberg resolution).

(3) Some example of functors: Let f : X → Y be a continuous map. We can define push-forward
(or direct image) functor f∗, push-forward with proper supports functor f! by

(f∗X)(U) = X(f−1(U)),

(f!X)(U) = {s ∈ X(f−1(U)) : f : supp (s)→ U is proper}.
These are left-exact functors. If π : X → {pt}, we find π∗ = Γ, the global section functor
and π! = Γc, compactly supported global section functor. If j : X ↪→ Y is an inclusion of
locally closed subset, j! is the extension by 0 functor, and is exact.

We can also define pull-back functor f∗ : Sh(Y )→ Sh(X) (some people denote this f−1

in order to distinguish with pull-back of sheaf of OX -modules) The key property of this
functor is that (f∗Y)x = Yf(x). It is an exact functor. Achar notes has a table on more of
this.

(4) To compute derived functor RF , injective resolutions are not practical tools. Instead, one
use a large class of sheaves, called F -acyclic (it is a theorem that derived functor can be
computed by acyclic resolution): For left-exact functor F : Sh(X) → Sh(Y ). A sheaf
A ∈ Sh(X) is F -acyclic if RiF (A) = 0 for all i 6= 0. So, if F• ∈ Db(X) is quasi-isomorphic
to F -acyclic complex A, then RF (F•) = F (A•).

(5) In the context of sheaves and F = f∗, f!, ..., there are ways to characterise F -acyclic sheaf.
For example, injective ⊂ flabby ⊂ solf are all f∗-acyclic sheaf. When I mean ‘characterise’,
I mean somthing like: a sheaf F is flabby (or flasque) if the restriction map F(X)→ F(U)
is surjective for all open U ⊂ X. Now I know why there are so many adjectives to describe
sheaves ...

OK, now I want to see some computations ...
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8.5. 31/12/2021: Van Kampen theorem. I learned about some applications of Van Kam-
pen theorem from https://people.math.harvard.edu/~hirolee/pdfs/231a-35-van-kampen.

pdf notes by Omar Antolin Camarena.
Let π≤1(X) be the fundamental groupoid of X, i.e. a category whose objects are the points of

X and whose morphisms from p to q are the homotopy classes of paths in X from p to q. The
classical fundamental group of X at the based point x0 ∈ X is Homπ≤1(X)(x0, x0).

Here is the statement of the theorem, in the language of groupoids:

(1) No based points version: Let X be a topological space and U, V be open subsets of X such
that X = U ∪ V . Then the following diagram is a pushout of groupoids

π≤1(U ∩ V ) π≤1(U)

π≤1(V ) π≤1(X)

In other words, π≤1 preserves pushout square. To generalise this over any open cover U of
X where any finite intersection of elements in U belongs in U, π≤1X = colimU∈Uπ≤1(U).

(2) Based points version: For A ⊂ X, let π≤1(X,A) denotes the full subcategory of π≤1(X)
whose objects are in A. To have a pushout square of π≤1(·, A), we need an extra condition:
A contains at least one point in each connected component of each of U ∩V,U and V . Then
we have a pushout of groupoids

π≤1(U ∩ V,A) π≤1(U,A)

π≤1(V,A) π≤1(X,A)

Some applications

(1) Compute π1(S1): Take U, V two open intervals s.t. S1 = U ∪ V and U ∩ V is a union of
two disjoint open intervals in which lies points p, q, respectively. Let A = {p, q}. As U is
contractible, π≤1(U,A) consists of two points p, q with a unique morphism from p to q and
only identity map from p to itself. Similarly for π≤1(V,A). π≤1(U ∩ V,A) consists of two
points p, q with no morphism from p to q or from q to p. By Van Kampen, there are only
two morphisms from p to q in π≤1(X,A), taken from those in π≤1(U,A) and π≤1(V,A),
denoted as u, v. As π≤1(X,A) is the initial object in the pushout square, (v−1 ◦ u)n are all
distinct as all morphisms from p to itself in π≤1(X,A). Thus, π1(S1) = Z.

(2) Compute π1 of Klein bottle: The Klein bottle K is obtained from the square
a

b b

a

by glueing paths a and b. To compute π1(K), draw a smaller square inside this square. Let
U be the smaller square and its interior, V be the area between two squares. Then U ∩ V
is the smaller square and is homotopy equivalent to S1, U is contractible and V is wedge
of two circles formed by a and b (V is essentially the larger square without its interior, and
when one glues a and b together, we get two circles with a common point). Thus, π1(V ) is
a free group with generators a, b, the generator of π1(U ∩ V ) is sent to the loop b−1aba in
π1(V ). Thus, by Van Kampen, π1(K) is 〈a, b〉 ∗Z 1 = 〈a, b|b−1aba〉.

(3) Similarly, for the torus T of genus 1, we find π1(T ) = 〈a, b|[a, b] = 1〉. And for real projective
space P , we find π1(P ) = 〈a, |a2 = 1〉.

(4) π1 behaves well with respect to taking wedge of spaces and taking connected sums.
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(5) Attaching cells of dimension at least 3 to a CW complex X do not affect the fundamental
group of that complex. Attaching a 2-cell to X then the new space is has fundamental
group being the quotient of π1(X) the relation formed by the boundary of that 2-cell. See
https://www.homepages.ucl.ac.uk/~ucahjde/tg/html/vkt02.html for a more detailed
explanation.

(6) Compute fundamental group of mapping tori: See https://www.homepages.ucl.ac.uk/

~ucahjde/tg/html/vkt03.html. I haven’t read this. A particular example is fundamen-
tal group of Klein bottle (as in the link), or fundamental group of knots complements
(see https://www.homepages.ucl.ac.uk/~ucahjde/tg/html/braids03.html, key words:
braid). I haven’t read this.
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9. January 2022

9.1. 06/01/2022: Motivic integration. I learned something about motivic integration. So far
I can only sketch the ideas. The motivation for motivic integration comes from p-adic integration.

Here is a table of comparison:

p-adic integration motivic integration

f ∈ Z[x1, . . . , xm], X = SpecZ[x1, . . . , xm]/(f) f ∈ C[x1, . . . , xm], X = SpecC[x1, . . . , xm]/(f)
X(Z/pn+1) = {solutions of f = 0 over

Z/pn+1Z ∼= Zp/pn+1Zp}
Ln(X)(C) = {solutions of f = 0 over

C[t]/(tn+1) ∼= C[[t]]/(tn+1)}, called n-jets

X(Zp) = {solution of f over
Zp = lim←−Z/pn+1Z}

denote πm : X(Zp)→ X(Z/pmZ)

L(X)(C) = {solutions of f = 0 over
C[[t]] = lim←−C[t]/(tn+1)}, called arcs on X

L(X) is obtained by taking inverse limit of
Ln(X), denote πm : L(X)→ Lm(X)

measure space X(Zp) measure space L(X)

measurable sets in Zp are generated by open
sets in Zp, i.e. union of cosets of pnZp

cylinders, i.e. preimages under πn of
constructible sets in Ln(X) for some n

(constructible subsets in a Noetherian top
space is the smallest family of subsets that are

obtained from open sets by taking finite
intersection and taking complements), are

measurable
What is a natural def of measurable sets,
constructed from cylinders? Need to read

Loeser notes

measure with values in R:

motivic measure with values related to
K0(V arC), the Grothendieck ring of algebraic
varieties over C, i.e. reduced and separated

schemes of finite type over C:
p ∈ R L = [A1] ∈ K0(V arC)

µp(pZp) = p−1 µ(tC[[t]]) = L−1 ∈MC := K0(V arC)[L−1]

p−n → 0 as n→∞ in R

L−n → 0 as n→∞ in M̂C, the completion of
MC with respect to its filtration by FmMC, a
subgroup generated by elements [S]L−i with

dimS − i ≤ −m

if X is smooth of dimension `,

µp(X(Zp)) = |πn(X)|
p`n

for all n ≥ 1

if X is smooth of dimension `, then for cylinder
A = π−1

m (C) in L(X) where C is constructible
in Lm(X),

µ(A) := [πn(A)]
Ln` is stable in MC for all n ≥ m

for singular `-dimensional subvariety Z of Zmp ,
µp(Z) := limε→0 µp(Z \Bε(Zsing)), where Bε

denotes small tubular neighborhood of radius ε.

Oesterle showed µp(Z) = limn→∞
|πn(Z)|
pn`

for a complex algebraic variety X of dimension
`, if A ⊂ L(X) is a cylinder (more generally,

semi-algebraic set), then the limit

µ(A) := limn→∞
[πn(A)]
Ln` exists in M̂C

Let Y be reduced closed subscheme of X of
codimension at least 1, then Y (Zp) has

measure 0 in X(Zp) (see Mihnea Popa notes
p-adic integration)

Veys’ notes on p.10 mentioned that for closed
subvariety Z of codimension at least 1 of X,

L(Z) has measure 0 in L(X)
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Let f be a Qp-analytic function on measurable
subset A of Zmp , we find∫

A |f |
s
p|dx| =

∑
m∈Z µp(ord(f) = m)p−ms

assuming the RHS converges in R
This is only just a part of p-adic integration.

For example, replace Zmp by X(Zp), dx by
volume form on X, and |f |sp by arbitrary

complex-valued ϕ. Do we have analogues for
these in motivic integration?

Let A be a measurable subset of L(X), and
α : A→ Z∪ {∞} be a function s.t. all its fibers
are measurable. We say L−α is integrable if the

series∫
A L−αdµ :=

∑
m∈Z∪∞ µ(A ∩ α−1(n))L−n

converges in M̂C.

I am missing a comparison between change-of-variables formula between two sides ...
Some references I read this from:

(1) Mihnea Popa https://people.math.harvard.edu/~mpopa/571/index.html

(2) Devlin Mallory notes Motivic integration
(3) Francois Loeser Arizona winter school notes
(4) Willem Veys Arc spaces, motivic integration and stringy invariants.

Interestingly, there seems to be something called “motivic Poisson summation formula” by Ehud
Hrushovski and David Kazhdan. How far have people extended this dictionary? Can one relate
Langlands’ proof of Tamagawa number with Gaitsgory and Lurie proof using this dictionary?

What are the applications of motivic integration?

9.2. 07/01/2021: Factorisation algebras. I have heard this word “factorisation homology” so
many times (in Lurie Gaitsgory proof of Tamagawa number conjecture, in David Ben-Zvi notes
about topological quantum field theory, in Lurie higher category theory ...) so I tried to learn a bit
about it from a notes of Ryan Mickler and Brian Williams about factorisation algebras. See the
book Kevin Costello and Owen Gwilliam, Factorization algebras in quantum field theory for more
details.

Now I want to record some definitions of this and some examples.

9.2.1. Definition. A motivation for this definition is that we want an axiomatic way of talking about
the algebra of local observables in a field theory, along with the relationships between observables
on different open sets.

Definition 29. A prefactorisation algebra F on a topological space M , with values in V ect⊗n

(symmetric monoidal category of vector spaces), is an assignment of a vector space F(U) for each
open set U ⊂M together with the following data:

(1) for an inclusion U → V , a map µVU : F(U)→ F(V );
(2) for a finite collection of disjoint opens

⊔
i∈I Ui ⊂ V , an S|I|-equivariant map

⊗
i∈I F(Ui)→

F(V ).

Of course we need compatibility condition with taking composition.

Note that F(∅) must be a commutative algebra from this definition.
For the precosheaf F to be a factorisation algebra, we need it to be a cosheaf with respect to a

special topology.

Definition 30. An open cover {Ui}i∈I of U is a Weiss cover if for every finite collection of points
{xj} ⊂ U , there exists an element Uk of the cover such that {xj} ⊂ Uk.
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Definition 31. A factorisation algebra F on X is a prefactorisation algebra F on X so that for
any open set U ⊂ X and Weiss cover {Ui} of U , the sequence⊕

i,j

F(Ui ∩ Uj)→
⊕
k

F(Uk)→ F(U)→ 0

is exact.

Some remarks:

(1) The choice of topology indicates that in a factorisation algebra, observables on an open set
U are “determined” by observables in small neighborhoods of finitely many points.

(2) Suppose {Ui} is a Weiss cover on U then {U×ni } is an open cover on U×n. This implies that
Weiss cover on X induces a topology on the Ran space, the collection of all finite subsets
of X, denoted Ran(X). An equivalent way to define factorisation algebra: It is a cosheaf
on the Ran space.

(3) One can define factorisation algebras with values in any symmetric monoidal category, for
example category of chain complexes of certain additive category where we invert weak
equivalences.

9.2.2. Defects/domain walls as factorisation algebras. In QFT, we consider defects, which are cer-
tain class of operators attached to submanifolds. One dimesional defects are called domain walls,
where the walls/submanifolds are just points. We will construct factorisation algebras on R with
values in the category dgV ect of differential graded vector spaces, where we invert weak equiva-
lences.

(1) No wall: For any (unital) associative algebra A, one can construct a prefactorisation algebra
FA on R as follows
• We assign FA((a, b)) = A to each open interval (a, b).
• For any open set U =

⊔
j Ij where each Ij is an open interval, we set F(U) =

⊗
j A.

• The inclusion U =
⊔
S Is ↪→ V =

⊔
T It of open sets where S ⊂ T induces F(U)→ F(V )

by tensoring with 1 ∈ A for every x ∈ T 6∈ S.
• FA(∅) = {0} and the inclusion ∅ → (a, b) sends 0 to 1 ∈ A = F((a, b)).
• The structure map F(U)⊗ F(V )→ F(S) where U t V ⊂ S is from the multiplication

of A.
It is a locally constant prefactorisation algebra as FA((a, b))→ FA((c, d)) are isomorphisms
for any inclusion (a, b) ⊂ (c, d).

One can check the cosheaf condition to find that this is a factorisation algebra (I think
the sequence in the cosheaf condition holds for any cover not just Weiss cover).

(2) One wall: Let A,B be associative algebras. Fix a point p ∈ R and a A − B bimodule M .
We construct a prefactorisation algebra FA,M,B on R as follows
• FA,M,B restricted to (−∞, p) is the locally constant prefactorisation algebra FA asso-

ciated to A; FA,M,B restricted to (p,∞) is FB; FA,M,B on any open interval containing
p is M .
• The structure maps come from the algebra structures of A,B and the bimodule struc-

ture of M . For example,

F((a1, a2))⊗ F((a, b))→ F((a1, b))

where a1 < a2 < a < p < b corresponds to A⊗M →M .
• For any open set U of R, the inclusion ∅ → U induces a map {pt} → F(U) that gives

rise to an element mU ∈M .
Is this a factorisation algebra?
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(3) Two walls: One can also construct prefactorisation algebra FA,M,B,N,C with two fixed points:
A − B bimodule M attached to p ∈ R, B − C bimodule N attached to q ∈ R with p < q.
The only new information we need to prescribe is for open sets that contain both p and
q. Denote V to be the image of FA,M,B,N,C under these open sets. From the structure
map, we know that there is a map M ⊗N → V . We also this map must factorise through
the internal B actions (M ⊗ B) ⊗ N → V and M ⊗ (B ⊗ N) → V , hence there is a map
M⊗BN → V . However, this map may not be surjective. In fact, for F to be a factorisation
algebra, we need V = M ⊗LB N , the derived tensor product of M and N . Try to do this?

(4) What happen if there are 3 walls? Higher dimension than 1?

9.2.3. Factorisation envelope. We construct a factorisation algebra on R with values in the category
dgV ect of differential graded vector spaces, where we invert quasi-isomorphisms.

(1) For a Lie algebra h, we can construct the Chevalley-Eilenberg chain complex of Uh-module
M by

C∗(h,M) := Sym(h[1])⊗kM.

Here Sym(h[1]) =
⊕

n ∧nh is a dg vector space with elements in h of degree 1. The differ-
ential of C∗(h,M) is defined to be

h1 ∧ · · · ∧ hn ⊗ x 7→

 ∑
1≤j<k≤n

(−1)j+k[hj , hk] ∧ h1 ∧ · · · ĥj · · · ĥk · · · ∧ hn

⊗ x
+
∑
i

(−1)n−ih1 ∧ · · · ĥi · · · ∧ hn ⊗ (him).

The homology of C∗(h,M) is precisely Lie algebra homology H∗(h,M) := k ⊗LUh M . Fur-

thermore, one can construct C∗(h,M) when h is a dg Lie algebra, by viewing C∗(h,M) as a
chain complex of chain complexes, then take totalization (I know how to define the grading
of C∗(h,M) but no clue how to define the differential ...)

(2) For open U ⊂ R, we consider a differential graded Lie algebra given by

L(U) := Ωc(U)⊗k h,
with the differential comes from the exterior derivative of the differential forms, and the Lie
bracket comes from h. The factorisation envelop of h is the prefactorisation algebra defined
by

Uh : U 7→ H∗(C∗(L(U), k)).

(3) One can show (Uh)(R) = Uh, i.e. one recovers the universal enveloping algebra from this
factorisation algebra (see my edited notes of Mickler and Williams notes).

9.3. 09/01/2021: State-sum TQFTs. I learned that state-sum Topological Quantum Field The-
ory means one construct TQFT locally by assigning each n-manifold certain algebraic data that
depends on its triangulation. One then shows the algebraic construction does not depend on tri-
angulation, hence we get a TQFT. And this independence of triangulation seems to suggest what
kind of algebraic data we want.

I read this from Aaron D. Lauda and Joshua Sussan ‘An Invitation to Categorification’, January
2022 Notices of the AMS.
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9.4. 14/01/2022: Derived homs and derived tensor product of sheaves. The notations
are as in 28/11/2021 and 17/12/2021. Let X be nice topological space, Db(X) be the bounded
derived category of sheaves of k-modules on X. I want to record some definitions and properties
of three derived functors

RHom, RHom,⊗L.
I learned this from Achar’s book on Perverse sheaves and Representation theory, §1.4 and §A.6.

(1) We can extend the Hom functor Hom : Sh(X)op×Sh(X)→ k-mod to Cb(X)op×Cb(X)→
Cb(k-mod) by sendingA,B ∈ Cb(X) to the chain complex Hom(A,B)n :=

⊕
j−i=n Hom(Ai, Bj)

with the differential given by d(f) := dB ◦ f + (−1)j−i+1f ◦ dA for f ∈ Hom(Ai, Bj). It in-
duces the derived Hom functor

RHom : Db(X)op ×Db(X)→ Db(k-mod)

that is triangulated in both variables.
(2) There is a natural isomorphism

HomD(X)(A,B) ∼= H0(RHom(A,B))

for A,B ∈ Db(X).
(3) One can also defined the sheaf Hom functor Hom : Sh(X)op × Sh(X) → Sh(X) by

Hom(F,G)(U) := HomSh(U)(F|U ,G|U ). This functor is left-exact in both variables, and
once can extend this to chain complexes as in the case of Hom, therefore inducing the
derived functor

RHom : Db(X)×Db(X)→ Db(X).

(4) Relation between Hom and Hom: There is a natural isomorphism

RΓ(RHom(A,B))
∼−→ RHom(A,B)

where A,B ∈ Db(X).
(5) If f : X → Y continuous then Rf∗ and f∗ are adjoint pairs of functors. This follows from

the natural isomorphism

Rf∗RHom(f∗A,B) ∼= RHom(A,Rf∗B),

where A ∈ Db(Y ), B ∈ Db(X) and the previous two natural isomorphisms. Indeed,
take RΓ on both sides to get RHom(f∗A,B) ∼= RHom(A,Rf∗B), then take H0 to get
HomD(X)(f

∗A,B) ∼= HomD(Y )(A,Rf∗B).
(6) For F,G ∈ Sh(X), the tensor product F ⊗ G is the sheafification of the presheaf F ⊗pre G

defined by (F ⊗pre G)(U) = F(U) ⊗ G(U). This functor ⊗ is right exact so it induces the
left derived functor

⊗L : Db(X)×Db(X)→ Db(X)

by taking flat resolutions (every sheaf has a flat resolution, and flat resolutions can be used
to computed left derived functors).

(7) For F,G,H ∈ Db(X), we have natural isomorphisms

RHom(F ⊗L G,H) ∼= RHom(F,RHom(G,H)).

Similarly, this implies ⊗L and RHom are adjoint pairs of functors over Db(X).
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9.5. 17/01/2022: Vakil §5.2 - Reducedness and integrality of schemes.

5.2.A (Reducedness is a stalk-local property) A scheme X is reduced iff none of the stalks have
nonzero nilpotents. Indeed, if one stalk OX,x has nonzero nilpotent, by definition, there
exists open U of x so that OX(U) has nonzero nilpotent, implying X is not reduced. If
none of the stalks have nonzero nilpotents, as we have OX(U) ↪→

∏
x∈U OX,x from 2.4.A,

we find OX(U) is reduced.
If f and g are two functions on a reduced scheme X that agree at all points, then f = g.

Pick any affine open subset SpecA of X, then f − g vanishes at every point in SpecA,
implying f − g, viewed as element in A, lies in the intersection of all prime ideals of A,
implying f − g is nilpotent in A by 3.2.12. But X is reduced, hence SpecA is also reduced,
meaning f = g in A, or f = g in OX(SpecA). As this holds for every affine open subset of
X, we find f = g in OX(X).

5.2.B If ring A is reduced then Ap is also reduced for any prime ideal p of A. Hence, SpecA is
reduced from 5.2.A. Because k[x1, . . . , xn] is reduced so Ank and Pnk are reduced for any field
k.

5.2.C The schemeX = Spec k[x, y]/(y2, xy) is nonreduced because y is nilpotent in k[x, y]/(y2, xy).
We can try to draw this scheme and see that it is an x-axis with a fuzz at the origin in the
direction of y-axis (this can be seen by intersecting xy = 0 with y2 = 0).

To see the nonreducedness geometrically means to see the fuzz at the origin. To see
the fuzz at the origin, we consider the stalk

(
k[x, y]/(y2, xy)

)
(x,y)

at the origin. This has

nonzero nilpotent element y.
For other points, i.e. for any other prime ideal p of k[x, y]/(y2, xy), we show that(
k[x, y]/(y2, xy)

)
p

is reduced. Indeed, prime ideal p of k[x, y]/(y2, xy), viewed as prime

ideal of k[x, y] that contains (y2, xy), must contains y as y2 ∈ p. Thus, p is either (y) or
(x− a, y) for a ∈ k.

We want to show
(
k[x, y]/(y2, xy)

)
(x−a,y)

is reduced for a ∈ k×. Visually, we take the

x-axis with a fuzz at the origin and zoom in at point x = a. This suggests that the ring is
isomorphic to k[x](x−a). Indeed, because localisation commutes with taking quotients, we
find (

k[x, y]/(y2, xy)
)

(x−a,y)
∼= k[x, y](x−a,y)/(y

2, xy)(x−a,y).

As a 6= 0 so x 6∈ (x−a, y), meaning x is invertible in (y2, xy)(x−a,y), implying y = x−1 ·(xy) ∈
(y2, xy)(x−a,y) or (y2, xy)(x−a,y) = (y)(x−a,y). Therefore, k[x, y](x−a,y)/(y

2, xy)(x−a,y)
∼=

k[x, y](x−a,y)/(y)(x−a,y)
∼= (k[x, y]/(y))(x−a,y)

∼= k[x](x−a), which is reduced.

The ring
(
k[x, y]/(y2, xy)

)
x
, understood as k[x, y]/(y2, xy) localised at {1, x, x2, . . .}, is

reduced. To visualise this, one sees k[x, y]/(y2, xy) as x-axis with a fuzz at the origin, then
to localise at x means to throw out points that vanish at x, meaning we throw out the fuzz
point, i.e. the origin. What we left is just the x-axis minus the origin, i.e. Spec k[x]x. This
suggests we define a map k[x, y]/(y2, xy)→ k[x]x sending y 7→ 0. As xn 7→ xn invertible in
k[x]x, we obtain an induced map

(
k[x, y]/(y2, xy)

)
x
→ k[x]x. This is an isomorphism with

inverse being the inclusion map k[x]x →
(
k[x, y]/(y2, xy)

)
x
.

5.2.D If X is a quasicompact scheme, and if OX,x is reduced for all closed points x, then X is
reduced. It suffices to show every nonreduced point has a nonreduced closed point in its
closure. Indeed, consider nonreduced point p ∈ X, i.e. OX,p is nonreduced. By 5.1.E, as
X is quasicompact, there exists a closed point q in the closure of p. We show OX,q is also

nonreduced. Pick an affine open subset SpecA of q then we have p ∈ SpecA as q ∈ {p}.
One can corresponds p, q ∈ SpecA with prime ideals p, q of A. Then we know OX,p = Ap has
a nonzero nilpotent element a/b where a ∈ A, b ∈ A− p. It follows that a ∈ A is a nonzero
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nilpotent element in Ap. This means ans′ = 0 for some n ≥ 2, s′ ∈ A− p, and as 6= 0 for all
s ∈ A− p. We will show that as′ is a nonzero nilpotent in Aq. As (as′)n = ans′n = 0 so as′

is nilpotent. It suffices to show as′ is nonzero in Aq.

On the other hand, note that q ∈ {p} and as q, p ∈ SpecA, q also lies in the closure of p
with respect to the topology of SpecA. Indeed, a closed subset of A containing p is A\U for

open U of X not containing p. Then the closure of p relative to SpecA is SpecA\
(⋂

p 6∈U U
)

and relative to X is X \
(⋂

p 6∈U U
)

. As q ∈ X \
(⋂

p 6∈U U
)

, we know q 6∈
⋂
p 6∈U U , and as

q ∈ SpecA, we are done. Now, q lies in the closure of p relative to SpecA means p ⊂ q,
implying A − q ⊂ A − p. Therefore, by combining with the previous paragraph, we find
as 6= 0 for all s ∈ A− q, i.e. as′ is nonzero in Aq.

5.2.2 Reducedness is not an open condition, i.e. the locus of reduced points is not necessarily
open. Indeed, we will show that the locus of reduced points of the scheme

X = SpecC[x, y1, y2, . . .]/(y
2
1, y

2
2, . . . , (x− 1)y1, (x− 2)y2, . . .)

is not Zariski open.
A prime ideal of this ring corresponds to a prime ideal p in C[x, y1, y2, . . .] containing

(y2
1, y

2
2, . . . , (x − 1)y1, (x − 2)y2, . . .). Therefore, p contains (y1, y2, . . .). It follows that all

such prime ideals are either (y1, y2, . . .) or (x− a, y1, y2, . . .). Pick f ∈ C[x, y1, y2, . . .] then
f belongs to finitely many such prime ideals, meaning any open set of X corresponds to C
minus finitely many points. In other words, X is homeomorphic to SpecC[x].

Next, we find the nonreduced points. With the same argument as in 5.2.C, the nonre-
duced points are (x − n, y1, y2, . . .) where n = 1, 2, . . .. Indeed, for p = (x − a, y1, y2, . . .)
where a 6= 1, 2, . . . then as x− n 6∈ (x− a, y1, y2, . . .), x− n is invertible in C[x, y1, y2, . . .]p.
Therefore, (y2

1, y
2
2, . . . , (x − 1)y1, (x − 2)y2, . . .) = (y1, y2, . . .) as ideals in C[x, y1, y2, . . .]p.

Thus, an element in the localisation of C[x, y1, y2, . . .]/(y
2
1, y

2
2, . . . , (x−1)y1, (x−2)y2, . . .) at

p can be written as (x− a)ku for k ∈ Z≥0 and some u invertible. This cannot be nilpotent.
Similar argument can be made for nonreduced points.

Taking the complement of nonreduced points in X corresponds to the set C− {1, 2, . . .}
of points in SpecC[x], which is not Zariski open.

5.2.3 Ring of global section of a scheme X is reduced does not imply X is reduced.
Indeed, let X be the scheme cut out by x2 = 0 in P2

k, i.e. X = Proj k[x0, x1, x2]/(x2
0) (see

4.5.P). We show X is nonreduced by Γ(X,OX) = k.
Over the distinguished open set

D(x1) = Spec
((
k[x0, x1, x2]/(x2

0)
)
x1

)
0
,

= Spec
(
k[x0, x

±
1 , x2]/(x2

0, x
−1
1 )
)

0
,

= Spec k[x0/1, x2/1]/(x2
0/1),

we find that X is nonreduced.
Next, we show Γ(X,Ok) = k. Take a global section s and restricts it to D(x1) gives

f ∈ Γ(D(x1),OX) = k[x0/1, x2/1]/(x2
0/1). Because {1, x2, x

2
2, . . .} has no zerodivisors in

k[x0/1, x2/1]/(x2
0/1), we have an injection Γ(D(x1),OX) → Γ(D(x1x2),OX). Furthermore,

the isomorphism that glues D(x2) = Spec k[x0/2, x1/2]/(x2
0/2) and D(x1) via the ‘intersec-

tion’ D(x1x2) is given by sending f(x0/1, x2/1) 7→ f(x0/2/x1/2, 1/x1/2) (see 4.4.9). Because
f comes from a global section, we also have an injection Γ(D(x2),OX) → Γ(D(x1x2),OX)
that sends g ∈ k[x0/2, x1/2]/(x2

0/2) to f(x0/2/x1/2, 1/x1/2), i.e. f(x0/2/x1/2, 1/x1/2) =

g(x0/2, x1/2) in k[x0/2, x1/2]/(x2
0/2). It implies f is a constant in D(x1x2), hence is also
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constant in D(x1). Similar proof shows the global section s is constant on D(x2). As
Γ(D(x0),OX) = k, s is also constant on D(x0). Thus, Γ(X,OX) = k.

5.2.E If X is quasicompact and f a function that vanishes at all points of X, then there is some
n such that fn = 0. Furthermore, this may fail if X is not quasicompact.

When X = SpecA, the claim follows from 3.2.12. For any quasicompact scheme X, we
can cover it by finitely many affine schemes Ai for 1 ≤ i ≤ n. If fai |Ai = 0 for all i then by
taking m = lcm(ai), we find fm|Ai = 0 for all i, implying fm = 0.

To show the claim may fail for X not being quasicompact. Take an infinite disjoint union
of SpecAi where Ai = k[xi]/(x

n
i ). Take (x1, x2, . . .), a function on X whose restriction to

SpecAi is xi. This function vanishes at all points of X =
⊔

SpecAi as xi vanishes at all
points of SpecAi. But there is no n such that (xn1 , x

n
2 , . . .) = 0.

5.2.F A scheme X is integral if and only if it is irreducible and reduced (thus we picture integral
scheme as “one piece, no fuzz”).

If X is integral then OX(U) is an integral domain, hence is reduced.
Suppose X is not irreducible, i.e. there is two nonempty non-intersecting open affine

subsets SpecA,SpecB of X. Hence, there exists f ∈ A, g ∈ B such that two distinguished
open subsets D(f), D(g) of SpecA,SpecB are nonempty and D(f) ∩ D(g) = ∅. Note
SpecA t SpecB = SpecA × B so we can view f, g as functions on SpecA t SpecB (by
sending f 7→ (f, 0) ∈ A×B). Hence, we have D(f)∩D(g) = D(fg) = ∅. Therefore, fg = 0.
As D(f) and D(g) are nonempty, we find f 6= 0 and g 6= 0 on SpecA t SpecB. Thus, the
scheme X is not integral.

Conversely, suppose X is irreducible and reduced. For any open U of X, suppose we
have f, g ∈ OX(U) so fg = 0. We will show that either f = 0 or g = 0 in OX(U).

Let D(f) be the set of points x ∈ U such that f(x) 6= 0. Then 4.3.G says D(f) is open.
As fg = 0, we find D(f) ∩D(g) = D(fg) = ∅. As X is irreducible, its open set U is also
irreducible, therefore it cannot have two nonempty non-intersecting open subsets. From
this, we find, WLOG, D(f) = ∅, meaning f vanishes at every point in U . Let SpecA be
any affine open subscheme of U . If f vanishes at every point of SpecA then by 5.2.E, we
find f is nilpotent. As X is reduced, we find f = 0 on SpecA. It then implies that f = 0
on U .

5.2.G If SpecA is irreducible and reduced then from 5.2.F, we know A is an integral domain.
Conversely, if A is an integral domain then A is reduced, implying Ap is reduced for any

prime ideal p of A. Hence, SpecA is reduced. We also know from 3.6.C that SpecA is
irreducible.

5.2.H Let X be an integral scheme. Being irreducible, X has a generic point η. Let SpecA be
any nonempty affine open subset of X. Then OX,η is naturally identified with K(A), the
fraction field of A. Indeed, if η corresponds to the prime ideal p in A then OX,η = Ap.

As X = {η}, the closure of p with respect to the topology of SpecA is SpecA. This
means for any prime ideal q then p ⊂ q. On the other hand, as X is integral SpecA is also
integral, implying A is an integral domain, implying p = (0). Thus, OX,η = A(0) = K(A).

5.2.I For an integral scheme X then the restriction map resU,V : OX(U)→ OX(V ) is an inclusion
so long as V 6= ∅. Let f ∈ OX(U) so resU,V (f) = 0. Let D(f) = {x ∈ U : f(x) 6= 0} then
D(f) is open from 4.3.G. We find V ∩D(f) = ∅ and V 6= ∅. Hence, as U is irreducible, we
find D(f) = ∅, i.e. f vanishes at all points in U . With the same argument as in 5.2.F, it
follows that f = 0 in OX(U) as X is reduced.

For any nonempty affine open subset SpecA of X then the natural map OX(U)→ OX,η =
K(A) is an inclusion for any nonempty open set U . Indeed, as η ∈ U , pick any affine open
SpecB of U , then we have an inclusion OX(U) → OX(SpecB) = B. As B is an integral
domain, we have an inclusion B → K(B) = OX,η = K(A).
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9.6. 19/07/2022: Counting Hom(Γ, G)/G.

9.6.1. Frobenius formula. In Straddie II, we learned the following formula of Frobenius:
Let Γ = 〈x1, . . . , xn|w〉 be a finitely generated one-relator group, G a finite group, the size of the

fundamental groupoid Hom(Γ, G)/G, where G acts by conjugation, can be written as

(7) |Hom(Γ, G)/G| :=
∑

x∈Hom(Γ,G)/G

1

Aut(x)
=
|Hom(Γ, G)|

|G|
=

1

|G|
∑
χ∈Ĝ

awχχ(1),

where the sum is over all irreducible complex characters χ of G, and awχ = 1
|G|
∑

x∈Gn χ(w(x)). This

is achieved by identifying an element fw ∈ C[G]G, defined as

fw(g) = |{(g1, . . . , gn) ∈ Gn : w(g1, . . . , gn) = g}|.

This gives fw(1) = Hom(Γ, G) and by writing fw in basis Ĝ, we get our desired formula.
Some comments on the properties of this formula:

(1) It doesn’t seem to depend on the presentation of Γ i.e. if we give another presentation
Γ = 〈y1, . . . , ym|w′〉, then I think∑

χ∈Ĝ

awχχ =
∑
χ∈Ĝ

aw
′

χ χ,

or equivalently, fw = fw
′
.

(2) If the word w can be obtained by joining two distict words w1, w2, write w = w1 ∗ w2,
then fw1 ∗ fw2 = fw1∗w2 where ∗ on the left is the convolution product in C[G]G, i.e.
(ψ ∗ ϕ)(g) =

∑
xy=g ϕ(x)ψ(y).

(3) However, this formula depends on the fact that Γ is one-relator. How does one generalise
this to any finitely-generated finitely-presented group?

Some more examples of Γ:

(1) X = S1 then |Hom(π1(S1), G)| = |Hom(Z, G)|, which is |G|. One can use Frobenius
formula for Γ = 〈x, y|x〉 to show this.

(2) Γ = Z × Z = 〈x, y|xyx−1y−1〉, i.e. fundamental group of (S1)2, then aχ = |G|
χ(1) and

|Hom(Z × Z, G)| = |G| · cG, where cG is number of conjugacy classes of G. Open: When
G = ULn(Fq), upper triangular matrices with one on the diagonal and with entries over Fq,
we don’t even know if cG is a polynomial in q (according to Masoud)? Can we use Frobenius
formula to show this? See also https://mathoverflow.net/q/376259/89665

(3) Γ = Z/2 = 〈x|x2〉, i.e. fundamental group of RP2, then aχ is the Frobenius-Schur indicator
of χ, i.e. if χ corresponds to the irreducible complex representation ρ, then

aχ =


1 if ρ can be realised over R up to isomorphism

−1 if χ is real-valued but ρ cannot be realised over R
0 if χ is not real-valued

When aχ = 1, ρ is a real representation. When aχ = −1, ρ is a quaternion representation.
When aχ = 0, aχ is a complex representation.

A proof on why aχ ∈ {0,±1}: for irreup V with character χV then χV (g2) = χV⊗V (g)−
2χ∧2V (g), which comes from V ⊗ V = Sym2V ⊗ ∧2V and χV = traceρ = sum of eigenval-
ues. Then aχ = 〈χV⊗V , χtri〉 − 2〈χ∧2V , χtri〉. Note 〈χV⊗V , χtri〉 = dim HomG(V ⊗ V, 1) =
dim HomG(V, V ∗) ≤ 1 as V is irreducible. It also implies 〈χ∧2V , χtri〉 ≤ 1 because 〈χW , χtri〉
counts number of trivial rep in rep W of G, and ∧2V is a subrep of V ⊗ V . It follows that
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aχ ∈ {±1, 0}. Proving which value of aχ correspond to ρ being real/complex/quaternion
rep seems to be harder.

Example of real rep: take the trivial rep. Example of complex rep: note χ(g−1) = χ(g)
so for χ to not have real-valued, choose G with some g ∈ G not conjugate to g−1. Take
G = Z/3, V = C and send 1 ∈ Z/3 to 3rd root of unity, i.e. 1 7→ −1/2 + i

√
3/2.

Example of quaternion rep: take G = Q8, the quaternion group, V = C{1, j} and in this
basis, we send

−1 7→
(
−1

−1

)
, i 7→

(
i
−i

)
, j 7→

(
−1

1

)
, k 7→

(
−i

−i

)
.

This is a matrix presentation of Q8. To show this is quaternion rep:
(a) V is irreducible because if it is not then there exists v1, v2 ∈ V that are common

eigenvectors for all g ∈ Q8, but this is not possible from that matrix presentation.
(b) V has real-valued character. Indeed, because trace of every matrix is real.
(c) V cannot be realised over R. Indeed, or else there exists a matrix P s.t. conjugate

ρ gives us a representation PρP−1 : Q8 → GL2(R). This induces an isomorphism
R[Q8]→ Mat2(R) of R-algebras. But every element in R[Q8], except for 0, is invertible
(i.e. a division algebra). This is not the case for Mat2(R).

(4) When Γ = Z/n = 〈x|xn〉, what is representation-theoretic meaning of aχ? Higher Frobenius-
Schur indicator.

(5) Because of interest, Γ is likely the fundamental group of some spaces. See 31/12/2021 for
some examples: Klein bottle, knots complements. Compute Hom(Γ, G) for these cases?

(6) If word w(x1, . . . , xn) contains an alphabet x1 that appears exactly once with no power
(i.e. x1 in x1x

2
2x4x

5
3x4) then |Hom(Γ, G)| = |G|n−1 because there are |G| choices for each

x2, . . . , xn.
(7) If Γ = π1(Σg) = 〈x1, . . . , xn, y1, . . . , yn|[x1, y1] · · · [xn, yn]〉 then by using the property fw1∗w2 =

fw1 ∗ fw2 and the case Γ = Z × Z, we find aχ = |G|2n−1

χ(1)2n−1 . This is the case of torus with n

genus or compact orientable surface with genus n.
(8) This time w = [x1, y1] · · · [xn, yn]z1 · · · zk, i.e. Γ is fundamental group of compact orientable

surface genus n and k punctures. Then fw = |G|2n+k−1χ1 where χ1 is the trivial character.

9.6.2. Using TQFT. One can count Hom(Γ, G)/G using topological quantum field theory, in the
sense of 06/06/2021, 17/06/2021. But here they only proved for the case Γ is fundamental group
of Σn. Some things I would like to try next:

(1) Learn how to do the computation for Γ = π1(RP2) (RP2 is a non-orientable surface).
The only place I’ve seen doing this is Noah Snyder’s paper Mednykh’s Formula via Lattice
Topological Quantum Field Theories. The thing with this is that we cannot seem to visualise
RP2 as we did for Σn.

(2) Try to do this for Klein bottle. In terms of cobordism, the Klein bottle is obtained by
connecting the cap ∅ → (S1)t2, the map (S1)t2 → (S1)t2 by fixing one and reflecting the
other circle, and the cup (S1)t2 → ∅.

(3) Try more examples: torus with punctures, S1 × S1, knots complements, ...
(4) Every finitely-generated group is fundamental group of some closed 4-manifolds. So can we

use this approach to compute any Hom(Γ, G)?
(5) There is a notion of extended topological field theory that assigns closed 2, 3-manifolds M

roughly the Hom(π1(M), G). Can we use this? See p.19 Lectures on Field Theory and
Topology by Daniel S. Freed.
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9.7. 20/01/2022: Trace formulas in automorphic representations. I watched an intro-
ductory talk of Rahul Dalal, titled Statistics of Automorphic Representations through Simplified
Trace Formulas, see https://youtu.be/w-dGghBpcoc. At the beginning, he gave an introductory
overview of using trace formulas in automorphic representation theory. See also some terminologies
on 24/11/2021.

(1) For a reductive groupG over a number field F , we have a unitary representation L2(G(F )\G(A))
of G(A), consisting of square-integrable functions, where is action is by right translation.
We are interested in finding out (discrete) automorphic representation, i.e. irreducible
subrepresentation of L2(G(F )\G(A)).

(2) For G = GL2 /Q, automorphic reps correspond to new, eigen modular/ Mass forms.

(3) Any automorphic representation π factors through πv over all places of v ∈ F : π =
⊕̂′

πv
for each πv admissible, unitary representation of G(Fv). When G = GL2 /Q, π∞ relates to
notions of modular vs Mass, weight, of π, πp relates to pnth Fourier coefficients of π.

(4) Key question: Which combination of πv actually appear in L2?
(5) How to use trace in answering this question: If L2([G]) =

⊕
π and R an operator on L2

then trL2R =
⊕

trπR. We can choose R cleverly to put restrictions on πv to answer the
key question. In particular, for compactly support smooth function f , we can consider the
convolution operator

Rf : v 7→
∫
G(A)

f(g)gvdg

If G(F )\G(A) is compact, we can write trL2Rf as a sum of conjugacy classes. If [G] is not
compact, various issues with convergence arises.

9.8. 21/02/2022: Categorical version of Lefschetz fixed point formula. It seems there is a
categorical version of Lefschetz fixed point formula, given in this paper https://arxiv.org/abs/
1607.06345.

9.9. 22/01/2022: Motivation for the definition of condensed sets. Peter Scholze and Dustin
Clausen defined condensed sets, viewed as a replacement for a large class of nice topological spaces,
where doing algebra is much easier.

(1) Why topological spaces are bad? I would like to quote this answer https://math.stackexchange.
com/a/4199337/58951 from Scholze: Topological spaces formalize the idea of spaces with
a notion of “nearness” of points. However, they fail to handle the idea of “points that are
infinitely near, but distinct” in a useful way. An example is the topological space R/Q,
which has many distinct points, but they all are infinitely close to each other.

(2) Motivation for the definition of condensed sets: I learned this from https://youtu.be/

OT65JC3gKPY.
(a) A site is a category that generalises the notion of open subsets of a topological space

X. One can consider sheaves on a site similarly to sheaves on X.
(b) For a field k, the etale site of a scheme Spec k consists of collection of etale maps

Y → Spec k (i.e. Y = tSpec ki where ki/k finite separable extension), viewed as open
covers of Spec k. By Galois theory, elate maps Y → Spec k corresponds to discrete
sets with a continuous Gal(k/k)-action (is it true that the set has to be discrete? try
https: // websites. math. leidenuniv. nl/ algebra/ GSchemes. pdf ).

(c) One can generalise the previous example. For G profinite group, we can consider
the site where elements being profinite sets with a continuous action of G, where the
collection of G-maps (fi : Si → S)i∈I are covers of S if there is a finite cover of S taken
from from a finite subset J ⊂ I. We need the finiteness condition of covers because we
don’t want something like tx∈S{x} → S to be covers of S if S is infinite.
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(d) Choose G = ∗ to be the trivial group in the previous example, we obtain a site ∗-
prosets. Taking the category of sheaves on this site, we obtain condensed sets.

(3) What is the relation between topological spaces and condensed sets? The above definition
of condensed sets are actually motivated from algebraic number theory where in many
situations, we need to consider action of a profinite group on a set. And I don’t see why
condensed sets is a replacement of topological spaces from its definition.
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9.10. 22/01/2022: Adjoint f ! of proper push-forward Rf!. This is a continuation from
14/01/2022. We consider the case of nice topological spaces as in 17/12/2021 and sheaves of k-
modules on those spaces. For a continuous map f : X → Y of nice topological spaces, we have the
left-exact functor f! : Sh(X)→ Sh(Y ) by

(f!F)(U) = {s ∈ F(f−1(U))|f : supp(s)→ U is proper}.
With this, we obtain the right-derived functor Rf! : Db(X) → Db(Y ) (see 17/12/2021). We will
construct the adjoint f ! of Rf! today, i.e. f ! : Db(Y )→ Db(X) such that

RHom(Rf!F,G) ∼= Rf∗RHom(F, f !G).

This will give us adjointness between f ! and Rf! (see the argument (5) from 14/01/2022).

(1) To motivate the definition of f !: Suppose we can construct f ! and f !G is just a sheaf. Then
for open set jU : U ↪→ X, we have

(f !G)(U) = Γ(j∗Uf
!G) = Hom(kU , j

∗
Uf

!G) ∼= Hom(f!(jU )∗kU ,G).

Note the RHS does not depend on f !. This suggests us to define f ! : Db(Y ) → Db(X) by
taking a chain complex G of sheaves on Y to the chain complex of sheaves on X, defined by

U ⊂ X 7→ Hom(f!(jU )∗K|U ,G),

where K is a flat resolution of k, Hom is a chain complex as in (1) of 14/01/2022. If G

is a complex of injective sheaves then so is the above complex. Thus, we obtain a derived
functor f ! : Db(Y )→ Db(X). Note that some technical conditions of k and f are required
to make the above construction works. For more details, we refer to Achar’s book §1.5.

(2) One reason why passage to the derived category is essential is that f! : Sh(X) → Sh(Y )
does not necessarily have a right adjoint in the category of sheaves. This is because f! is
not always right-exact.

(3) There are many names for Rf! and f !: proper/exceptional push-forward and pull-back; or
f -upper-shriek for f ! and f -lower-shriek for f!.

9.11. 31/01/2022: Reference for Schwartz’s distribution theory.

(1) Schwartz’s distribution theory: https://www.mat.univie.ac.at/~stein/lehre/SoSem09/
distrvo.pdf.

(2) Define distributions on manifolds: https://webspace.science.uu.nl/~ban00101/anman2009/
lecture2.pdf.

(3) Applications: https://mathoverflow.net/a/260634/89665.
(4) For non-Archimedean local fields, distributions are discussed in the paper by Bernstein and

Zelevinsky, Representations of the group GL(n, F ), where F is a local non-Archimedean
field.

It seems to me that Schwartz’s distribution theory has many common theme with Grothendieck’s six
operations in the derived category (as discussed 17/12/2021, 14/01/2022, 22/01/2022) (for example,
see §2.3 of https://arxiv.org/abs/1212.3630). I would like to know more about connections
between these two languages.
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10. February 2022

10.1. 08/02/2022: Local systems and monodromies. For a topological space X and x0 ∈ X,
we can define a functor

Monx0 : Loc(X, k)→ k[π1(X,x0)]−mod

from the category of local systems on X to the category of modules over the group ring k[π1(X,x0)].
Last few days I learned about this functor, so I would like to describe this functor and compute
some examples of it. The reference I used is Achar’s book, §1.7.

First, let me describe Monx0 :

(1) A sheaf L of k-modules on a locally connected topological space X is a local system if
there is an open covering (Uα)α∈I of X such that L|Uα is a constant sheaf for every α ∈ I.
Observe that pullback of a local system along a continuous map f : X → Y is also a local
system.

(2) Given a local system L, we can construct an action of the fundamental group π1(X,x0) on
the stalk Lx0 , called the monodromy representation, as follows: For a path γ : [0, 1] → X,
we can defined a map ργ : Lγ(0) → Lγ(1) via the isomorphism

Lγ(0)
∼= (γ∗L)0

∼←− Γ([0, 1], γ∗L)
∼−→ (γ∗L)1

∼= Lγ(1).

The second and third isomorphisms come from the fact that γ∗L is a local system on [0, 1],
hence is a constant sheaf.

If X is locally connected then one can avoid dealing with direct limit when computing
the stalk of a constant sheaf, i.e. Γ(U,MX)

∼−→ (MX)x
∼= M for x ∈ X and any connected

neighborhood U of x. In this case, one can describe the monodromy action as follows:
By the compactness of [0, 1] and the fact that L is a local system on X, there exists a

finite set of connected open subsets (Ui)
n
i=1 of X such that L|Ui is a constant sheaf for every

i, and as one goes along γ, one travels along γ(0) ∈ U1, . . . , Un 3 γ(1). Let the connected
component of γ(ti) in Ui ∩Ui+1 to be Vi. The monodromy action can then be described as
compositions of various restrictions map of L:

Lγ(0)
∼←− L(U1)

∼−→ L(V1)
∼←− L(U2)

∼−→ L(V2)
∼←− · · · ∼−→ L(Un)

∼−→ Lγ(1).

(3) Under more restrictive condition of X, the functor Monx0 gives an equivalence of categories.
One can also ask about the effect of the Grothendieck operations on Loc(X, k) and then on
the monodromy representations after applying Monx0 . I have not read this part of Achar
§1.7 in details.

10.1.1. An example of local system. I learned this from Balazs Elek’s notes on Constructible sheaves:
https://chenhi.github.io/math7390-s21/notes/0402-elek-constructiblesheaves.pdf. This
also appear in Achar’s exercise 1.7.3.

(1) Let Q be a sheaf of C-modules on C× defined over every open subset U ⊂ C× as

Q(U) =

{
solutions g : U → C to z

dg

dz
− 1

2
g = 0

}
.

(2) We show Q is a local system. Indeed, for any x ∈ C× and any connected, simply connected
open neighborhood U of x, one can choose a branch of the complex logarithm by a ray I

starting at 0 that does not intersect U . Then g(z) = e
1
2

log(z) 6= 0 is defined on C×\I and
hence lies in Q(U). We show that Q(U) = Cg, hence implying Q|U ∼= CU . Indeed, suppose

h ∈ Q(U), we then have d
dz

(
h
g

)
= h′g−hg′

g2
= 0, implying h/g is a constant on U , as desired.

In particular, this sheaf essentially describe solutions to the equation g(z)2 = z.
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(3) However, Q is not a constant sheaf CC× as it has no global section. Indeed, let g ∈ Γ(C×,Q)
and let γ : [0, 1] → C× to be a simple loop around the origin defined by γ(t) = e2πit. We
then have∫

g◦γ

1

z
dz =

∫
γ

g′(z)

g(z)
dz =

∫
γ

1

2z
dz =

1

2

∫ 1

0

1

e2πit
· 2πie2πitdt = πi,

which is a contradiction, as this supposes to be 2πi times the winding number of g ◦ γ.
(4) We show that the monodromy representation Z = π1(C×, 1) → GL1(C) of Q is given by

sending a closed loop γ around the origin to a linear map on Q1
∼= C sending g ∈ Q1 to

eπig.
Indeed, we first define two open sets U, V of C× whose union contains the path γ. Let

U = C×\R≤0 and U ′ = C×\{iy : y ∈ R≤0}. The two branches R≤0 and {iy : y ∈ R≤0}
define two complex logarithm functions log and log′ on U,U ′, respectively. In particular,
log(z) := log |z| + iarg(z) where −π ≤ arg(z) < π and log′(z) := log |z| + iarg′(z) where
−π/2 ≤ arg′(z) < 3π/2. By previous argument, we know Q|U and Q|U ′ are constant sheaves.
In particular, as U and U ′ are connected and locally connected, their stalks can be identified

with the vector spaces Q(U) = Cg and Q(U ′) = Cg′, respectively, where g(z) = e
1
2

log(z) and

g′(z) = e
1
2

log′(z). We also have U ∩ U ′ is a disjoint of two connected components X ∪ Y ,
where we denote Y to be component below the real axis.

Let γ be a closed loop around 1, traveling counter-clockwise (for example γ(t) = e2πi).
The monodromy action is then described by

Q1 = Q(U)
∼−→ Q(X)

∼←− Q(U ′)
∼−→ Q(Y )

∼←− Q(U) = Q1.

We start with g ∈ Q1 = Q(U), restricting to X is still g. In order to viewed g ∈ Q(X)

as element in Q(U ′), we write g = λg′ over X, then g
(√

2
2 + i

√
2

2

)
= λg′

(√
2

2 + i
√

2
2

)
. It

implies λ = 1. Restricting g′ ∈ Q(U ′) to Y is still g′, but to go from Q(Y ) to Q(U), we
need to change basis to g in order to define the linear map. Let g′ = λg in Q(Y ). Then

g′
(
−
√

2
2 − i

√
2

2

)
= λg

(
−
√

2
2 − i

√
2

2

)
. It implies e

i·5π/4
2 = λe

i·(−3π/2)
2 . Thus, λ = eiπ. In other

words, the monodromy representation sends [γ] ∈ π1(X, 1) = Z to eπi ∈ GL1(C).

10.1.2. Another example. Let k be a field. We consider the map f : C× → C× sending z 7→ z2. We
will describe the sheaf f∗CC× .

(1) f∗CC× is a local system. In fact, for every covering map f : X → Y where Y is locally path-
connected and locally simply-connected, then f∗F is a local system, where F ∈ Loc(X, k).
See Achar’s lemma 1.7.14.

(2) Furthermore, we will show we will show that f∗CC×
∼= CC× ⊕ Q. Indeed, we define φ :

CC× ⊕ Q→ f∗CC× as

g ∈ CC×(U) 7→ g ◦ f = g(z2), g ∈ Q 7→ g ◦ f
z

=
g(z2)

z
.

To show φ is an isomorphism, we show it is an isomorphism at the level of stalks, i.e. for any
w ∈ C×, we show φw : Cw ⊕ Qw → (f∗CC×)w is an isomorphism. However, as f is proper,
by applying proper base change (proposition 1.2.15 of Achar’s book) to the pullback square
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f−1(w) X

{w} Y

f f

iw

we find (f∗CC×)w
∼−→ Γ(Cf−1(w)) = Cz1 ⊕ Cz2 for z1, z2 ∈ f−1(w), i.e. z2

1 = z2
2 = w. Thus,

it suffices to show φw is an injection.
If we have φw(g1, g2) = 0 then there exists a small disc W containing w and small discs

V1, V2 of C× containing z1, z2, respectively, such that

g1(z2) +
g2(z2)

z
= 0

for every z ∈ V1 ∪ V2 = f−1(W ). We know g1(z2) is constant on each V1 and V2 as
g1 ∈ (CC×)(V1 ∪ V2). Furthermore, g1(z2

1) = g1(z2
2) = g1(w) so g1 is constant on V1 ∪ V2.

But z1 = −z2 so

g1(w) = −g2(w)

z1
=
g2(w)

z2
= −g1(w),

yielding g1 = g2 = 0 on V1 ∪ V2, as desired.

10.1.3. Constructible sheaves on C. For a field k, a sheaf F of k-modules on C is said to be con-
structible with respect to the stratification C = C× ∪ {0} if F|C× and F|{0} are local systems. We
will describe such sheaves in terms of their monodromy representations.

As F|{0} = F0 is just a k-module, hence is always a local system. Local systems on C× are
determined by the monodromy representation. By choosing a small disc D′ of 1 where 0 6∈ D′,
this representation can be described by the action of Z = π1(C×, 1) on F(D′). In particular, it is
determined by action β : F(D′)→ F(D′) on F(D′) as “it goes around a closed loop of 0”. Therefore,
for a disc D containing D′ and 0, the restriction map α : F(D) → F(D′) must satisfy β ◦ α = α.
These are all you need to describe constructible sheaves on C with respect to the stratification
C× ∪ {0}.

For example, we will describe f∗kC where f : C→ C sending z 7→ zm.

(1) This is a constructible sheaf as (f∗k)C× is a local system, as described in the previous
example.

(2) With the above notations, we find that f−1(D) is connected (all path-connected to 0),
and f−1(D′) = D0 t · · · t Dm−1, where Di’s are disjoint discs, each Di contains a nth
root of unity ζi. Hence, (f∗kC)(D) ∼= k and (f∗kC)(D′) ∼= k⊕m, where (0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0)

corresponds to the locally constant map s : D0 t · · · tDm−1 → k sending s(Dj) = 0 for all
j 6= i and s(Di) = 1.

We also denote f−1(Dk) = Dk0 t · · · tDk,m−1 where exp(2πi(k/m2 + j/m)) ∈ Dkj . In
particular, we find f∗(kC)(Dk) ∼= k⊕m.

(3) We will describe the monodromy action

β : k⊕m = (f∗kC)(D′)→ (f∗kC)(D′) = k⊕m.

It is given by the isomorphism

(f∗kC×)(D′) = (f∗kC×)(D0)
t0−→ (f∗kC×)(D1)

t1−→ · · · tm−1−−−→ (f∗kC×)(Dm−1)
tm−→ (f∗kC×)(D0).

In particular, t0 sends (1, 0, . . . , 0) to (1, 0, . . . , 0), i.e. locally constant map D10 t · · · t
D1,m−1 → k sending D1j to 0 for j 6= 0 and to 1 for otherwise. To see this, pick an open U
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containing D0∪D1 as in the figure. We find f−1(U) = U0t· · ·tUm−1 with D0i∪D1i ⊂ Ui.
Then t0 is the isomorphism

(f∗kC×)(D0)
∼←− (f∗kC×)(U)

∼−→ (f∗kC×)(D1).

Similarly, we find (1, 0, . . . , 0) ∈ (f∗kC×)(D′) is sent to (1, 0, . . . , 0) ∈ (f∗kC×)(Dm−1), corre-
sponding to the map Dm−1,0t· · ·tDm−1,m−1 → k sending Dm−1,0 to 1 and else to 0. Now,
we apply tm, which sends (1, 0, . . . , 0) ∈ (f∗kC×)(Dm−1) to (0, 1, . . . , 0) ∈ (f∗kC×)(D0).
Thus, β : k⊕m → k⊕m is the map (x1, . . . , xm) 7→ (xm, x1, x2, . . .).

(4) Finally, the restriction map

α : k = (f∗kC×)(D)→ (f∗kC×)(D′) = k⊕m

is 1 7→ (1, . . . , 1) by restricting to each Di’s.

10.1.4. More examples to do. What about f!CC×?
Elliptic curves examples: https://en.wikipedia.org/wiki/Constructible_sheaf. Consider

the family of elliptic curves π : X → C sending the elliptic curve y2 = x(x − 1)(x − t) to t.
Describe π∗kC as a constructible sheaf with respect to the stratification {0, 1} ∪C\{0, 1}. See also
https://math.stackexchange.com/q/4018140/58951

What about Hopf fibration f : S3 → S2, i.e. describe f∗kS2 .
https://math.stackexchange.com/a/179750/58951

See also Gunningham notes on p.42.
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10.2. 14/02/2022: David Baraglia’s talk 1: Moduli spaces of Higgs bundles. My notes
for David Baraglia’s talk for the seminar Character varieties, E-polynomials and Representation
zeta functions, hosted by ANU from 14-18/02/2022. The first talk is about Narasimhan-Seshadri
theorem.

Let C be a compact Riemann surface of genus ≥ 2. Let p : E → C be a complex vector bundle
of rank n on C.

A holomorphic structure on E is an integrable complex structure on E such that E is locally
holomorphically trivial, i.e. exists an open cover {Ui} of C and holomorphic trivialisations E|Ui ∼=
Ui × Cn. The transition maps gij : Ui ∩ Uj → GLn(C) are holomorphic.

Defining a holomorphic structure on E is the same as defining an ∂-operator (Dolbeault) Ω0(E)→
Ω0,1(E). Think of this statement as a generalisation of Cauchy-Riemann equation for a complex
manifold.

An example of this holomorphic structure. Let ∇ : Ω0(E) → Ω1(E) be a connection on E. Let
∇0,1 denotes the (0, 1)-part of ∇, i.e. can write Ω1(E) = Ω0,1(E) + Ω1,0(E). Then ∇0,1 defines a
holomorphic structure on E.

Question: Does any ∇-operator on E come from a connection on E? Yes, but we would like to
find a particular connection.

Given a ∂-operator ∂E on E, h a Hermitian metric on E, then there exists unique connection
∇E on E that is compatiblae with h and ∇0,1 = ∂E . This connection is called Chern connection.

Question: Can we choose h such that the Chern connection ∇E satisfies the Yang-Mills equation
dE(∗FE) = 0 where ∗ is the Hodge star ∗ : Ωj(E)→ Ω2−j(E) and FE : Ω0(E)→ Ω2(E) curvature
of ∇E?

A simple way to satisfy Yang-Mills is to suppose ∗FE = λId ∈ End(Ω0(E)), equivalently, FE =
λdvolC ⊗ IdE .

Recall: smooth complex vector bundles on compact Riemann surfaces C are classified by rank
and degree, defined by deg(E) =

∫
C c1(E) ∈ Z where c1(E) is Chern class of E. By Chern-Weil

theory, deg(E) = i
2π

∫
C tr(FE) for any connection ∇E on E.

If ∇E satisfies FE = λdvolC ⊗ IdE , then one can show deg(E) = i
2πλrank(E). Then λ =

2π
i ·

deg(E)
rank(E) = 2π

i µ(E) where µ(E) = deg(E)
rank(E) is called the slope of E. Thus, λ is completely

determined by the topology of E.
A holomorphic vector bundle E on C is stable if for all subbundles proper F ⊂ E, we have

µ(F ) < µ(E). We say E is semistable if for F as above, we have µ(F ) ≤ µ(E). We say E is
polystable if it is a direct sum of stable bundles of same slope.

Narasimhan-Seshadri theorem: Let E be a holomorphic vector bundle on C. Then E admits a
metric h whose Chern connection ∇E satisfies ∗FE = 2π

i µ(E)IdE if and only if E is polystable.
Note: h is not unique, but the Chern connection ∇E is unique.

So we have a bijection between algebraio-geometric side

{polystable holo vector bundle rank n, deg d on C}/iso

with differential geometric side

{rank n unitary connections on C satisfying ∗ F∇ =
2π

i
· d
n

Id}/iso

This correspondence is not just a bijection of sets. The two sides are moduli spaces. LHS, moduli
space of polystable vector bundle, can be constructed as a complex projective algebraic variety
Mn,d(C) constructed using GIT. The RHS is the moduli space of solutions to a differential geometric

equation ∗FE = 2π
i ·

d
n IdE . It can be topologised by working in a suitable function space (a Sobolev

space of connections) and taking the quotient space by the gauge group (i.e. unitary isomorphisms).
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RHs is a topological space using deformation theory, get a real analytic structure. The N-S theorem
then gives a real analytic isomorphism of moduli spaces.

If deg(E) = 0, then N-S theorem gives an isomorphism Mn,0(C), rank n deg 0 polystable vector
bundles, with rank n unitary connection ∇ satisfying F∇ = 0, i.e. flat connections. And flat
connections are determined by their monodromy/holonomy representation ρ : π1(C) → U(n), up
to conjugations, i.e. up to isomorphic representations. i.e.

Mn,0(C) ∼= Hom(π1(C), U(n))/U(n).

For the case of general complex connected semisimple Lie group G with maximal compact K.
We can define holomorphic principal G-bundles. Can define (semi)-stability/polystable. We can
construct via GIT a moduli space MG(C) of polystable holomorphic G-bundles on C, a complex
projective algebraic variety. The N-S theorem then says MG(C) ∼= Hom(π1(C),K)/K.

10.3. 14/02/2022: Masoud’s talk: Arithmetic of character variety of reductive groups.
For a finite group Γ, the set Hom(Γ,GLn) has an algebraic-geometric structure: let Γ = 〈x1, . . . , xk|r1, . . . , rm〉.
Then Hom(Γ,GLn) = (GLn)k/(r1, . . . , rm) is a variety, called representation variety associated to
(Γ,GLn). This variety structure is independent of presentations of Γ.

Two representations Γ → GLn are equivalent if they are conjugate by some g ∈ GLn. So we
want to study Hom(Γ,GLn)/GLn.

This quotient can be understood as a quotient stack or as a character variety Hom(Γ,GLn)//GLn.
By definition of the later, Spec k[Hom(Γ,GLn)]GLn . Its points corresponding to semi-simple repre-
sentations Γ→ GLn.

The significance of this moduli space: Γ = π1(X) where X is Kahler manifold. Then we have
correspondences

Higgsn(X)↔ Hom(Γ,GLn)//GLn ↔ LocSysn(X)

The first iso is real analytic iso, non-abelian Hodge. The second is complex analytic, Riemann-
Hilbert correspondence. The picture appears to be most rich when X is a Riemann surface.

Geometric Langlands relates the two stacks for the case X is a Riemann surface

[Hom(Γ,GLn)//GLn]↔ Bunn(X).

Some results in understanding these moduli spaces: Poincare polynomials, mixed Hodge polyno-
mials, P=W conjectures, mirror symmetry, ... Langlands says we must understand Hom(Γ, G)/G
for any reductive G.

The group’s on-going project is to generalise Hausel’s results to general reductive groups.
Example. Suppose Γ = Z = π1(S1) = π1(P1−{0, 1}). G reductive group. Then Hom(Γ, G) = G,

[Hom(Γ, G)/G] is stack of G-local system on S1, Hom(Γ, G)//G = G//G ∼= T/W ∼= (C×)n where
T torus, W Weyl group of G (Chevalley’s theorem).

Example. Γ = F2 = 〈a, b〉 = π1(P1 − {0, 1,∞}), then Hom(F2, G) = G×G, Hom(F2, G)//G =?.
But Hom(F2,SL2)//SL2

∼= C3 by Frieke-Klein-Vogt, 1900’s.
Example, Γ = Z× Z, then Hom(Z× Z, G) = {(g, h) ∈ G×G : gh = hg}. Ngo-Chen 2021 shows

Hom(Z× Z, G)//G ∼= (T/W )× (T/W ).
Example, Γg,k = π1(Σg,k) = 〈x1, . . . , xg, y1, . . . , yg, z1, . . . , zk〉/[x1, y1] · · · [xg, yg]z1 · · · zk. We

want to understand the moduli space of rep of Γg,k.
Using counting points over finite fields and Weil’s conjectures to understand character stacks/varieties.

By using Frobenius formula, to count points of character varieties, one needs to understand irre-
ducible complex representations of G(Fq), which comes from work of Deligne-Lusztig, Lusztig.

Let A be a group. The representation ζ-function of A is ζA : C→ C sending s 7→
∑

ρ∈Â
1

dim(ρ)s .

Here
Example. If A = SL2(C), Â as algebraic reps. Then ζA is the usual Riemann- Zeta function.
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Frobenius theorem is then

|Hom(Γg, G)/G(Fq)| = ζG(Fq)(2g − 2)× |G(Fq)|2g−2.

There is a different version of Frobenius theorem in different setting of different moduli spaces. For
example, over R values Riemann-Zeta function is volumes of moduli spaces:

vol (Hom(Γg, Un)/Un) = ζUn(2g − 2),

where LHS is symplectic volume form.
If we replace q with −q in RHS, then the values can be related to Riemann-Zeta function of

unitary groups. Some sort of duality with GLn(Fq) with GUn(Fq).
If replace q with q−1 then these functions are invariant. This comes from Alvis-Curtis duality.

10.4. 15/02/2022: Uri Onn’s talk Representation zeta function of arithmetic groups.
If number of irreducible finite-dim representations of dimension n rn(G) ≤ c · nk has polynomial
growth for some c then we can define representation zeta function

ζG(s) =

∞∑
n=1

rnn
−s =

∑
ρ∈Irrf (G)

(dim ρ)−s.

This converges on the right-half plane Re(s) > αG = lim supN
log

∑n
1 rn

logN .

Frobenius (1897) theorem says

Hom(π1(Σg), G) = |G|2g−1ζG(2g − 2).

From this formula, ζG1×G2 = ζG1 · ζG2 .
Open question: Characterise groups with polynomial representation growths (PRG).
Speaker interested in arithmetic groups: G algebraic groups (semisimple, simply connected)

defined over number field K, with rings of integer O. Consider G(OS) where OS = {x ∈ K|vp(x) ≥
0 for all p 6∈ S}. Examples are SLd(Z),SLd(Z[i]), SLd(Z[1/p]) for p prime.

What kind of representations we consider when we define ζG when G is arithmetic groups? Need
some restrictions.

SL2(Z) contains free group F2 with finite index so rn infinite. Consider SLd(Z) for d ≥ 3, which
is special in the following way:
G(OS) has the congruence subgroup property (CSP) if “arithmetic quotients dominate finite

quotients”. For all normal subgroup N with finite index, exists ideal I of OS such that N is a
subgroup of ker(G(OS) → G(OS/I)). For example,define Nk = ker(SLd(Z) → SLd(Z/kZ)) for
k ∈ Z. For any finite index normal subgroup N of SLd(Z), there exists k ∈ Z such that SLd(Z/kZ)
surjects onto SLd(Z)/N . A theorem of Bass-Milnor-Serre, SLd(Z) has congruent subgroup property
if d ≥ 3.

Lutz-Martin’s theorem (2004): G(OS) has CSP (congruent subgroup property) iff it has PRG
(polynomial representation growths).

Question: What is the relation between representation zeta functions of SLd(k) for k = Z,Zp,C,Z/pkZ?
Larsen-Lubotzky JEMS 2008: If G(OS) has CSP then exists

ζG(OS)(s) = ζG(C)(s)
[k:Q] ·

∏
06=p<OS

ζG(Op)(s).

In this formula: G(OS) we consdier arbitrary irreps, G(C) algebraic reps, compact G(Op) we
consider continuous reps.

For example, ζSLd(Z)(s) = ζSLd(C)(s)
∏
p prime ζSLd(Zp)(s).

Ideal of proof: SLd(Z) is Zariski dense in SLd(C). So if we have irreducible algebraic rep of
SLd(C) then by precompose, we get irreducible rep of SLd(Z).
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Similarly, SLd(Z) also dense in SLd(Zp). Then if we consider irreducible continuous rep of SLd(Zp)
then by precompose, we get irreducible rep of SLd(Z).

Overall, SLd(Z) is dense in SLd(C)×SLd(Zp1)×· · ·×SLd(Zpr) via the diagonal mapping. Toan:
Looks like strong approximation theorem for adeles for me, but Masoud noticed that there is no
SL2(R) in this picture.

In fact, all irreps of SLd(Z) are obtained in this way (this is not true for SL2, even though the
previous property holds for SL2). This follows from Margulis super rigidity theorem.

Margulis super rigidity says that ρ finite dim irrep of SLd(Z) is either finite image reps or extends
to rep of SLd(C). By CSP, every finite image reps of SLd(Z) factors through SLd(Z/kZ).

Auni 2011: αG(OS) ∈ Q if G(OS) is CSP.
Toan: What about SLd(Q)? Its representations? Its zeta functions? Can we discuss this for

SLd(Q)← SLd(Qp) and etc What relation between ζG(R) and ζG(C)?
From what I read about Margulis superridity, why we cannot extend SL2(Z) to SL2(R)? http: //

emis. maths. adelaide. edu. au/ journals/ Annals/ 151_ 3/ bass. pdf , p 1155, also RIGIDITY
AND ARITHMETICITY Marc BURGER, Margulis, Discrete subgroups of semisimple Lie groups

What is the relation between L-functions and representation zeta functions?

10.5. 15/02/2022: David Baraglia’s talk 2: Moduli spaces of Higgs bundles. Last time:
C compact connected Riemann surface of genus g ≥ 2, G connected complex semisimple Lie group
(e.g. SLn(C)), K compact Lie subgroup (e.g. SU(n)). The Narasimhan-Seshadri theorem gives
isomorphism between polystable, holomorphic, principal G-bundles/iso and Hom(π1(C),K)/K.

Question: What happens if we instead look at complex representations π1(C)→ G?
Unlike compact case, conjugation action of G on Hom(π1(C), G) is not well-behaved, i.e. some

orbits are not closed. Naive group quotient will not be Hausdorff. But note Hom(π1(C), G) is an
affine complex algebraic variety. So can form GIT quotient Rep(π1(C), G) = Hom(π1(C), G)//G.

Theorem: Homred(π1(C), G)//G = Hom(π1(C), G)//G where Homred(π1(C), G)//G is set of of
reductive representations, i.e. ρ : π1(C) → G reductive if adjoint rep Ad ◦ ρ : π1(C) → GL(g) is
completely reducible. Equivalently, the Zariski closure of ρ is reductive.

N-S theorem extends to complex representations of π1(C) where RHS is Hom(π1(C), G)//G and
the lHS is moduli space of polystable G-Higgs bundles.

Start off with GL case first:
Def: A (general linear) Higgs bundle on C is a pair (E, φ) where E is a holomorphic vector

bundle on C and φ is a holomorphic bundle map φ : E → KC ⊗ E where KC = ∧1,0T ∗C is the
holomorphic cotangent bundle. φ is called Higgs field, roughly a “matrix of holomorphic 1-forms”).

Masoud said that Higgs bundles are essentially cotangent bundle of moduli space of vector
bundles.

Def: (E, φ) is stable if for each proper nonzero, φ-invariant subbundle F ⊂ E, we have µ(F ) <
µ(E), where µ(E) = deg(E)/rank(E).

Denote M
Higg
n,d (C) to be moduli space of polystable, rank n, deg n Higgs bundles, also called

Dolbeault moduli space. It can be constructed algebraically, is a complex algebraic quasi-projective
algebraic variety.

Every (poly)stable bundle E can be regarded as a (poly)stable Higgs bundle with zero Higgs
field. So

Mn,d(C) ⊂M
Higgs
n,d (C)

as subvariety.
For example, M1,0 are all holomorphic line bundles of degree 0, which is Jac(C), which is

diffeomorphic to torus (S1)2g. And

M
Higgs
1,0 (C) = {(E, φ) : φ ∈ KC ⊗ E∗ ⊗ E ∼= KC} = Jac(C)×H0(C,KC) = T ∗Jac(C).
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By Serre duality, at [E] ∈ Mst
n,d(C) then T ∗Mn,d(C)[E] is space of Higgs fields on E. Hence,

T ∗Mst
n,d(C) is dense open in M

Higgs
n,d (C). If we work with stacks, this would be an equality.

Can think of MHiggs
n,d (C) as partial compactification of T ∗Mst

n,d(C).

(Irrelevant: Cotangent bundle of G/B is resolution of singularities of nilpotent cone).
Cotangent bundle T ∗Mst

n,d(C) has a canonical symplectic form that extends to the smooth locus

of MHiggs
n,d (C).

Def (Hitchin equations). Let (E, ∂E) holomorphic vector bundle on C, φ : E → KC ⊗ E be
(smooth) endomorphism, h be a Hermitian metric on E. The Hitchin equations for (E, φ, h) are
∂E(φ) = 0 and F∇h+[φ, φ∗] = 2π

i µ(E)dvolC⊗IdE , where φ∗ is taken wrt h, ∇h is Chern connection,
choose metric g so vol(C) = 1.

Theorem (Hitchin-Simpson). Let (E, ∂E , φ) be a Higgs bundle. Then there exists Hermitian
metric h on E such that (E, ∂E , φ, h) satisfies the Hitchin equations iff (E, φ) is polystable.

This gives a bijection between

{polystable Higgs bundles (E, φ)}/iso

and

{solutions of Hitchin equations }/unitary gauge trans.

To keep things simple, assume deg(E) = 0, then Hitchin equations are ∂Eφ = 0 and F∇h +[φ, φ∗] =
0. These are equivalent to saying that the connection ∇ = ∇h + φ+ φ∗ is flat. So the Higgs fields
φ + φ∗ in some sense contribute to the non-unitary part of the connection. Thus, a solution to
Hitchin equations define a flat GLn(C)-connection.

Question: Given a flat GLn(C) connection ∇, does it come from a solution of the Hitchin
equations?

Given Hermitian metric h on E, then ∇ can be uniquely split as ∇ = ∇h + Φ where ∇h is a
unitary connection, and Φ∗ = Φ self-adjoint 1-form valued endo. Hence, Φ = φ+φ∗ into (1, 0)-part

and (0, 1)-part. So ∇ = ∇h + φ + φ∗. Moreover, we get holomorphic structure ∂E = ∇0,1
h , hence

∇h is the Chern connection of (E, ∂E , h). But this φ is not necessarily holomorphic.
Question: Can we find h so that (E, ∂E , φ, h) satisfies the Hitchin equations?
Yes, this is proved by Donaldson-Corlette. Theorem: Let ∇ flat GLn(C) connection on C. Then

there exists h s.t. (E, ∂E , φ, h) satisfies Hitchin equations iff holonomy of ∇ is reductive.
Thus, we have

M
Higgs
n,0 (C) ∼= {sols to Hitchin equations (E, ∂E , φ, h)}

by Simpson-Hitchin and

{sols to Hitchin equations (E, ∂E , φ, h)} ∼= {flat GLn(C)− connections with redutive holonomy }

by Donaldson-Corlette, and

{flat GLn(C)− connections with redutive holonomy } ∼= Hom(π1(C), G)/G

by Riemann-Hilbert correspondence. So the three moduli spaces (Dobeault, de Rham and Betti)
are the same.

This works for any complex connected semisimple Lie group G. We still have

M
Higgs
G (C) ∼= M

flat
G (C) ∼= Hom(π1(C), G)//G.

10.6. 16/02/2022: Masoud’s talk 2. Polynomials with residue counting (PORC) if there exists
integer d and polynomials ‖Y ‖1, . . . , ‖Y ‖d−1 ∈ C[t] such that |Y (Fq)‖ = ‖Yi‖(q) for i ≡ q (mod d).

For reductive G with connected center then the stack X = [Hom(Γg, G)/G] is PORC count with
modulus d(G∨).
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Consequently, if q ≡ 1 (mod d(G∨)) then XFq is polynomial count with counting polynomial
X‖1, so the E-polynomial E(XFq) = ‖X‖1. In particular, we can compute the dimension of X for
general G. This agrees with the dimension of moduli space of semistable Higgs bundles of Σg.

10.7. 17/02/2022: Nir Avni’s talk Counting points and counting representations. Here
is the paper: https://arxiv.org/abs/1502.07004

10.7.1. Counting points. Let X be a system of equations. Slogan:

(1) |X(Fp)| as p → ∞ depends on global invariants, i.e. looks like X(C) as p → ∞, Weil’s
conjectures.

(2) |X(Z/pn)| as n→∞ depends on local invariants, i.e. singularities of X (Aside: Igusa zeta
function is of the same vein in measuring singularities).

X solutions of x2 +y2−z2. What is
|X(Fqn )

q2n
? Let f : Z3

p → Zp defined by f(x, y, z) = x2 +y2−z2.

Then
|X(Fqn)|
q2n

=
(f∗λHarr)(p

nZp)
λHaar(pnZp)

.

These Haar measures come from differential form ω = dx∧dy∧dz
f∗dt , i.e. dx∧ dy∧ dz = ω∧ f∗dt, which

is dx∧dy
z .

Upshot: Need to compute
∫ dx∧dy

z over the cone x2 + y2 = z2.
To do this, find a resolution: Over R, use change of coordinates. Let x = r cos θ, y = r sin θ, z = r

then ∫
dx ∧ dyz =

∫
|dr ∧ dθ| <∞

where LHS is over the cone, RHS is over the cylinder.
Over Zp, use blow up (algebraic equivalent of polar coordinates).
1) In general, for (normal, ..) variety X, then

|X(Z/pn)|
pndim(X)

n→∞−−−→
∫
Xsm

|ω|,

where ω ∈ H0(ΩX) canonical bundle.

2) If π : X̃ → X is a resolution of singularities, then∫
Xsm

ω =

∫
X̃
π∗ω,

where π∗ω regular on π−1(Xsm).∫
X̃ π
∗ω <∞ iff π∗ω has no poles on X̃\π−1(Xsm). We say that X has canonical singularities.

10.7.2. Counting representations. Γ a group, rn(Γ) number of n-dimen irreps of Γ. Consider zeta
function ζΓ(s) =

∑∞
n=1 rn(Γ)n−s.

Then ζΓ <∞ iff rn(Γ) = O(nα).
Example,

ζSLd(Zp)(2) = lim
n→∞

ζSLd(Z/pn)(2),

= lim
n→∞

|Hom(π1(Σ2),SLd(Z/pn)|
|SLd(Z/pn)|3

,

≈ lim
n→∞

|Hom(π1(Σ2), SLd(Z/pn))|
pn·3dim SLd

.

Note n · 3dim SLd is dimension of representation variety. Hence,

rn(SLd(Zp)) = O(n2) iff vol (Hom(π1(Σ2),SLd)) <∞
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iff Hom(π1(Σ2),SLd) has canonical singularities.
(Aside: There is a differential form on Hom(...)//G whose pullback is ω of Hom(...), something

about Atiyah-Bott).
There is a one of this variety that rules: if the germ of this point has canonical singularity then

all other points have canonical singularities. In particular, X = Hom(π1(Σ2),SLd) has canonical
singularity iff (X, trivial rep) has canonical singularity.

Deformation principle: If (Xt, xt) is a family of pointed affine varieties then (X0, x0) is at least
as singular as (Xε, xε) for 0 < ε < 1.

As a corollary, rn(SLd(Zp)) = O(n2) iff Y = {(X1, Y1, X2, Y2) ∈ sl4d : [X1, Y1] + [X2, Y2] = 0}
has canonical singularities. It is an instance of quiver varieties. and the statement was proved by
Budur and generalized by Herbig, Schwartz, Seaton. Y is the tangent cone of {(g1, h1, g2, h2) ∈
SL4

d : (g1, h1) · (g2, h2) = 1} where (a, b) is the commutator. This is the identity (trivial rep) of the
representation variety X. To get the tangent cone, look at (1+ εX1, 1+ εY1) · (1+ εX2, 1+ εY2) = 1.

(Aside: With G =
∏

SLd(Zp)×SUd then ζG(χ) = vol (Hom (π1(Σ2), G)), where this is an adelic
manifold and has a top form).

10.8. 17/02/2022: David Baraglia’s talk 3. C compact, connected Riemann surface g ≥ 3,

G complex connected semisimple group. We have three moduli spaces M
Higgs
G = MDol

G Dol-

bault moduli space, GdR(C) = flat G bundles with reductive holonomy de Rham moduli space,
Rep(π1(C), G) = MG(C) Betti moduli space.

Non-abelian Hodge says there are isomorphisms

MDol
G (C) ∼= MdR

G (C) ∼= MBetti
G (C)

Question: Why this is called non-abelian?

Consider the abelian case G = C× = GL1(C), then M
Higgs
1,0 = T ∗Jac(C) = H1(C,O×) ⊕

H0(C,KC), de Rham moduli space: flat connections on trivial line bundle, ∇ = d+a, F∇ = da = 0,
modulo gauge symmetry, get H1

dR(C,C)/H1(C,Z). And Betti moduli space is Hom(π1(C),C×) =
Hom(H1(C,Z),C×) = H1(C,C×). Thus, the abelian version of non-abelian Hodge is isomorphims

H1(C,O×)⊕H0(C,KC) ∼=
H1
dR(C,C)

H1(C,Z)
∼= H1(C,C×)

This follows from isomorphisms

H1(C,O)⊕H0(C,K) ∼= HdR(C,C) ∼= H1(C,C),

which is a special case of Hodge theory.
Look at the geometry of these moduli spaces:
Restrict to locus of stable Higgs bundles, where the moduli space is smooth.
Regard the moduli space as solutions to the Hitchin equations on a fixed smooth principal G-

bundle E with a fixed Hermitian metric h. The Hitchin equations are

{
∇0,1
E φ = 0

FE + [φ, φ∗] = 0
. The

tangent vector to (E, φ) linearise Hitchin equatinos modulo linearisation of gauge group. Consider

first order deformations (α,ψ) ∈ Ω0,1(C,Ad(E)) ⊕ Ω1,0(C,Ad(E)), plug (∇0,1
E + tα, φ + tψ) into

Hitchin equations, get first order in t, which is{
∇0,1
E (ψ) + [α, φ] = 0,

∇0,1
E α−∇0,1

E (α∗) + [φ, ψ∗] + [ψ,ψ∗] = 0.

To account for the gauge transformations, restrict to (α,ψ) orthogonal to the gauge orbit through
(E, φ).
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There is a natural L2-metric on tangent space

g(E,ψ)((α,ψ), (α,ψ)) = i

∫
C
k(α∗, α)− k(ψ∗, ψ),

where k is the Killing form. This is a hyperKahler metric, i.e. there are integrable complex structure
I, J,K satisfying the quaternion relations IJ = K, etc, such that g is Kahler wrt I, J,K, i.e. there
is ωI = g(I−,−), ωJ , ωK are closed symplectic forms. In particular, I(α,ψ) = (iα, iψ), J(α,ψ) =
(iψ∗,−iα∗) and K(α,ψ) = (−ψ∗, α∗).

Then I is the natural complex structure on M
Higgs
C (C), J is the natural complex structure on

MdR
G (C) and MBetti

G (C).
Zero locus of moment maps µI , µJµK are the Hitchin equations, i.e. can see moduli space as

hyperkahler quotient MHitchin
G (C) = π−1

I (0)∩µ−1
J (0)∩µ−1

K (0)/G modulo gauge group, hence inherits
a hyperkahler structure.

C×-action:
C× acts holomorphically on GHiggs(C) by λ(E, φ) = (E, λφ), λ ∈ C× but is not holomorphic in

J,K.
Morevoer, S1 ⊂ C× acts by isometries and is Hamiltonian wrt ωI . The moment map µ(E, φ) =

‖φ‖2L2

∫
C k(φ, φ∗) is a Morse-Bott function, called Hitchin functional.

It is also a proper map. The critical submanifolds are fixed by the C×-action. Hitchin and others
have used µ to study topology of MHiggs(C) (for example, compute Poincare polynomials).

Integrable systems:
Moduli space MHiggs is a torus fibration f over BG(C). In particular, there is a singular locus

that is very singular, called nilpotent cone. Hitchin defined a map f : MHiggs(C)→ BG(C), which

is an affine space Cn where n = dim(MHiggs
G (C))/2. The coordinates of f are Poisson commuting

wrt the holomorphic symplectic structure Ω = ωJ + iωK . f is proper map. So we get an integrable
system. It implies that the fibers are coisotropic, in fact are Lagrangian. Can then use Liouville’s
theorem on integrable systems to say that the fibers are tori.

As GHiggs(C) is algebraic, so is f , so fibers are algebraic, hence are abelian varieties.
Langlands duality:
Take Langlands dual group G and LG then BG(C) ∼= BLG(C). Then we get two fibrations

M
Higgs
G (C) and M

Higgs
LG

(C) over the same space, hence gives rise to dual torus fibration. This is an
example SYZ mirror symmetry.

Describe fibration f : MHiggs(C)→ BG(C): Consider C[g]G, ring of ad-invariant polynomials in
g, by Chevalley, is C[p1, . . . , pr]

r where pi homogeneous of degrees d1, . . . , dr, r = rank(G). Then
f(E, φ) = (p1(φ), p2(φ), . . . , pr(φ)). In GLn case, pj = tr(φj).

10.9. 17/02/2022: Masoud’s talk 3: Previous two lectures: counting points over representation
variety and character stack.

Some open questions:

(1) Counting points over character variety ? Only GL2,GL3 known.
(2) We can deduce E-polynomials from counting points. But what about mixed Hodge poly-

nomials?
(3) Understand mirror symmetry between G and G∨?
(4) P = W conjecture.

Consider punctured Riemann surface: Γ = Γg,k = 〈x1, . . . , xg, y1, . . . , yg, z1, . . . , zk〉/
∏

[xi, yi]
∏
zi.

HomC(Γ, G) = {f : Γ→ G, f(zi) ∈ Ci} and X = [HomC(Γ, G)/G].
For C = (Ci, . . . , Ck) conjugacy classes. If G = GLn and C is generic then [HomC(Γ, G)/G] =

HomΓ(Γ, G)//G, proved by Hausel, ...
Goal : Try to prove this for general type.
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10.9.1. Counting points. Consider character variety with regular monodromy. And C consists of
regular semisimple or regular unipotent conjugacy classes. (regular = stabiliser in Weyl group is
trivial) Let S,N be set of regular semisimple and regular nilpotent conjugacy classes.

Frobenius formula

[X](S,N)(Fq)| =
∑

χ∈Irr(G(Fq))

(
|G(Fq)|
χ(1)

)2g−2 χ(S)

χ(1)
|CS | ×

χ(N)

χ(1)
|CN |,

where |CS |, |CN | the number of elements in orbits of S,N under conjugation.
Use Deligne-Lusztig theorem: χ(S) = 0 unless χ irreducible constituent of principal series rep-

resentations B(θ) = ind
G(Fq)
B(Fq)(θ) for θ ∈ T (Fq)∨ = Hom(T (Fq),C×). Hence, can rewrite Irr(G(Fq))

as
∑

[θ]∈T (Fq)∨/W
∑

χ∈B(θ) · · · .
By Green(?)-Lehrer-Lusztig theorem, there exists unique constituent χθ ∈ B(θ) so χθ(N) 6= 0.

Rewrite the sum
∑

[θ]∈T (Fq)∨/W · · ·
Can compute χθ(N), χθ(S), χθ(1) quite explicitly. We also know |CN |, |CS |.
Want to show that the result is polynomial that does not depend on q. The trouble here is that

we are summing over T (Fq)∨/W , which depends on q.

First, write it as sum over T (Fq)∨:
∑

[θ]∈T (Fq)∨
|W |
|Wθ| · ...

We have a map Φ : T (Fq)∨ → π(W ) where π(W )= reflection subgroups of W , sending θ 7→
Wθ = StabW (θ).

Can rewrite the sum over reflection subgroups L of W : αL(q) =
∑

L∈π(W )
|W |
|WL| × ... except

the term
∑

θ∈Φ−1(L),w∈W θ(w · s). It remains to compute this sum and demonstrate that this is

polynomial in q.
Example for GLn L = Sn1 × · · ·Snm ⊂ Sn, the sum is

∑
θ∈T (Fq),Wθ

∼=L. What it is follows from

Frobenius inversion.
Open: What happens for other groups? Problem is we don’t know what does “generic” mean in

other groups.
Generic of C in GLn: (C1, . . . , Ck) is generic if whenever exists nonempty subspace V ⊂ kn and

Xi ∈ Ci s.t. XiV ⊂ V then det(
∏
xi|V ) 6= 1.

10.10. 18/02/2022: Uri On talk 3: Local, global factors. For d ≥ 3, recall we have

ζSLd(Z)(s) = ζSLd(C)(s)
∏

p prime

ζSLd(Zp)(s).

Continuous representation SLd(Zp)→ GLn(C) factors through some finite quotient SLd(Z/pkZ)→
GLn(C).

Theorem (Jaikin-Zapirain): p odd prime, G Fab p-adic analytic group (technical condition guar-
antees that p-adic zeta function converges). Then there exists N,n1, . . . , nN , f1, . . . , fN ∈ Q(t)

such that ζG(s) =
∑N

i=1 n
−s
i fi(p

−s). Note that these ni, fi depend on p. For pro-p-adic ζG(s) =∫
Zdp
|f1(x)|sp|f2(x)|pdµ using Orbit method where fi : Zdp → Zp definable functions.

Theorem (Avni, Klopsch, Voll, Duke 2013): G semisimple simply connected algebraic group
over number field K with ring of integers O. There exists finite set S of places of K, r ∈ Z≥0,
R(X1, X2, . . . , Xr;Y ) ∈ Q(X1, . . . , Xr;Y ) s.t. for every non-archimedean place p 6∈ S, the following
holds: exists algebraic integers λ1 = λ1(p), · · · , λr(p) s.t. for all O|op, let inertia degree f of O|op,
d = dim G, m >> 0:

ζG(O)m(s) = qfdmR(λf1 , . . . , λ
f
r ; q−fsp ),

where G(O)m is the mth congruent subgroup.
Problem: Does ζSLd(Z) admit meromorphic continuity?
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Look at ζG(Fq) where G(Fq) finite group of Lie type. Let g Lie algebra of G.

Define G̃(Fq) as g(Fq)× g(Fq) as a set, with multiplication (X1, Y1) ∗ (X2, Y2) := (X1 +X2, Y1 +

Y2 + 1
2 [X1, X2]). It has q2dim G. It is a unipotent group. Another way to realise this group isexp

0 X Y
0 X

0

 |X,Y ∈ q(Fq)

 ⊂ GL3d(Fq)

If G = GL1 then G̃ is the Heisenberg group.
Question: Find ζG̃(Fq)? How is it relate to ζG(Fq)? Not hard to find ζG̃(Fq)?

Open problem: Given arithmetic group, there are only finitely many other arithmetic groups
with the same zeta function?

Pick a group, pick fields K,L over Q with same Dedekind zeta function. Consider congruent
subgroups wrt K,L then they have the same representation zeta function?
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10.11. 21/02/2022: Branched cover of P1 from algebraic curves. Today I learned the fol-
lowing process: Given an affine variety defined by a polynomial f(x, y) ∈ C[x, y], we can obtain
a branch cover X → P1 for some compact Riemann surface X. I will explain this along with an
example f(x, y) = y2− x4 + x2. See also the notes 28/11/2022 where I have roughly described this
process for the case of elliptic curves.

I learned this from Akhil Mathew’s notes https://math.uchicago.edu/~amathew/287y.pdf

for the course Geometry of Algebraic Curves by Joe Harris, lecture 2.

(1) We find singular points of X, which p ∈ C2 of f satisfies ∂f
∂x (p) = ∂f

∂y (p) = 0. In this case

f(x, y) = y2 − x4 + x2, there is (0, 0).
(2) Define ϕ : X → C to be the projection to x-axis. The map is holomorphic at nonsingular

points of X so locally it looks like z 7→ zm at those points, i.e. a finite covering map.
(3) By removing a singularity and consider ϕ over the punctured disk centered at this point,

the map over this punctured disk is still a covering map. Specifically, if q = ϕ(p) for
singular point p, there is a small disk D containing q such that ϕ : ϕ−1(D∗)→ D∗ (for D∗

a punctured disk) is a covering map.
(4) Any covering map of a punctured disk D∗, say D = S1 ⊂ C is of the form z 7→ zm.

This means ϕ−1(D∗) is disjoint union of punctured disks. By adding new points to these
punctured disks, we obtain a Riemann surface X ′ and a holomorphic map X ′ → C.

So in our example, for singular point (0, 0) of y2 − x4 + x2, if we take preimage of a
punctured disk of x = 0 under the projection ϕ, we get two punctured disk. Hence, we
obtain a Riemann surface by removing the singularity (0, 0) over 0 ∈ C and adding two new
points over 0. This gives a Riemann surface X ′.

(5) We want to extend X ′ → C to X → P1 where X is a compact Riemann surface. Similarly,
there exists a punctured disk UR := {x : |x| > R} of ∞ in P1 so that ϕ−1(UR) → UR is
a covering map. We can then complete X ′ to a compact Riemann surface X by adding a
point to each connected component of ϕ−1(UR) to X ′.

In our example of f = y2 − x4 + x2, we need to determine how many points to add over
infinity to X ′. Because ϕ : X ′ → C in this case is either locally two-to-one or one-to-one, it
suffices to check if ϕ−1(UR) is connected or not.

It is not connected. Indeed, let g(z) = z4 − z2. that given a choice of square root of
y0 = g(R), we can analytically continued square-root function

√
x along g(R)e8πit. We also

know that for sufficiently large R, we can also analytically continued
√
x along g(Re2πit)

(i.e. R is large so g(Re2πit) does not intersect 0, as
√
x can be analytically along any

path not containing 0) . Thus, by the monodromy theorem, as g(Re2πit) and g(R)e8πit are
homotopic, analytically continuation of

√
x along these two paths are the same. As along

g(R)e8πit, we get the same value for
√
x at t = 0 and t = 1, we also get the same value at

t = 1 and t = 0 of
√
x along g(Re2πit).

This example can be used to show the following fact: the double cover of P1 corresponding
to of y = p(x) has a branched point at ∞ iff deg p is odd.

One can also construct X algebraically by “normalization” or “blow ups”. I have not learned this,
and refer to https://www.math.wustl.edu/~matkerr/436/ch11.pdf for more details in another
day.
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11. March 2022

11.1. 05/03/2022: Venkatesh’s lecture: Automorphic forms in arithmetic topology.
Venkatesh’s Arizona Winter School lecture 2022 in https://www.math.arizona.edu/~swc/index.

html. There is an analogy in arithmetic topology between number fields and 3 manifolds.

Question: Where are “automorphic forms” in this analogy?

Q : Historical development of arithmetic topology:
Mazur (63/64) said that “SpecZ/p is like SpecZ, which is a simply connected 3-manifold”.

Where this idea came from?
The first starts with Weil’s paper in 1948, which suggests that there is an ”algebraic” cohomology

H∗(X) theory for varieties X over algebraically closed field K such that when K = C, it recovers
singular cohomology of X(C) (algebraic means you get this without knowing the topology of C).
This is a crazy idea. For example, take X = {x3 + y3 + z3 = 0}/C. The symmetry x ↔ y acts
on H∗(X), x 7→ x, y 7→ y, z 7→ z acts on H∗(X). Furthermore, if you have a discontinuous auto-
morphism x 7→ σ(x), y 7→ σ(y), z 7→ (z), if you believe Weil’s proposal where H∗(X) is completely
algebraic, this automorphism should also act on H∗(X)!? Weil’s proposal was realised by Artin
and Grothendieck (for finite coefficients), called etale cohomology H∗(X).

There’s another work by Tate (1962) and Paton (1961) which showed etale cohomology of SpecZ
(or other number rings) has a duality H i with H3−i, which says SpecZ behaves like a 3-manifold.
This comes from class field theory.

Q : Why is this a striking phenomenon?
To compute singular cohomology H∗ of a manifold, one tries to triangulate it, and then write

down a complex 0→ vertices→ edges→ faces ... The nature of this computation is linear algebra.
However, the nature of etale cohomology feels very different to linear algebra. ConsiderH∗(SpecZ[1/2],Z/2Z),

which has H1 iso to units in Z[1/2] modulo squares, i.e. {±1,±2}. So H1 ∼= (Z/2Z)2 H2 classifies
quatenion algebras on Z[1/2], which has two classes, so H2 ∼= Z/2.

Q: Compare duality for number rings and 3-manifolds.
Number rings O means either S-integers in a number field, or functions on smooth curve over Fq.

For simplicity, take Z[1/p] and H i(SpecZ[1/p],M) where M is p-torsion abelian group, i.e. Z/pnZ.
Tate duality (drop the notation Spec for convenience) for number rings:

(i− 1 deg)→ H3−i(Z[1/p],M∗)∗ → H i(Z[1/p],M)→ H i(Qp,M)→ (i+ 1 deg),

where M∗ = {homM → S1}.
For 3-manifold X with boundary ∂X

(i− 1 deg)→ H i(X, ∂X;M)→ H i(X,M)→ H i(∂X,M)→ (i+ 1 deg)

For X being manifold, we have its relative cohomology H i(X, ∂X;M) iso to H3−i(X,M∗)∗ from
some duality statement.

Thus, from these two exact sequences, Z[1/p] is like a (non-orientable) 3-manifold with boundary
Qp, which is like a 2-manifold.

In Mazur’s picture, with SpecZ as a 3-manifold and a knot inside representing SpecZ/pZ. To
get SpecZ[1/p] from SpecZ, one can delete a cube around this knot, then one would get a boundary
which represents SpecQp. In other words, SpecZ is like SpecZ[1/p] glued along a boundary SpecQp

a tube SpecZp.
Examples of 3-dim rings (i.e. those behave like 3-manifolds): Z,Z[1/p],Z[

√
2],Fp(t), proj smooth

curve over Fq, Zp
Example of 2-dim objects: Qp,Fq((t)), smooth proj curve over Fp.
Q: Back to original question, where are automorphic forms in this analogy?
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Consider automorphic forms on G, i.e. over Z, it refers to vector space AZ of functions on
GZ\GR. Over Z[1/p], AZ[1/p] is vector space of functions on GZ[1/p]\GR ×GQp .

We would like an association from 3-manifolds M to vector spaces AM which behaves similarly
to the automorphic forms story.

A non-example is M → H∗(M,C), which behaves nothing like Z → AZ. As it doesn’t have
the right functoriality. E.g. the ‘double cover’ Z→ Z[

√
2] doesn’t have the corresponding map on

automorphic forms. Another example, H∗(M ∪N) = H∗(M)⊕H∗(N), but AZ⊕Z = AZ ⊗AZ.
The proposal is that automorphic forms should correspond to topological quantum field theory

(TQFT) (which has ⊕ corresponds to tensor product). This suggestion comes from the work of
Kapustin-Witten in 2006.

TQFT in dimension 4 is a functor from (3-manifolds, bordisms) to (vector spaces), which take
disjoint union to tensor product. See Atiyah TQFT sec 2 book for more reference.
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11.2. 16/03/2022: Venkatesh’s lecture 2: Automorphic forms as extended TQFT. This
is a continuation of 05/03/2022. Here is my notes for Venkatesh’s second lecture for the Arizona
Winter School 2022.

Q : Define TQFT in dimension 4 (Atiyah §2 book).
Take 3-dim manifold M to vector space AM , disjoint union of 3-dim manifolds to tensor product

of vector spaces, bordisms to linear maps.
A 4TQFT gives invariants of 4-manifolds. For example, a 4-dim manifold Z with boundary M

is a bordism from ∅ to M , then by TQFT this gives a linear map C → AM , i.e. a vector in AM .
Similarly, a 4-manifold Z without boundary gives a complex number.

An extended 4-TQFT assigns 4-manifolds to C, 3-manifolds to vector spaces, 2-manifolds to
categories with Hom being vector spaces. In particular, if a (no boundary) 3-dim manifold N is
glued by two 3-manifolds Nl, Nr via a 2-dim boundary M , then ANl and ANr correspond to an
elements al, ar in the category of AM , and AN = Hom(al, ar), which is a vector space.

Q : Back to number theory
Last time, SpecZ[1/p] is like a 3-manifold with 3-manifold boundary Qp. However, the correct

statement should be SpecZ[1/p] has boundary SpecR and SpecQp, and SpecZ has boundary
SpecR. (from the point of view that local fields should be on the same footing). But it is harder
to convince one self that SpecR should be a boundary of SpecZ[1/p] ...

Q : Automorphic forms as extended TQFT4

3-dim vector spaces
Z AZ functions on GZ\GR

Z[1/p] AZ[1/p] functions on GZ[1/p]\GQp ×GR
X smooth curve over Fp functions on G-bundles on X

Zp functions on G(Qp)/G(Zp)
2-dim: categories
Qp category of G(Qp)-representations
R category of G(R)-representations

X proj smooth curve over Fp category of sheaves on G-bundles on X.

Interestingly, Qp and R are local objects but of dimension 2, while Zp is a local object but of
dimension 3.

A quick check with our intuition above: SpecZ has boundary SpecR, and AZ is indeed an
element of AR, i.e. a representation of G(R). Similarly story with AZ[1/p] which is a G(Qp)×G(R)-
representation.

Recall last time, SpecZ is obtained by glueing SpecZp to SpecZ[1/p] along SpecQp. We
want to check that the appropriate glueing property holds, i.e. HomG(Qp)(AZp , AZ[1/p]) = AZ.
Note AZ correspond to elements of AZ[1/p] that are unramified at p, i.e. invariant by G(Zp), i.e.
AZ = HomG(Qp)(functions G(Qp)/G(Zp), AZ[1/p]). This hom encodes Hecke operator at p, i.e. en-
domorphisms of functions on G(Qp)/G(Zp) acts on AZ. So AZp is then functions on G(Qp)/G(Zp).

Q : What is Langlands correspondence from this point of view?
Let’s call the map O → AO from an arithmetic rings to vector spaces/category an “arithmetic

field theory”. Suppose we have this theory.
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For example, take X smooth proj curve over Fp and G = GLn. Langlands correspondence gives
an isomorphism between cuspidal functions on n-dim vector bundles on X and functions (i.e. take
linear spans) on n-dimensional irreducible Galois reps. This is compatible with the Hecke operators
on the left and the Frobenius operators on the right.

This suggests the following viewpoint on the Langlands correspondence: there is a second arith-
metic field theory which is built out of Galois reps to G∨=Langlands dual groups, called BG∨ and
an equivalence of arithmetic field theory

AG ∼= BG∨

Q : There are matching invariants between two sides of the Langlands correspondence (Fourier
coef, Rankin-Selberg integral, doubling, theta ... for automorphic side; L-functions for Galois side).
Where do these matching invariants come from in QFT?

From TQFT discussion, these invariants should correspond to some 4-manifolds ... Denote O
to be 3-dim rings of integers or curves over finite field. Then from TQFT discussion, numerical
invariants of automorphic forms live in AGO, numerical invariants of Galois reps live in BG∨

O (i.e.

think of 4-dim manifolds with boundary O, which corresponds to an element in BG∨
O ). One can also

think of invariants in automorphic sides dually, to each automorphic function P (i.e. a 4-manifold
with boundary O), one associates a function ϕ→ 〈P,ϕ〉 by glueing two 4-dim manifolds P with ϕ
via O.

Then, to find matching invariants, we want to find matching elements of AO and BO.
A boundary condition in a TQFT4 is (informal def) is a consistent assignment, to every 3-

manifold M , a distinguished vector in AM ; and to each 2-manifold S, a distinguished object in
AS . See Kapustin 2010 ICM address. Thus, to match invariants, we want matching boundary
conditions in AG and BG∨ .

In joint work with Ben-Zvi and Sakellaridis, informal summary:

(1) G-variety Y gives boundary condition for AG and BG.
(2) For suitable Y , this recovers all the familiar invariants of automorphic forms and L-

functions.
(3) Propose a class of dual pairs (G, Y ) and (G∨, Y ∨) which give matching boundary condition.
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11.3. 21/03/2022: Wee Teck Gan’s lectures: Local theta correspondence. I attended
Arizona Winter School 2022 virtually from 05/03 till 09/03, where I mostly followed Prof. Wee
Teck Gan’s lectures on the theta correspondence. Today I will try to give a summary of what I have
learned. More technical details can be found in his lecture notes https://www.math.arizona.edu/

~swc/aws/2022/2022GanNotes.pdf (should be somewhere in my laptop with extensive comments).
Many thanks to Jialiang Zou for answering many questions of mine regarding this subject. A
reminder to myself is that I have not actually gone through all the exercises for Prof. Gan’s
lectures.

The goal for today would be to sketch some ingredients of the local theta correspondence. Our
first task is to define the local theta lift, i.e. a map between irreducible representations of unitary
groups:

(1) Define unitary groups over local fields: Let F be a local field, E be a quadratic extension
of F . Let V,W be finite-dimensional Hermitian and skew-Hermitian vector spaces over E,
respectively. This means that E-vector spaces V,W are equipped with a nondegenerate
E-sesquilinear form 〈−,−〉 s.t. 〈v1, v2〉c = ε〈v2, v1〉 and 〈λv1, v2〉 = λ〈v1, v2〉 for all v1, v2 ∈
V, λ ∈ E. Here the conjugation map x 7→ xc on E comes from Aut(E/F ) = Z/2; ε can be
either 1 (for Hermitian space) or −1 (for skew-Hermitian space).

Let U(V ) be the isometry group wrt to the above product 〈−,−〉 on V . Denote Irr(U(V ))
to be the set of equivalence classes of irreducible smooth representations of U(V ).

(2) Define the local theta lift θ : Irr(U(V ))→ Irr(U(W )) ∪ {0}.
(a) By regarding V⊗EW as a symplectic space over F via the symplectic form Tr(〈−,−〉V⊗
〈−,−〉W ), one has a natural map U(V )×U(W )→ Sp(V ⊗EW ). The images of U(V )
and U(W ) commute with each other, hence we call (U(V ), U(W )) a reductive dual
pair. This natural map can be lifted to the metaplectic group level

ιχV ,χW : U(V )× U(W )→ Mp(V ⊗E W )

but this lifting is not canonical (see p.14 of Gan’s notes), so it depends on a pair
(χV , χW ) of characters of E× satisfying certain conditions.

(b) For any symplectic space S over F (in particular S = V ⊗E W in our situation) and
any nontrivial character ψ of F , we can construct the Weil representation ωψ of Mp(S),
which is in some sense one of “the smallest” infinite-dim representations (p.11 of Gan’s
notes) of Mp(S):

(i) Define the Heisenberg group H(S) = S ⊕ F of S, which has center F . Then
H(S) has a unique smooth irreducible representation ωψ with central character
ψ by Stone-von Neumann theorem. One can construct ωψ explicitly as follows:
Let S = X ⊕ Y be the Witt decomposition of S where X and Y are maximal
isotropic subspaces (i.e. 〈x, x〉 = 0 for all x ∈ X). Then H(X) = X ⊕ F is an
abelian subgroup of H(W ). One extends ψ trivially to H(X), then define ωψ

to be compact induction ind
H(S)
H(X)ψ. In particular, ωψ can be realised on C∞c (Y )

with the action of H(S) written down explicitly on p.12.
(ii) Symplectic group Sp(S) acts on H(S) by g(s, t) = (gs, t). Then the represen-

tation ωgψ = ωψ ◦ g−1 is also irreducible and has the same nontrivial central

character ωψ. Hence, the two ωgψ and ωψ are isomorphic via the isomorphism

Aψ(g) on S = C∞c (Y ). By Schur’s lemma, Aψ(g) is well-defined up to C×. As
ωψ is unitary, we can insist that Ag(ψ) is unitary, then it is well-defined up to
S1 ⊂ C×. Then we have a map Aψ : Sp(S)→ GL(S)/S1. Pulling back to GL(S),
we obtain the Weil representation ωψ : Mp(S)→ GL(S).
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(c) Pullback the Weil representation of Mp(V ⊗E W ) via the lift ιχV ,χW to get the Weil
representation Ω = ΩχV ,χW ,ψ of U(V )× U(W ).

(d) For which π ⊗ σ ∈ Irr(U(V )) × Irr(U(W )) is π ⊗ σ a quotient of Ω? To answer this
(see p.15), one can define, for π ∈ Irr(U(V )), the big theta lift

Θ(π) = (Ω⊗ π∨)U(V )

as the U(V )-coinvariant space of Ω ⊗ π∨. Because (U(V ), U(W )) is a reductive dual
pair, Θ(π) is a representation of U(W ). One should think about the role of Θ(π) as
decomposing “Ω =

⊕
π∈Irr(U(V )) π ⊗Θ(π)”, or more precisely via its functoriality

Hom U(V )×U(W )(Ω, π ⊗ σ) ∼= Hom U(W )(Θ(π), σ)

for any smooth representation σ of U(W ).
(e) Howe duality theorem (p.16 for the statement, exercise 8 lecture 2 for a proof sketch)

says that if Θ(π) is nonzero, then it has a unique irreducible quotient θ(π). And if
θ(π) ∼= θ(π′) 6= 0, then π ∼= π′. In other words, we have a map

θ : Irr(U(V ))→ Irr(U(W )) ∪ {0}
which is injective on the subset of Irr(U(V )) not sent to 0.

Our next question is when Θ(π) = 0?

(1) This is answered in terms of Rallis’s tower (p.16), i.e. essentially one consider a family of
skew-Hermitian spaces (Wr)r≥0, called Witt towers, with dimW0 = 1, Wi = Wi−1 ⊕ H,
where H denotes the hyperbolic plane, which is a Hermitian space of dimension 2 (see
p.7). Kudla showed for π ∈ Irr(U(V )), there is a smallest 0 ≤ r0 ≤ dimV such that
ΘV,Wr,ψ(π) 6= 0 for any r ≥ r0. Furthermore, if π is supercuspidal then ΘV,Wr0 ,ψ

(π) is

irreducible supercuspidal while for r > r0, ΘV,Wr,ψ(π) is irreducible but is not cuspidal. We
call r0 the first occurrence index of π in the Witt tower (Wr).

(2) In the non-Archimedean case, with a fixed dimension, there are only two nonisomorphic
skew-Hermitian spaces (p.16), implying that there are only two Witt towers of skew-
Hermitian spaces with a fixed dimension modulo 2. Let’s call them (Wr) and (W ′r). For
π ∈ Irr(U(V )), there is a relation about the first occurrence r0 and r′0 of these two towers
with respect to π by dimWr0 + dimWr′0

= 2 dimV + 2. Thus, if we know r0, we know r′0,

meaning we know which skew-Hermitian W s.t. ΘV,W,ψ(π) 6= 0.

Another question is how to describe θχV ,χW ,ψ explicitly? I think in Gan’s notes, this is answered
for the case dimV = 1, dimW = 3 (p.19, 20).

(1) First, we want to describe the Weil representation Ω of U(V )×U(W ) a bit more explicitly.
The Schrodinger model provides a way to write down the actions of some elements in Mp(S)
of the Weil representation (see p.13 of Gan’s notes). From this, one can describe the action
of some elements in U(V )× U(W ) via via the lift ιχV ,χW (see exercise 6, lecture 2 on how
to do this when V is split Hermitian of dimension 2, W is skew-Hermitian of dimension 1;
see p.19 for our case where dimW = 3,dimV = 1).

(2) Consider the Witt tower (Wr) where W1 = W . One then can show that if χ ∈ Irr(U(V )) =
Irr(U1) has nonzero theta lift to U(W0), then 0 is the first occurrence, meaning Θ(χ) is
nonzero and non-supercuspidal. Furthermore, Θ(χ) is part of a non-tempered principal
series representation, obtained by compactly inducting certain character of the Borel group
of U(W ). On the other hand, if χ has zero theta lift to U(W0), then Θ(χ) is supercuspidal.

(3) Regarding nonvanishing question, in fact Θ(χ) 6= 0 for any χ ∈ Irr(U(V )).
(4) For general V,W , I think someone said that once you are in the stable range r ≥ dimV

of the Witt tower, essentially ΘV,Wr+1,ψ(π) can be obtained from ΘV,Wr,ψ(π) by parabolic
induction.
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Last question, how is this related to local Arthur packets?

(1) First, let’s roughly explain local Arthur packets (p. 30). For split group G, a local
A-parameter is ψ : LF × SL2(C) → G∨, where LF is the Weil-Deligne group of non-
Archimedean local field F , G∨ is the complex Langlands dual group of G. One can define
Sψ = π0 (ZG∨(ψ)/Z(G∨)). To each irreducible representation η of Sψ, Arthur conjectured
that one can attach a unitarizable representation πη of G(F ). The set

Aψ = {πη : η ∈ Irr(Sψ)}
is called a local A-packet.

(2) In the case dimV = 1,dimW = 3 of our local theta correspondence, for a given χ ∈
Irr(U(V )), there is a local A-parameter ψ such that the local A-packet Aψ contains all local
theta lifts from χ ∈ Irr(U1) to Irr(U3). In this case, Sψ = Z/2, and |Aψ| = 2, corresponding
to the two theta lifts described above. See p.35 of Gan’s notes for more details.
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12. April 2022

12.1. 06/04/2022: Picard-Lefschetz formula. This is a continuation of the unfinished business
on 08/02/2022. It concerns a family of elliptic curves π : X → C sending the elliptic curve
y2 = x(x − 1)(x − t) to t. The goal back then is to describe π∗kC as a constructible sheaf with
respect to the stratification {0, 1} ∪ C\{0, 1}. To do this, it seems to me that the first step should
be to understand the monodromy representation induced from π. So this is what we are going
to focus on. For today, we will first start by describing the local monodromies, i.e. instead of
y2 = x(x − 1)(x − t), we will focus on the fibration (z, w) 7→ z2 + w2. This is where we have the
Picard-Lefschetz formula that describes the monodromy action.

The reference I used are §2, chapter 4 of Zoladek’s book The Monodromy Groups, a short notes
about Picard-Lefschetz theory by Jean-Philippe Chasse https://dms.umontreal.ca/~chasseje/

projets/alg-geo2.pdf and chapter 1 of Carlson, Muller-Stach and Peters book titled Period
Mappings and Period Domains.

12.1.1. Monodromy representation from a fibre bundle. On 08/02/2022, from a locally constant
sheaf (or local system) on a topological space X, we can obtain a (monodromy) representation of
its fundamental group π1(X). When X is locally connected, the category of local systems on X
is equivalent to the category of covering spaces on X. For instance, starting from a covering map
Y → X of X, one can take its sheaf of sections to get a local system (p. 104 Mac Lane, Saunders
Sheaves in geometry and logic : a first introduction to topos theory). Thus, from a covering map
of X, one can get a monodromy action of π1(X) on the fiber of the covering map.

More generally, given a fiber bundle f : Y → X with fiber F , one can deduce an action of
π1(X) on F , and the monodromy action is the induced representation of π1(X) on H∗(F ). We will
describe this process in this section.

Again, let f : Y → X be a fibre bundle of differential manifolds/topological spaces with
fiber F = f−1(x0) where x0 ∈ X. For a path [α] ∈ π1(X,x0), one can obtain a diffeomor-
phism/homeomorphism on F . Indeed, pullback f along α, we obtain a fiber bundle α∗Y over [0, 1]
with fiber F , hence is trivial.

α∗Y Y

[0, 1] X

f

α

We choose a trivialisation ϕ : [0, 1]× F ∼−→ α∗Y such that its restriction to {0} × F is the identity
map. Then we obtain a family of diffeomorphism/homeomorphisms ϕt := ϕ|{t}×F : F → Fα(t).
Different such trivialisations give rise to different homeomorphisms ϕ1 on F that are all homotopic
to each other. Hence, one can take homologies of these homeomorphisms to obtain a well-defined
map ρ([α]) : H∗(F ) → H∗(F ). Then ρ is a representation of π1(X,x0) on H∗(F ), called the
monodromy representation.

In geometry, a common way to get a locally trivial fibration is that if you have a proper submersive
(or proper smooth in algebraic geometry language) map of smooth manifolds (or smooth schemes)
f : Y → X. This result is called Ehresmann’s theorem.

Now, we would like to focus on a particular fibre bundle and describe its monodromy action
explicitly. Denote B2 = {(x, y) ∈ C2 : |x|2 + |y|2 ≤ 2} and D2 = {z ∈ C : |z| ≤ 2} then we
can define a map f : B2 → D2 by (z, w) 7→ z2 + w2. Note that we have a smooth submersion
f : B2\f−1(0) → D2\{0} so this is a fibre bundle. As a side note, f is a Morse function with
a critical point at (0, 0) and this is how every complex Morse function (with domain being a 2-
dimensional complex manifold) looks like locally at a critical point.
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12.1.2. Fibers of f and their homologies. Given f defined in the previous section, we would like to
describe its fibers and the homologies of the fibers. For λ ∈ D2\{0}, denote Fλ = f−1(λ) then Fλ
is the Riemann surface associated with the holomorphic function w =

√
λ− z2 over D2.

First, we will describe Fλ as a Riemann surface. Its branch points are ±
√
λ. By removing

a branch cut that connects −
√
λ and

√
λ, we obtain a domain D of z so that two copies of D

correspond to two single-valued functions on D coming from the function w =
√
λ− z2, where one

is negative of the other at the same input z. These two copies of D are open subsets of Fλ.

Figure 3. Fλ as a Riemann surface

To glue these two copies (drawn as two squares on the left of figure 12.1.2), observe that if we
analytically continued w on one copy of D along a closed path ∆ that encloses the branch cut, we
still stay in the same D. However, if analytically continued w along ∇ that passes through the
branch cut (e.g. we let z runs from −2i to 2i in the figure), we will move from one D to another as
soon as we pass the branch cut. Therefore, if we open up the branch cut into ∆, the two copies can
be glued along ∆ to create a cylinder as in figure 12.1.2. Note that in order to match ∇ correctly
and to match the branch points ±

√
λ when glueing two copies, we first need to flip one copy of D

across the real axis, as indicated in the figure.
From this, we find that the homology group H1(Fλ,Z) = Z ·∆. Furthermore, observe that the

special fiber F0 is just a cone, and the degeneration Fλ → F0 to the special fiber sending ∆ to 0
in homology. In this sense, ∆ is called a vanishing cycle corresponding to the special fiber F0 of
f : B2 → D2.

We also have ∇ is a generator of H1(Fλ, ∂Fλ) = Z, i.e. cycles in Fλ whose boundary lies in ∂Fλ.
For the later purpose of stating the Picard-Lefschetz formula, we will compute the intersection

number (∆,∇) of ∆ and ∇ as they intersect at one point. To do this, we choose an orientation of
the cylinder Fλ, which will induce an orientation on D as drawn. Then (∆,∇) = ±1 depends on
whether the two (ordered) vectors tangent to ∆ and ∇ at their intersection give an orientation of
Fλ the same as the initial orientation of Fλ or give the opposite orientation (see p.41 of Zoladek’s
Monodromy groups book). In our case, by simply looking at the orientation of ∆ and ∇ in any
diagram in the above figure, we find (∆,∇) = −1.

12.1.3. Monodromy action. Now, we would like to describe the monodromy action of π1(D2\{0})
on H1(F1) and on H1(F1, ∂F1) from the fibre bundle f : B2\f−1(0)→ D2\{0}.
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We consider the loop γ(t) = e2πit in D2 \ {0}, note that [γ] generates π1(D2 \ {0}, 1). Then we
can construct family of diffeomorphisms ϕt : F1 → Fγ(t) of the trivial bundle γ∗(B2 \ f−1(0)) on

[0, 1] by sending the z-variables to z ∈ F1 7→ z(t) = eπitχ(|z|)z, where χ is a smooth bump function
on R so χ(r) = 1 for 0 ≤ r ≤ 2 and 0 for r ≥ 3. The w-variables change continuously accordingly

to the formula w(t) = ±
√
γ(t)− z2(t). So ϕt(z, w) = (z(t), w(t)).

Observe that for large (z, w) ∈ F1 then ϕt stays constant, while for small (z, w) ∈ F1 then
ϕt(z, w) = eπit(z, w). In view of Fλ as two copies of C minus the branch cut, the points near
the cut are rotated by ϕt with velocity two times smaller than the velocity of rotation of γ. In
particular, we can see how ∆ and ∇ are deformed as in the below picture (from left to right)

Figure 4. Monodromy action around critial point 0 ∈ D2 on ∇ and ∆

We find that ∆ stays unchanged, while ∇ gets a twisted in the opposite direction of ∆. We can
describe the action homologically as

ρ([γ])∆ = ∆, ρ([γ])∇ = ∇−∆.

Figure 5. ∇ is twisted in the opposite direction of ∆
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This is the Picard-Lefschetz formula for our example. I find it is easier to see the action homo-
logically through the picture section 12.1.3.

Let me restate the Picard-Lefschetz formula by putting all the information together: Given a
locally trivial fibration f : B2 → D2 with a degeneration at 0 ∈ D2. Let ∆ ∈ H1(Fλ,Z) be
a vanishing cycle of the singular fiber F0. The monodromy action around the singular fiber is
obtained by twisting along the vanishing cycles. In particular, if the cycle ∇ intersects ∆ then the
action can be described as

∇ 7→ ∇+ (∆,∇)∆,

where (∆,∇) is the intersection number of ∆ and ∇. In our case, we know (∆,∇) = −1. Observe
that this formula is independent of the choice of orientation of ∆ (but it seems to me that it depends
on the choice of orientation of Fλ, which is something I don’t quite understand ...).

12.1.4. Some more links. Some links that have interesting things I haven’t read, i.e. the general
Picard-Lefschetz, local system corresponding to fiber bundle, etale setting, ... https://ayoucis.

wordpress.com/2015/07/24/another-basic-viewpoint-on-etale-cohomology/ https://www.

ma.imperial.ac.uk/~skdona/MCGROUP.PDF and https://math.stackexchange.com/q/2772531/

58951.
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12.2. 06/04/2022: Peter Scholze’s talk: Cohomology of algebraic varieties. Just want
to write a summary of what I learned from this talk https://youtu.be/5NPFQvdav90 of Peter
Scholze.

Consider smooth projective variety X over SpecZ (or SpecZ[1/N ] ...). The goal is to understand
“the” cohomology of X. One can take cohomology with coefficients in Z,F`,Z` and cohomology
of special fibers XFp or X(C) of X → SpecZ, e.g. H∗(XFp ,F`) is cohomology of fiber at p mod `
coefficient. So we have two parameters (p, `) for this cohomology of X.

(1) Singular cohomology H∗sing(X(C),Z) deals with fiber p =∞ and coefficients in Z, i.e. this

cohomology theory is defined for (p, `) ∈ {(∞, 2), (∞, 3), . . .}.
(2) Etale cohomology H∗et(XFp ,Z`) is defined at points (p, `) for p 6=∞ and p 6= `.

(3) For algebraic de Rham cohomology H i
dR(X), taking coefficient H i

dR(X)⊗Z Fp at Fp is the
same as taking cohomology H i

dR(XFp) over fiber with coefficient mod p. So this theory is
defined for points p = ` (including ∞).

(4) Crystalline cohomologyH∗crys(X/Zp) lives in (p, `) where ` is in a neighborhood of p (imagine
SpecZp as a open neighborhood of SpecFp).

(5) Can one fill more of this picture by more explicit cohomology theories? Bhatt-Scholze-
Morrow showed that one can fill in this diagram by a new cohomology theory with values
in “2-dim complete local ring”, i.e. the theory lives in a neighborhood of each point (p, p).

See the picture in https://terrytao.wordpress.com/2019/03/19/prismatic-cohomology/ to
see this picture a bit more clearly.
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13. June 2022

13.1. 29/06/2022: Classification of algebraic tori. The goal is to learn how to classify tori
by combinatorial data.

The main result is that there is an equivalence of categories between k-tori and finitely gener-
ated free abelian groups with a continuous action of Gk = Gal(ks/k). The references I used are
Milne’s book Affine group schemes, https://personal.math.ubc.ca/~cass/research/pdf/Red.
pdf, http://www.martinorr.name/blog/2010/01/24/character-groups-of-algebraic-tori/.
Here is what I learned so far today:

(1) We first have an equivalence of categories

{tori over F that split over E} → {split tori over E with a compatible Gal(E/F ) action}
Here, compatibility is in the sense that for an E-torus T , the action sending σ ∈ Gal(E/F ) 7→
σ ∈ Aut(T ) must satisfy the commutative diagram

T T

SpecE SpecE

σ

σ

The functor above is defined by sending an F -torus T to T ×SpecF SpecE where the action
of Gal(E/F ) on T ×SpecF SpecE is by acting on SpecE.

To define the inverse functor: Given a split torus Gr
m over E with a compatible Gal(E/F )

action σ. The corresponding torus X over F , for a F -algebra B, has its B-points X(B) is
the set of Gal(E/F )-equivariant morphisms Spec(B ⊗F E)→ Gr

m.
(2) We have an equivalence of categories between

split tori over E with a compatible Gal(E/F ) action

and

finitely generated free abelian group with an action of Gal(E/F )

The functor is defined from one to the other by sending a split E-torus T to X∗(T ), the
group of characters of T . For σ ∈ Gal(E/F ), we have an action σGm on Gm. We are also
given an action σ on T from σ, then σ acts on χ ∈ X∗(T ) by

σ ∗ χ = σGm ◦ χ ◦ σ−1

(3) Now, we would like to describe the above equivalence of categories for the real group X
defined by x2 + y2 = 1. Over C, this is isomorphic to Gm. Indeed, we have an isomorphism
C[z±1]→ C[x, y]/(x2 + y2 − 1) sending z 7→ x+ iy.

Let σ ∈ Gal(C/R) = Z/2 be the conjugation on C. The action of σ on XC is by
σ : C[x, y]/(x2 + y2 − 1)→ C[x, y]/(x2 + y2 − 1), sending x to x, y to y, 1 to 1 and i to −i.
Similarly for the action of σ on Gm, i.e. C[z±1]→ C[z±1] by just taking conjugation on C.

We will now describe the action of σ on X∗(XC) = Z. As XC ∼= Gm, we can consider the
character 1 : C[z±1]→ C[z±1] sending z 7→ z. Then by the above formula, we find σ sends
1 to −1 ∈ Z, i.e. the character on XC ∼= Gm sending z 7→ z−1 on C[z±1].

Conversely, if we are given an action of Gal(E/F ) = Z/2 on Z where conjugation σ ∈
Gal(E/F ) sends 1 to −1, we would like to find the corresponding torus T over F . First, we
will find the action of Gal(E/F ) on the split torus Gm over E. Let X∗(Gm) = Z generated
by χ : E[z±] → E[z±] that sends z 7→ z. Then we know σ ∗ χ = χ−1 as σ sends 1 ∈ Z to
−1. From here, we find that σ acts on Gm by σ(z) = z−1 and σ(e) = σ(e) for e ∈ E. Now,
the torus T over F that corresponds to this torus Gm has its F -points being the set of all
Z/2-equivariant morphisms E[z±] → E. This morphism E[z±] → E is determined by the
image of z in E×, the conjugation action σ tells us that T (F ) = {t ∈ E× : t−1 = σ(t)}.
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14. September 2022

14.1. 01/09/2022: Spectral sequence. Today I learned about spectral sequences, in particular,
Serre spectral sequence and its applications. I learned this from great lectures of Clover May, avail-
able on youtube https://youtube.com/playlist?list=PLwKdCQGFDsilSxtnDfgP4tJ8SE1So1ecS.
She has a very nice voice, and if you feel slow, you can speed up the video. By the way, I learned
a bit about spectral sequences on 17/12/2021.

14.1.1. Spectral sequences (SS). A motivation for spectral sequences in topology is as follows: We
want to compute (co)homology for a nice topological space X. If we have a CW pair A ↪→ X, we
can get a short exact sequence (SES) of chain complexes 0 → C∗(A) → C∗(X) → C∗(X,A) → 0,
hence inducing long exact sequences (LES) in (co)homology

· · · → Hn(A)→ Hn(X)→ Hn(X,A) = H̃n(X/A)→ Hn−1(A)→ · · ·

which helps to compute H∗(X) from A and X/A (here H̃n is the reduced homology). To extend
this technique further, when we have a filtration of X, e.g. A0 ↪→ A1 ↪→ X, we want to combine
two LESs from A0 ↪→ A1 and A1 ↪→ X to know about H∗(X). This is the purpose of spectral
sequences (roughly understood as lots of LESs sewn together).

A cohomological spectral sequence (of R-modules) is a sequence of bigraded R-modules Ep,qr where

r ≥ 1, (p, q) ∈ Z2 together with differentials dr : Ep,qr → Ep+r,q−r+1
r such that d2

r = 0 (we say dr of
bidegree (r,−r + 1)). And Er+1 = H∗,∗(Er, dr), i.e.

Ep,qr+1 = ker(dr : Ep,qr → Ep+r,q−r+1
r )/im(dr : Ep−r,q+r−1

r → Ep,qr ).

A diagram to visualise the differentials on each page r (drawn for first quadrant spectral sequence,
i.e. Ep,qr = 0 for p < 0 or q < 0).

Let E∞ = colimr Er. We say the spectral sequence converges to the graded R-module M∗ and
we write Ep,qr =⇒ Mp+q if

(1) For each (p, q) there exists an r0 so that dp,qr = 0 for r ≥ r0 (equivalently, Ep,qr+1 is a quotient

of Ep,qr for r ≥ r0),

(2) There is a filtration of M∗ so that for each n, Ep,n−p∞ = limr E
p,n−p
r is isomorphic to the

associated graded module Gr(M∗)n. (To make more sense of this: For a filtered module
M , e.g. · · ·F−1M ⊆ F0M ⊆ F1M ⊆ · · · ⊆ M , one can define a graded module Gr(M) by
Grn(M) = FnM/Fn−1M . One should view Gr(M) as an approximation of M , but we are
left with some extension problems to fully determine M from Gr(M)).
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The point here is that if we are interested in M∗ (e.g. M∗ can be H∗(X) of some space X), and if
we know a spectral sequence that converges to M∗, then the E∞-page will tell us more about M∗.

For homological SS, the differential has bidegree (−r, r− 1) and we denote the bigraded module
as Erp,q. And everything else looks similar to cohomological SS.

14.1.2. Construct SSs associated to a filtration of space. Let X be a CW complex with a filtration
∅ = X−1 ⊆ X0 ⊆ · · · ⊆ X (for example, one can consider cellular filtration of X where Xn is
n-skeleton). Each inclusion Xp−1 ↪→ Xp induces a LES of homologies

· · · → Hn(Xp)→ Hn(Xp, Xp−1)→ Hn−1(Xp−1)→ Hn−1(Xp)→ Hn−1(Xp, Xp−1)→ · · ·

and we will sew all these LES’s together as below

Figure 6. Sewing all LESs coming from inclusions Xp−1 ⊆ Xp

The claim is that there is a homological spectral sequence of the form

E1
p,q = Hp+q(Xp, Xp−1) =⇒ Hp+q(X)

To see this, we denote the maps j, k, i as in figure 6.

(1) Define E1
p,q := Hp+q(Xp, Xp−1). The differential

d1 : Hp+q(Xp, Xp−1) = E1
p,q → Hp+q−1(Xp−1, Xp−2) = E1

p−1,q

is defined by d1 = jk as in fig. 6. Check (d1)2 = jkjk = j(kj)k = 0.
(2) Let E2

p,q := ker(d1)/im(d1). Now we determine d2 : E2
p,q → E2

p−2,q+1. Let n = p + q, if we

have a ∈ E1
p,q = Hn(Xp, Xp−1) so d1(a) = 0 then k(a) ∈ ker j. By LES in the figure, there

is b ∈ Hn−1(Xp−2) so i(b) = k(a). Then j(b) ∈ ker(d1
p−2,q+1) (as d1j(b) = jkj(b) = 0) and

we define d2(a) := j(b). One needs to check that this definition is well-defined, i.e. does
not depend on choice of a, b. Intuitively, d1(a) “=” ji−1k(a).

(3) One defines dr with the same idea, i.e. dr+1“=” j(i−1)rk.

One can also construct cohomological SS converging to cohomology H∗(X) similar to the above.
There are other ways to arrive at the same SS. For example, from a (cellular) filtration of X, we

can get a filtration of the (co)chain complexes C∗(X), i.e. · · · ⊆ C∗(X−1) ⊆ C∗(X0) ⊆ · · · ⊆ C∗(X),
making C∗(X) into a filtered differential graded module. And for any such module A, one can
construct a SS converging to H∗(A). Another way is to use “exact couple” as described in Clover
May’s videos.
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14.1.3. More to learn. I want to learn more about Serre spectral sequence and examples of com-
putations of (Serre) spectral sequences by watching Clover May’s videos, at some point in the
future.

14.2. 19/09/2022: Examples of homotopy (co)limits. I first learned about homotopy (co)limits
from a talk given by Alvaro. The references I used are https://blog.thjread.com/posts/

2021-09-01-learn-homotopy-colimits.html and A Gentle Introduction on Homotopy Limits
and Colimits (Pascal Lambrecht) (https://mysite.science.uottawa.ca/pjacqmin/PrimerHolimHocolim-19sept2013.
pdf).

Given a diagram D : I → Top to the category of topological spaces, one can take (co)limits of this
diagram. But if we replace every object D(i) by their weak equivalences then the corresponding
(co)limits need not be weakly equivalent (i.e. the induced map on the homotopy groups πn is
bijective) to the original (co)limits (I will give an example of this below). Our purpose is then to
define a notion of (co)limits that are well-defined up to weak equivalence, and call it “homotopic
(co)limits”.

14.2.1. Homotopy limit of pullback. First, let us recall the construction of limit for the following
diagram D : I → Top in the category of topological spaces

C

B A

f

g

Its pullback is given by B ×A C = {(b, c) ∈ B × C : f(c) = g(b)}, which satisfies the universal
property as a limit of the above diagram.

Now, let us specify to the diagram {0} ↪→ [0, 1] ←↩ {1}, then by the formula above, the corre-
sponding limit is the empty topological space. If we replace the objects of this diagram by their
weak equivalences, i.e. we consider the pullback of ∗ ↪→ ∗ ←↩ ∗, and by replacing, it means we have
a commutative diagram

{0} [0, 1] {1}

∗ ∗ ∗
where the vertical maps are homotopy equivalences. The pullback of ∗ ↪→ ∗ ←↩ ∗ is the one-
point space, which is not weakly equivalent to the empty space. Thus, our definition of limit of a
diagram D : I → Top is not the correct notion of limit if we want to detect everything up to weak
equivalence.

Instead, we can define the following space

holimD = {(b, c, γ) ∈ B × C ×A[0,1] : g(b) = γ(0), f(c) = γ(1)},
topologised as a subspace of B × C × A[0,1], where A[0,1] is the space of all paths in A with the
compact open topology. That is, its points corresponds to a point b ∈ B, a point c ∈ C, and a path
in A from g(b) to f(c). Note that instead of the equality constraint f(b) = g(c) in the definition of
pullback, we replace this with the data of a path from f(b) to g(c).

This space is invariant with respect to weak homotopy equivalences: If we have another diagram
D′ : I → Top and a natural transformation α : D → D′ such that α(i) is a weak homotopy
equivalence for every object i ∈ I, then there is a weak equivalence between holimD and holimD′.
So holimD is our desired space to work with.

In fact, homotopy limit exists for any diagram D : I → Top in the category of topological spaces
(check out the references mentioned in this notes). One can also define this to any category with
a notion of weak equivalences (for example, category of R-modules).
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Is homotopy limit unique, i.e. does holimD has a universal property? The answer, from what
people tell me, is yes, but only when you are in certain infinity category, then the notion of homotopy
limit is just the usual limit in that category. And our construction above of holimD, is just a model
of ‘the’ homotopy limit (in that infinity category). In other words, there are many ways to construct
holimD that satisfies the invariant property under weak equivalence, for example, we can replace
[0, 1] in our definition of holimD by any contractible space Z with two fixed points (corresponding
to 0 and 1 in [0, 1]).

There is an interesting analogy I learned from https://pages.uoregon.edu/ddugger/hocolim.

pdf, p.30, is that one should think of homotopy limit as a derived functor of the limit. What I
mean is that given a diagram D : I → Top, there is a way to construct homotopy limit of D by
first replacing D with an equivalent (but nicer) diagram QD : I → Top (so that QD(i) ' D(i) for
each i) then take the ordinary limit of QD. One should think of QD as a resolution of D. In the
example above, with our model of D, the corresponding diagram QD is

Pf :C→A

Pg:B→A A

f∗

g∗

Here Pf = {(c, α) ∈ C × A[0,1] : α(0) = f(c)} and f∗(c, α) = α(1). Observe that by taking the
ordinary limit of this diagram, we obtain a space that is weakly equivalent to holimD.

14.2.2. Homotopy colimit of pushout. Let us do another example. Consider the diagram D = {• ←
• → •} in the category of topological spaces. Our goal is to give a model for the homotopy colimit
of this pushout.

Recall the usual colimit is

A B

C (B t C)/ ∼

f

g

where the equivalence relation in (B t C)/ ∼ is f(a) ∼ g(a). To construct homotopy colimit, we
use the same idea as in the construction of homotopy limit of pullback, instead of identifying f(a)
and g(a) to be the same, we give a path from f(a) to g(a) in our construction of homotopy colimit.
Hence, we can consider

hocolimD = (B tA× I t C) / ∼

where ∼ is generated by f(a) ∼ (a, 0) and g(a) ∼ (a, 1) for a ∈ A. There is an intuitive way to
draw hocolimD as in the diagram below. In other words, instead of glueing B and C by identifying

f(a) with g(a) as in taking colimit, we glue B and C by a path created by A.
Similarly to the homotopy limit, what would be a resolution QD of D in order to compute

homotopy colimit? Note that hocolimD is obtained by glueing X ∪A× [0, 1/2] with Y ∪A× [1/2, 1]
via A× 1/2, which suggests QD to be
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A Mf

Mg

f∗

g∗

where Mf = ([0, 1]×A tB) / ∼ is the mapping cylinder of f : A → B, with ∼ is generated by
(0, a) ∼ f(a) for a ∈ A. By taking the ordinary colimit of QD, we obtain hocolimD.

14.2.3. More questions. Need to check out more examples. An interesting one I found from Lam-
brecht’s notes is that if our diagram corresponds to the one-point category associated to a discrete
group G, and X a G-space, then

• colimD = X/G the orbit space,
• hocolimD = EG×GX is the Borel construction, where EG is a contractible space on which
G acts freely
• limD = XG the space of fixed points,
• holim = MapG(EG,X) the space of G-equivariant maps from EG to X.

Need to make sense of this example ...
How to make sense of the analogy of homotopy (co)limits as derived functors of (co)limits? What

is the setting of this object in the infinity category?

14.3. 23/09/2022: Some motivations to learn higher algebra and ∞-categories. I just
want to write down a motivation for me to learn higher algebra and all the ∞ categories language.

(1) There seems to be a notion of traces as in this paper https://arxiv.org/pdf/1305.7175.
pdf by David Ben-Zvi and David Nadler, which seems to have many applications. For
instance, one can recover Frobenius-Weyl character formulas, Atiyah-Bott-Lefschetz fixed
points formula, Grothendieck-Riemann-Roch theorems (see the paper above and https://

arxiv.org/pdf/1607.06345.pdf). In this paper https://arxiv.org/abs/2102.07906,
taking trace gives you the space of automorphic functions. A glimse shot I learned from a
talk by Nick Rozenblyum, one of the authors for the above papers:

For a finite dimensional vector space V over a field k, one can compute the trace of
f ∈ End(V ) by computing the following endomorphism in End(k):

k V ⊗k V ∗ V ⊗ V ∗ k
ηV f⊗id εV

where εV is the natural evaluation map, where the coevaluation map ηV is defined by
identifying V ⊗ V ∗ ∼= End(V ) via v ⊗ f 7→ (w 7→ vf(w)), then ηV (c) = c · idV .

Similarly, for a scheme X 23, f ∈ End(X), then one can compute the trace of f∗ :
QCoh(X)→ QCoh(X) in the category of quasi-coherent sheaves on X. We start with the
category of correspondences between schemes, i.e. objects are diagram

Z

X Y

f g

which induces g∗f
∗ : QCoh(X)→ QCoh(Y ). Then given f ∈ End(X), from maps between

correspondences

23actually, there are much more adjectives than just scheme for it to be precise, but I don’t understand any of these
adjectives, so allow me to write something incorrect to portray the idea
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X X ×X X

pt X ×X X ×X pt

∆

id

f⊗id

∆

to induce the trace map. And the claim is that

tr(f∗,QCoh(X)) ∼= Γ(OXf ),

where Xf is the derived fixed points of X. This formula seems to have many applications.
If one specifies X to be a stack over Fq, f is the Frobenius, X = BunG then somehow one
recovers the space of automorphic functions by taking trace.

(2) To understand the formulation of categorical Langlands correspondences.
(3) Proof of Weil’s conjecture for Tamawaga numbers over function fields by Lurie and Gaits-

gory, factorisation homology.

With this motivation in mind, I would like to try to have a look at https://people.math.harvard.
edu/~gaitsgde/GL/HA.pdf, which is I.1. of a book by D. Gaitsgory and N. Rozenblyum, called
A study in derived algebraic geometry. Actually, if this reference is too hard, see our also my
discussions on 05/10/2021, I think the references mentioned there are easier to read.

14.4. 25/09/2022: A consequence of implicit function theorem. I learned a very interesting
corollary of the implicit function theorem. The claim is that for any smooth scheme X over k, where
k = R or C or even Qp (over these fields, we have notions of k-analytic functions/manifolds and
implicit function theorem holds for these fields), then X(k) has a structure of a k-analytic manifold.

Because smooth scheme are covered by smooth affine schemes, it suffices to construct k-analytic
structure on X(k) = {x ∈ kn : f1(x) = . . . = fn−d(x) = 0}, where (∂fi/∂tj)(x) has rank n − d for
any x ∈ X(k).

We consider function F : kn → kn−d by F = (f1, . . . , fn−d), and we will construct a chart of x0 ∈
X(k). Indeed, by implicit function theorem for F , by rearranging the coordinates ti appropriately
(so that ((∂fi/∂tj)(x0))d+1≤j≤n is invertible), there is a k-analytic function g : U → V , where U, V

are open sets of kd and kn−d, respectively, so that x0 ∈ U × V , and

{(x, g(x)) : x ∈ U} = {(x, y) ∈ U × V : F (x, y) = 0}

Hence, we can define a chart for x0 ∈ X(k) by the projection map U × V ∩ X(k) → U , which
is certainly a homeomorphism with invere u ∈ U 7→ (u, g(u)). The chart-compatibility conditions
follow from the fact that g is k-analytic. Thus, X(k) carries a structure of a k-analytic manifold of
dimension d.

Furthermore, this k-analytic structure is functorial, see p.32 of my undergraduate thesis https:
//toanqpham.github.io/Tamagawa.pdf.

14.5. 28/09/2022: A definition infinity categories. Given the motivation from 23/09/2022,
I would like to write down what I learned about infinity categories from section 2.1 of the book
Weil’s Conjecture for Function Fields I by Gaitsgory and Lurie. The goal is to explain a motivation
for the use of infinity categories, to write down a definition of this, and to digest this definition.

14.5.1. Deficiency of ordinary derived category. A motivation: Given an abelian category, for ex-
ample, the category Ch(R) of chain complexes of R-modules, then its derived category D(R) (see
28/11/2021), a very important category in doing topology, is not well-behaved from a categorical
point of view, i.e. it does not generally have (co)limits. For example, a morphism f : X → Y
in this category does not generally have a cokernel. However, we have a substitute: there is an
object Cone(f) ∈ D(R), called the cone of f , which behaves like a cokernel: every map g : Y → Z
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such that g ◦ f = 0 factors through Cone(f), although the factorisation is not unique. This object
Cone(f) is well-defined up to isomorphism, but not up to canonical isomorphism.

The categorical issues, as argued on section 2.1.1 of Lurie and Gaitsgory’s book, is that in D(R),
we can identify when two morphisms are chain-homotopic, without remembering how they are
chain-homotopic.

14.5.2. A definition of infinity category. We start off with the definition of a simplicial set, which
can be seen as a building bridge between topology and ordinary category theory.

A simplicial set X• consists of the following data:

• For every integer n ≥ 0, a set Xn whose elements called n-simplicies.
• For every nondecreasing map of finite sets α : {0, . . . ,m} → {0, . . . , n}, a map of sets
α∗ : Xn → Xm. This is required to be compatible with composition: id∗(x) = x and
(α ◦ β)∗(x) = β∗(α∗(x)) for composable nondecreasing maps α and β.

Another way to describe X• is as a functor X : ∆op → Set. Here ∆ is the simplex category,
whose objects are [n] = {0, . . . , n} and morphisms are nondecreasing maps. Then Xn = X([n]).
We denote sSet to be the category of simplicial sets. The representable objects in sSet are called
standard simplex and denoted ∆n := Hom∆(−, [n]). For example, ∆2 can be viewed geometrically
as a triangle with 3 vertices 0, 1, 2 coming from (∆2)0, with 3 edges from (∆2)1, and with a face
from (∆2)2.

• Given a topological space X, one can construct a simplicial set Sing(X), called the singular
simplicial set of X, by letting Singn(X) = HomTop(|∆n|, X) where |∆n| := {(x0, . . . , xn) ∈
[0, 1]n+1 : x0 + · · · + xn ≤ 1}. The functor Sing : Top → sSet admits a left adjoint,
called geometric realisation. There is a notion of weak equivalence so that the adjoint
functors induce an equivalence of respect localizations of these categories with respect to
weak equivalence. Hence, in some sense, we lose no information when working with the
simplicial set Sing(X) instead of X.
• Given a category C, one can define a fully faithful functor N : Cat → sSet as follows. For

a category C, N(C) is a simplicial set whose n-simplicies are given by chains of composable
morphisms

C0 → C1 → · · · → Cn

in C. We refer to N(C) as the nerve of C. Hence, the simplicial set N(C) determines C up
to isomorphism.

One would like to ask, which simplicial sets arise as nerve of some category or as the singular
simplicial set of some topological space? To answer both these questions, we are lead to a definition.

For 0 ≤ i ≤ n, the (n, i)-th horn Λni is a simplicial set with k-simplicies given by

(Λni )k = {f ∈ Hom∆([k], [n]) : [n] \ {i} 6⊂ f([k])}.

Geometrically, the (n, i)-th horn is obtained by removing an interior and a face of ∆n. For example,
n = 2, i = 1, (Λ2

1)0 describes three 0-simplices 0, 1, 2; (Λ2
1)1 describes two faces 01, 12 (here face 02

is removed); (Λ2
1)k for k ≥ 2 has no 2-simplex in it, hence no interior. We can draw out Λ2

1 as

1

0 2

We have a natural inclusion Λni ↪→ ∆n. For a simplicial set X, we have a natural restriction map

Xn = HomsSet(∆
n, X)→ Λni (X) = HomsSet(Λ

n
i , X)

Now, back to our question:
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• X is isomorphic to the nerve of a category iff for each 0 < i < n, the map Xn → Λni (X) is
bijective. For example, the bijectivity of the map X2 → Λ2

1(X) encodes the existence and
uniqueness of composition in a category, i.e. every morphisms f : C → D and g : D → E
can be completed uniquely into a commutative diagram

D

C E

gf

h

• We say X is a Kan complex if for 0 ≤ i ≤ n, the map Xn → Λni (X) is surjective (i.e.
every element in Λni (X) can be extended to an n-simplex of X). Then the functor Sing
induces an equivalence from the homotopy category of nice spaces (say, CW complexes) to
the homotopy category of Kan complexes.

Thus, we are now motivated enough to define an ∞-category as a simplicial set X that satisfies
the weak Kan condition, i.e. for each 0 < i < n, the map Xn → Λni (X) is surjective. In this
sense, ∞-categories allow us to treat topological spaces (via their singular simplicial sets) and and
ordinary categories (via their nerves) as examples of same type of object.

14.5.3. A digestion of the definition. We have defined an ∞-category as a simplicial set satisfying
weak Kan condition. But why do we call this a category?

Let C be an ∞-category.

• An object of C is an element of C0, denoted x ∈ C0.
• A morphism of C is an element of C1. We say f is a morphism from x to y if α∗0(f) = x and
α∗1(f) = y, where αi : [0]→ [1] denotes the map given by αi(0) = i. For x ∈ C, the identity
morphism idx is given by β∗(x) where β : [1]→ [0] is the unique map.
• Given pair of morphisms f, g : x → y in C, we say f and g are homotopic if there exists a

2-simplex σ ∈ C2 whose faces are indicated in the diagram

y

x y

idyf

g

We will write f ' g.
• Given a pair of morphisms f : x→ y and g : y → z, the weak Kan condition says that their

exists a 2-simplex with boundary as indicated

y

x z

gf

h

The weak Kan condition does not guarantee that h is unique, but one can show that h
is unique up to homotopy (i.e. given another h′, we can draw a tetrahedron with vertices
x, y, z, z and faces coming from given conditions for h and h′).
• Composition of morphisms in C is associative up to homotopy. Consequently, we can define

an ordinary category hC, called the homotopy category of C, as follows: objects of hC are
objects of C; morphisms from x to y in hC are equivalence classes under homotopy of
morphisms from x to y in C. We say that a morphism f : x → y in C is an equivalence if
its image [f ] in hC is an isomorphism, and we say x and y are equivalent.
• There is a notion of n-morphisms in C for n ≥ 0. We have described 0-morphisms as

objects of C and 1-morphisms as morphisms of C. For n = 2, a 2-morphism α : f → g from
1-morphisms f, g : x→ y is a 2-simplex whose faces are given by
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x

y y

gf

idy

One can show that, 2-morphisms in C are invertible. In fact, all n-morphisms in C where
n ≥ 2, are invertible. This is why ∞-categories are also referred as (∞, 1)-categories.
• For ∞-categories C and D, a functor from C to D is a map of simplicial sets from C to
D. One can turn the collection of functors Fun(C,D) into an ∞-category. First, it is a
simplicial set with n-simplicies given by Hom(C,D)n = HomsSet(∆

n × C,D). Second, one
can show that this simplicial set satisfies the weak Kan condition for any ∞-category D

and any simplicial set C.
• We say that a functor F : C→ D is an equivalence of ∞-categories if there exists a functor
G : D→ C so F ◦G is equivalent to identity functor idD, where both viewed as elements in
the ∞-category Fun(D,D); and G ◦ F is equivalent to the identity functor idC, where both
viewed as elements of Fun(C,C).

14.5.4. Some interesting examples.

(1) Let Z be a topological space and C be an ordinary category. A functor from Sing(Z) to
N(C) consists of the following data
(a) For each point z ∈ Z, an object Cz ∈ C.
(b) For every path p : [0, 1] → Z, a morphism αp : Cp(0) → Cp(1), which is an identity

morphism of p is constant.
(c) For every continuous map |∆2| → Z, which we write formally as

y

x z

qp

r

we have αr = αq ◦αp. Furthermore, this condition says αp depends only on the homo-
topy class of p, and that the construction p 7→ αp is compatible with the concatenation
of paths, and that each of the map αp is an isomorphism (since every path is invertible
up to homotopy).

Thus, the date of a functor from Sing(Z) to NC recovers the classical notion of a local
system on Z with values in C (see 08/02/2022).

(2) Let R be a commutative ring, one can construct an ∞-category ModR, called the derived
∞-category of R-modules (see p. 77 or construction 2.1.2.1 of the aforementioned book).
The homotopy of ModR is equivalent to the ordinary derived category D(R) of R-modules.

14.5.5. Questions and more things to learn.

(1) How to define (co)limits for ∞-categories, define sheaf on ModR, how to see stable ∞-
categories as triangulated categories, ...

(2) Digest the construction of ModR, why do we need projective complexes in the definition?
how exactly does using ∞-category help, in particular for this example?

(3) More places to learn: see cat theory folder...
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15. October 2022

15.1. 09/10/2022: Spectrum. Today I learned about spectrum from Luqiao’s talk. This is an
introductory talk so many technical details are left out, so what I write here may not be completely
precise (for example, topological space vs pointed topological spaces), but it should illustrate the
general idea.

(1) A generalised cohomology theory is a sequence of functors hi from the category of pairs
(X,A) of topological spaces where A is a subspace of X to the category of R-modules that
satisfy the Eilenberg-Steenrod axioms except the dimension axiom.

(2) Brown representability’s theorem says that such functor is representable, i.e. there exists
spaces Ei such that there is an isomorphism hi(X) ∼= [X,Ei], where [X,En] is the set of
equivalence classes of continuous maps from X to En up to homotopy. When hi is the
singular cohomology H i(·,Z) with coefficients in Z, the correponding space K(Z, i) is called
the Eilenberg-MacLance space.

(3) One has En is homotopy equivalent to ΩEn+1, where ΩX := HomTop(S1, X) is the loop
space of X with the compact-open topology, making it satisfy π0Ω(X) = π1(X), i.e. two
homotopic paths in X should lie in the same path-connected components of Ω(X). A
collection of pointed/based topological space satisfying this property is called spectrum. Q:
How do one obtain this property from the Eilenberg-Steenrod axioms? Luqiao mentioned
this gives a group structure on [X,Ei], and then hi(X) ∼= [X,Ei] is an isomorphism of
groups, but how to see the group structure?

(4) One of the purpose for the introduction of spectrum is to compare different cohomology
theories. In particular, if we have an isomorphism between two spectrums then their corre-
sponding cohomology theories give the same invariant for topological spaces.

(5) One can obtain the exactness axiom in the Eilenberg-Steenrod axioms from spectrum: Given
a pair (X,A) of spaces where A is a subspace of X, then the sequence A ↪→ X → X/A
is an instance of a cofiber sequence, where X/A is called the homotopy cofiber, i.e. X/A is
the homotopy pushout of ∗ ← A → X (intuitively, cofiber of f : X → Y is obtained by
squashing f(X) ⊂ Y to a point in Y , and fiber of f is obtained by identity the fibers f−1(y)
as a point in X). One obtain the following sequence

A
f−→ X → X/A→ ΣA

Σf−−→ ΣX → ΣX/A→ Σ2A
Σ2f−−→ Σ2X → · · ·

Here ΣX := S1 ∧ X is the suspension of X, and the functor Σ is left adjoint to Ω in the
category of pointed spaces. Q: This is not copied completely from Luqiao’s talk, so I am
uncertain whether what I try to write down here is correct or not, e.g. is X/A is really
homotopy(!) cofiber? What is the map X/A → ΣA? One can apply Hom(−, E0) to this
sequence and use the adjunction (Σ,Ω) to obtain long exact sequence in cohomology for
the inclusion A ↪→ X.

To do: read more, for example https://etale.site/writing/an-introduction-to-spectra.
pdf.

15.2. 20/10/2022: Example of ramification for curves from MSE. This is a nice example
about ramification phenomenon https://math.stackexchange.com/a/151111/58951, indicating
how factorisation of your polynomial p(v, w) ∈ C[v, w] relates to ramification index.
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16. November 2022

16.1. 24/11/2022: Modular forms I: Complex structure of modular curves. These past
days I read the introductory section of Milne’s book Modular Functions and Modular Forms. I
really enjoy the way he motivated the study of modular forms from the point of view of complex
geometry. Before this, modular forms/curves appear to me as objects with very complicated and
unmotivated definitions. It is probably because I tried to learn this without much knowledge about
Riemann surfaces.

16.1.1. Classifying Riemann surfaces. A classical problem in complex geometry is to classify all
connected Riemann surfaces X, i.e. one-dimensional complex manifolds, up to biholomorphisms
(or equivalently, up to conformally equivalence).

Topologically, X admits a universal covering p : X̃ → X i.e. X̃ is a connected, simply connected
topological manifold and p is a covering map (see [Fors, theorem 5.3]). Because p is a local home-

omorphism, one can endow X̃ with a complex structure so that p is holomorphic. Consequently,

the covering transformations of p are biholomorphims of X̃, which together form a discrete sub-

group Γ of Aut(X̃), group of all biholomorphic automorphisms of X̃ 24. We also know that X is

homeomorphic to Γ\X̃ 25. Furthermore, Γ has a covering space action 26 on X̃ in the following
sense

Proposition 32. ([Lee2011, p.311]) Let E,X be topological spaces and p : E → X be a covering
map. The action of Γ, the group of covering transformations of p, on E satisfies the following
property: every e ∈ E has a neighborhood U such that U ∩ gU = ∅ for each g ∈ Γ unless g = 1.

The converse also holds. If we are given a topological space E and a group Γ acts on E with the
above property, then the quotient map E → Γ\E is a covering map.

Once we have a covering space action Γ on a Riemann surface X̃, we can equip Γ\X̃ with a

unique complex structure such that π : X̃ → Γ\X̃ is holomorphic. Indeed, for any x ∈ X̃, there
is open U such that γU ∩ U = ∅ for all γ 6= 1 in Γ, implying the map π|U : U → π(U) is a

homeomorphism. We can then take this to be coordinate charts for Γ\X̃.

Our question is then for which discrete subgroups Γ of Aut(X̃) that has a covering space action.
On the other hand, the uniformisation theorem says that every simply connected Riemann surface

X̃ is isomorphic to the Riemann sphere P1, C or the open unit disk D = {z ∈ C : |z| < 1}. Here is
a brief classification of connected Riemann surfaces based on this idea 27

• If X̃ = P1 then Aut(P1) = PSL2(C) via taking Mobius/linear transformations. Every
Mobius tranformation has a fixed point, hence every subgroup Γ of Aut(P1) does not act
freely on P1 (note that covering space action is a free action), except Γ = 1. Hence, every
connected Riemann surface X which admits universal cover P1 must be P1 itself.

24Here, we equip Aut(X̃) with the compact open topology. To show discreteness of Γ, we show {id} map is open in

Γ. Let y ∈ X̃ and x = p(y). We know there is open U of x so that p−1(U) =
⊔
i Vi where y ∈ Vi for some i. Consider

open neighborhood V = {f ∈ Γ|f({y}) ⊂ Vi} of id in Γ. Note that f({y}) ⊂ Vi ∩ p−1(p({x}) = {x}, and by unique
lifting property [Lee2011, p.294], we find V = {id}, as desired
25We can define Γ\X̃ → X by [x] 7→ p(x) for x ∈ X̃. The map is well-defined since Γ is the covering transformations

group. It is open and continuous since p factors through this map, while p, a local homeomorphism, and π : X̃ → Γ\X̃
are both open maps. It is surjective since p is surjective. It is injective since if p(x) = p(y) for x, y ∈ X̃ then there is
g ∈ Γ so gx = y, following [Lee2011, Theorem 11.40(a)]
26Some references, such as Munkres’ Topology section 81, would refer to this as ‘properly discontinuous action’, but
this is very ambiguous definition, i.e. see https://mathoverflow.net/q/55726/89665. So we will go with‘covering
space action’, as used in Lee’s book and Hatcher’s Algebraic Topology
27We refer to https://willierushrush.github.io/posts/2020/07/classification/ for more details
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• If X̃ = C, as the group of all biholomorphic maps on C is Aut(C) = {az+b : a, b ∈ C, a 6= 0},
one can show that X is isomorphic to either C, C/Z ∼= C× (z 7→ e2πiz) or a complex torus
C/Λ where Λ is a lattice in C. Note that there are infinitely many non-isomorphic complex
structure on the complex torus, depending on the lattice.

• If X̃ = D, the open unit disk. Since D is biholomorphic to the complex upper half plane
H via the Cayley transform z ∈ H 7→ z−i

z+i , for convenience, we will work with H over D.

One can show that Aut(H) is SL2(R)/{±1}, as in the below proposition. There are many
more discrete subgroups of SL2(R) with covering space action. Let us give some examples
of connected Riemann surfaces with universal cover H: any compact Riemann surface of
genus g ≥ 2, two-punctured plane, annulus, punctured torus.

Proposition 33. We have a continuous transitive action of SL2(R) on H as follows

SL2(R)×H→ H,
(
a b
c d

)
· z =

az + b

cz + d

(a) The action of SL2(R) on H induces an isomorphism SL2(R)/{±1} → Aut(H) (the group of
biholomorphic automorphisms of H).

(b) The stabilizer of i is SO2(R), and the map

SL2(R)/ SO2(R)→ H, α · SO2(R) 7→ α(i)

is a homeomorphism.

Proof. We refer to [Mil2017, p.25] for the proof. �

In number theory, we are mainly interested in Riemann surfaces of the form Γ\H, where Γ is a
discrete subgroup of SL2(R). The most important examples are the full modular group Γ = SL2(Z)
and its subgroups of finite indices, for example, Γ(N) = {x ∈ SL2(Z) : x ≡ 1 (mod N)}, the
principal congruent subgroup of level N . As a first indication on why these objects are interesting
to study: SL2(Z)\H is in bijection with different complex structures of the complex torus.

16.1.2. Complex structure on Γ\H. Let Γ be a discrete subgroup of SL2(R). Our goal is to define
a complex structure on Γ\H. To achieve this, we want to associate to each point in Γ\H, an open
neighborhood that is homeomorphic to an open subset of C. Our first step to this is the following
proposition

Proposition 34 ( [Mil2017], Proposition 2.5). The group Γ acts properly on H, i.e. the map Γ×
H→ H×H, defined by (γ, x) 7→ (x, γx), is proper (preimage of compact is compact). Consequently,
we have

(a) For every x ∈ H, Γx := {γ ∈ Γ : γx = x} is finite.
(b) For any x ∈ H, there is a neighborhood U of x with the following property: if γ ∈ Γ and

γU ∩ U 6= ∅ then γx = x.
(c) For any points x and y ∈ H that are not in the same Γ-orbit, there exists neighborhoods U

of x and V of y such that γU ∩ V = ∅ for all y ∈ Γ.

Proof. To see that Γ × H → H × H is proper, we only need to show that the set S = {γ ∈ Γ :
γA ∩B 6= ∅} is finite for any compact subsets A,B of H. Properness for the map is then followed
as the preimage of A× B under this map is a finite union of compacts {γ} × (A ∩ γ−1B) over all
γ ∈ S.

Because SL2(R) acts on H with compact stabilizer SO2(R) for the point i (and hence for any
other points), the map p : SL2(R) → H, defined by g 7→ gi, is proper. Suppose γA ∩ B 6= ∅ for
γ ∈ Γ, then γ(p−1A)∩p−1B 6= ∅, implying γ ∈ Γ∩(p−1B)(p−1A)−1. This last set is the intersection
of a discrete set with a compact set, hence is finite.
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(a) From our previous argument, we know that for every x ∈ H, the map p : SL2(R) → H,
defined by p(g) = gx, is proper. Hence, p−1(x) is compact, implying Γx := p−1(x) ∩ Γ is finite, as
desired.

(b) Let V be a compact neighborhood of x ∈ H. From previous argument, we know that the set
{γ ∈ Γ : V ∩ γV 6= ∅} is finite, which we will denote {γ1, . . . , γn}. Suppose γi fixes x for i ≤ m,
then since H is Hausdorff, for i > m, we can choose disjoint neighborhoods Vi of x and Wi of γix.
Then

U = V ∩

(⋂
i>m

Vi ∩ γ−1
i Wi

)
is a neighborhood of x. For i > m, γiU ⊂Wi, which is disjoint from Vi ⊃ U by construction.

(c) Choose compact neighborhoods A of x and B of y, let γ1, . . . , γn be elements of Γ so that
γiA ∩ B 6= ∅ is finite. We know γix 6= y, so we can find disjoint neighborhoods Ui and Vi of γix
and y. We then take U = A ∩

⋂
i γ
−1
i Ui, V = B ∩

⋂
i Vi. �

Remark 35. Part (c) of the proposition implies that Γ\H is Hausdorff.
Part (a) and (b) of the proposition says that for any x ∈ H, there is an open neighborhood U of

x such that Γx\U is an open neighborhood of [x] ∈ Γ\H, where Γx = {γ ∈ Γ : γx = x} is finite.

Lemma 36. For x ∈ H then Γx = {γ ∈ Γ : γx = x} is a finite cyclic group.

Proof. Because SL2(R) acts on H transitively, Γx is isomorphic to a finite subgroup of SO2(R), the

stabilizer group of i under this action. We know SO2(R) ' S1 ' R/Z via

(
cos θ − sin θ
sin θ cos θ

)
7→ θ.

As every finite subgroup of R/Z is a finite subgroup of Q/Z, which is cyclic, so we are done. �

Proposition 37. There is a complex structure on Y (Γ) = Γ\H such that the quotient p : H→ Γ\H
is holomorphic. It is the unique complex structure such that a function f on an open subset U of
Y (Γ) is holomorphic if and only if f ◦ p is holomorphic on p−1(U), i.e. holomorphic functions on
U ⊂ Y (Γ) are in bijection with holomorphic functions on p−1(U) invariant under Γ.

Proof. Let [x] ∈ Γ\H. From the previous proposition, there is an open neighborhood U of x in H
such that Γx\U is an open neighborhood of [x].

If Γx = Γ ∩ {±1} then the map p|U : U → Γx\U is bijective, hence is a homeomorphism 28. We
choose (Γx\U, (p|U )−1) to be the coordinate chart for [x].

If Γx 6= Γ ∩ {±1}, the map

ρx : z 7→
(

1 −x
1 −x

)
z :=

z − x
z − x

defines a biholomorphism of H to the open disk D = {z ∈ C : |z| < 1}. The action of Γx on H
induces a (holomorphic) action of ρxΓxρ

−1
x on D fixing 0. Note that all the biholomorphisms of

D fixing 0 are of the form z 7→ λz for |λ| = 1 (see [Mil2017, p.26]). Therefore, the finite cyclic
group ρxΓxρ

−1
x of order |Γx| forms a cyclic group of biholomorphisms on D of order 1 < hx ={

|Γx|/2 −1 ∈ Γx

|Γx| −1 6∈ Γx
(since only −1 ∈ SL2(R) acts trivially on H, hence also acts trivially on D),

generated by the map z 7→ ζhxz where ζhx is a primitive hx-th root of unity. By restricting ρx to
an open neighborhood U ′ ⊂ U of x, we obtain a homeomorphism between Γx\U ′ and 〈ζhx〉\D′,
where D′ is a disk centered at 0. The map z 7→ zhx defines a homeomorphism from 〈ζhx〉\D′ onto
D′. We can then set (Γx\U ′, ρhxx ) to be a coordinate chart for [x].

28Given a continuous action of a topological group G on a topological space X then the quotient map X → G\X is
open
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To check chart compatibility, given two charts (Γx\Ux, ρhxx ) and (Γy\Uy, ρ
hy
y ) of [x], [y] ∈ Y (Γ),

given z = reiθ ∈ C, we can write

ρhxx ◦ (ρ
hy
y )−1(z) = (ρx ◦ ρ−1

y )(reiθ/hy)hx ,

which is holomorphic since ρx, ρy are holomorphic.
One can also check that the complex structure satisfies the condition on the structure sheaf of

holomorphic functions on Y (Γ), which is then unique with respect to this property because the
structured sheaf uniquely determines the complex structure. �

Remark 38. From the proof, we find that the ramification index the quotient map p : H→ Γ\H at
x is hx. In order to determine this number, we need to know more about the linear transformation
actions of SL2(R) on H.

16.1.3. Fixed points and stabilizer groups of Γ on H. There is a natural action of SL2(C) on C2 by
left-multiplication, which induces an action of SL2(C) on P1(C). By writing [x : y] ∈ P1(C) as x/y,
we can identify P1(C) as P1(R) ∪ H ∪ H−, where H− denotes the lower half plane. Our original
action of SL2(R) ⊂ SL2(C) on the upper half plane H ⊂ P1(C) can then be recovered. Furthermore,
the fixed points of γ ∈ SL2(R) on P1(C) can be read off from its conjugacy class:

(1) If γ is parabolic, i.e. γ 6= ±1 has exactly one eigenvalue of multiplicity two. Then γ has
exactly one eigenvector. In this case, γ has exactly one fixed point in P1(R).

(2) If γ is hyperbolic, i.e. it has two distinct real eigenvalues. Then γ has two distinct real
eigenvectors, corresponding to two fixed points in P1(R).

(3) If γ is elliptic, i.e. it has distinct complex conjugate eigenvalues. Then γ has two complex
conjugate eigenvectors, giving rise to one fixed point in H and another one in H−.

Definition 39. Let Γ be a discrete subgroup of SL2(R). A point x ∈ P1(R) is called a cusp for Γ
if it is the fixed point of a parabolic element in Γ. A point z ∈ H is called an elliptic point for Γ if
it is the fixed point of an elliptic element of Γ (or equivalently, if Γx 6= Γ ∩ {±1}).

Recall the motivation from previous section is to determine the ramification indexes for the map
H → Γ\H. Elliptic points are precisely ramification points of this map. Cusps will be used later
to compactify our Riemann surface Γ\H. With this purpose in mind, we will determine the cups,
elliptic points and their stabilizer groups for the case of Γ(1) = SL2(Z).

Definition 40. A fundamental domain for a discrete subgroup Γ of SL2(R) is a connected open
subset D of H such that D → Γ\H is injective and D → Γ\H is surjective.

Let S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
then Sz = −1/z and Tz = z + 1. Everything we know

about the action of SL2(Z) on H can then be summarized in the following proposition.

Proposition 41. Let D = {z ∈ H : |z| > 1, |Re(z)| < 1/2}. Then D is a fundamental domain for
Γ(1).

(1) Two distinct elements z and z′ in D are equivalent under Γ(1) iff they both lie in the
boundary of D and
(a) Re(z) = ±1/2 and z′ = z ± 1 (i.e. one is image of the other under translation map T

by 1), or
(b) |z| = 1 and z′ = −1/z = Sz (i.e. one is image of the other under S, whose action on

S1 consists of reflecting in the x-axis then reflect through the origin).
(2) For z ∈ D so that Γz 6= {±1} then

(a) z = i with stabilizer group Γz = 〈S〉 is of order 2 in Γ(1)/{±1}.
(b) z = ρ = e2πi/3 with stabilizer group Γρ = 〈TS〉 of order 3 in Γ(1)/{±1}.
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(c) z = ρ2 = e4πi/3 with stabilizer group Γρ2 = 〈ST 〉, which has order 3 in Γ(1)/{±1}.
(3) The group Γ(1)/{±1} is isomorphic to the free group generated by S, T modulo the relation

S2 = 1, (ST )3 = 1.

Proof. See [Mil2017, p.32]. �

Note that if z, z′ ∈ P1(C) are in the same Γ-orbit then they have isomorphic stabilizer groups.
So we look for cusps and elliptic points up to equivalence by Γ.

Proposition 42. The cusps of Γ(1) are Q∪ {∞}, and they are all Γ(1)-equivalent to ∞, i.e. they
lie in the same Γ(1)-orbit of ∞. The stabilizer of ∞ is Γ∞ = {±1}〈T 〉.

Up to equivalence by Γ(1), there are two elliptic points:

(1) One is i ∈ H with stabilizer group Γi = 〈S〉 of order 2 in Γ(1)/{±1}.
(2) The other is ρ = e2πi/3 with stabilizer group Γρ = 〈TS〉 of order 3 in Γ(1)/{±1}.

Proof. Describing elliptic points and their stabilizer groups are done in the previous proposition.
Our claim is that the cusps of Γ(1) = SL2(Z) are Q∪{∞}, and each is Γ(1)-equivalent to∞, i.e.

in Γ(1)-orbit of ∞. Indeed, ∞ is the fixed point of T =

(
1 1
0 1

)
. For m/n ∈ Q with gcd(m,n) = 1,

there are integers r, s such that rm− sn = 1. Then γ =

(
m s
n r

)
∈ SL2(Z) satisfies γ(∞) = m/n,

hence γTγ−1 fixes m/n. Conversely, every parabolic element α is conjugated to

(
λ 1
0 λ

)
, and since

α ∈ SL2(Z) so λ = ±1, implying Tr(α) = ±2. From here, one can show that if z ∈ P1(R) is a fixed
point of α then z ∈ Q ∪ {∞}. �

Corollary 43. The map H→ Γ(1)\H is ramified at SL2(Z)i with ramification index 2, at SL2(Z)ρ
with ramification index 3, and unramified elsewhere.

Proposition 44. For any subgroup Γ of Γ(1) of finite index, the cusps of Γ are cusps of Γ(1), i.e.
the set P1(Q) = Q ∪ {∞}. For x ∈ Q ∪ {∞}, Γx ∼= (Γ ∩ {±1})× Z.

Proof. Since Γ is a subgroup of Γ(1) of finite index, then N =
⋂
γ∈Γ(1) γΓγ−1 is a normal subgroup

of Γ(1) of finite index and N ⊂ Γ. Since N is of finite index of Γ(1), there exists h so that T h ∈ N .
Note that T fixes ∞ so T h fixes ∞. Any other element in Q can be written as σ∞ for some
σ ∈ Γ(1). Such element is fixed by σT hσ−1 ∈ N ⊂ Γ. This implies σ∞ is a cusp for Γ. Thus, the
cusps of Γ are P1(Q).

For each cusp x ∈ P1(Q), its stabilizer Γx is a subgroup of the stabilizer group of x under Γ(1),
which is isomorphic to {±1} × Z. It follows that Γx is isomorphic to (Γ ∩ {±1})× Z. �

16.1.4. Compactification of Γ\H. Let Γ be a subgroup of Γ(1) = SL2(Z) of finite index, then
the Riemann surface Γ\H is not compact (for example, Γ(1)\H is not compact by looking at its
fundamental domain, and we have a continuous surjective map Γ\H → Γ(1)\H, implying the
domain Γ\H is also not compact). To compactify it, we first add the cusps to H.

Define H∗ = H ∪ Q ∪ {∞}. To define a topology on H∗, we give the usual topology on H. For
the cusp σ∞ where σ ∈ SL2(Z), we take the following family

σUN = σ{z ∈ H : Im(z) > N} ∪ {σ∞}
as neighborhoods for σ∞. As a result, we obtain a compact Hausdorff topological space X(Γ) :=
Γ\H∗.

Proposition 45. There is a complex analytic structure on Γ\H∗ that extends the complex analytic
structure on Γ\H.
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Proof. We will first define a coordinate chart for the cusps [x] ∈ Γ\P1(Q). From the previous
Proposition 44, Γx ∼= (Γ ∩ {±1}) × Z, which we can let γ ∈ Γx to be a generator for Z. There is
σ ∈ Γ(1) so that σ∞ = x, which we can write γ = σT hσ−1 for some h ∈ Z>0 (since σ−1γσ ∈ Γ∞).
The map

q(z) =

{
e2πiσ−1(z)/h z ∈ σUN , z 6= σ∞
0 z = σ∞

defines a homeomorphism from Γx\σUN to a disk of radius e2πiN/h centered at 0.
Note that for N ≥ 1, Γx\σUN is an open neighborhood of [x] = [σ∞]. Indeed, we want to show

that if γ ∈ Γ and γ(σUN )∩σUN 6= ∅ then γ ∈ Γx or equivalently, γ(σ∞) = σ∞. It suffices to show
this for x =∞. Note that

Im(γz) = Im

(
az + b

cz + d

)
=

Im(z)

|cz + d|2
.

So if γ 6∈ Γ∞, i.e. c 6= 0, then Im(γz) ≤ 1/Im(z) ≤ 1 if z ∈ UN for N ≥ 1, meaning γz 6∈ UN , as
desired.

Thus, we can set (Γx\σUN , q−1) to be a coordinate chart for [x]. One can then check that these
coordinate charts at the cusps are compatible with the complex structure on Y (Γ). �

Proposition 46. The Riemann surface X(1) = Γ(1)\H∗ is isomorphic to the Riemann sphere
P1(C).

Proof. One can triangulate X(1) to calculate its Euler characteristic: pick i, ρ = e2πi/3,∞ and a
point not lying on a triangle formed by the former three points (easier to see from the fundamental
domain of Y (1) = Γ(1)\H). One then find that X(1) has genus 0. The only compact Riemann
surface of genus 0 is P1(C), as desired. �

Corollary 47 (Genus of X(Γ)). Let Γ be a subgroup of finite index of Γ(1). Let v2 be number of
inequivalent elliptic points of order 2, v3 be number of inequivalent elliptic points of order 3, v∞ be
number of inequivalent cusps. Then the genus of X(Γ) is

g = 1 +m/12− v2/4− v3/3− v∞/2,
Here m = [Γ(1) : Γ], where Γ(1),Γ are images of Γ(1) and Γ to Γ(1)/{±1}.

Sketch. Consider the holomorphic map X(Γ)→ X(Γ(1)) of compact Riemann surfaces, and apply
Riemann-Hurwitz formula. �
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16.2. 24/11/2022: Representation of unipotent group is generally not semisimple. For

example, take G =

{(
1 a
0 1

)
a ∈ R

}
then G acts on V = R2. V is not irreducible since W = R(1, 0)

is a one-dimensional subrep of V . But V is not semisimple, i.e. cannot be written as direct sum of
irreducible representations.

Read more from wikipedia: https://en.wikipedia.org/wiki/Unipotent.

16.3. 24/11/2022: Category of correspondences and base change formula. Let C be a
category with fiber products. We can define the category CorrC of correspondences in C as follows:

(1) Objects are objects of C.
(2) A 1-morphism c→ c′ in C is a span c← d→ c′.
(3) Composition of 2 spans c ← d → c′ and c′ ← d′ → e is by taking fiber product d ←

d×c′ d′ → d′.

Each map f : x→ y in C defines two morphisms in CorrC :

(1) A map x
∼←− x f−→ y from x to y, written f!,

(2) A map y
f←− x ∼−→ x from y to x, written f !.

These maps satisfy what’s called base change formula, which says that if

x×y z x

y z

g

f f

g

is a fiber product (Cartesian) square in C then g!f
! = f

!
g!, since each give the same correspondence

x← x×y z → y. In fact, one can show that: two define a functor out of CorrC is enough to define
a covariant and contravariant functor out of C such that this base change formula is satisfied.

More to learn: There is a higher category analogue of CorrC such that constructing certain
functor out of this categories correspond to six-functor formalism for C. See chapter V of the book A
study in derived algebraic geometry by D. Gaitsgory and N. Rozenblyum. I learned this by reading
first few paragraphs of https://arxiv.org/pdf/2005.10496.pdf by Andrew W. Macpherson.

Something I don’t know: How to see CorrC as (2, 1)-category? I know that 2-morphisms are
defined by natural commutative diagram in C, but how two see any 2-morphism is invertible?

How to make sense of six functor formalisms for de Rham cohomology? ... Is base change formula
something similar to change-of-variables for integrations? ...
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17. December 2022

17.1. 31/12/2022: Formal schemes and ind-schemes.

17.1.1. Schemes as sheaves on Zariski site. In Vakil’s book The Rising Sea: Foundations of Al-
gebraic Geometry, schemes are defined in terms of locally ringed spaces. I learned to interpret
schemes as functor of points. Here is a short summary:

A scheme X is a sheaf on the site of Ringsop with respect to the Zariski topology (whose chosen
morphisms are open immersions) and such that X admits an open cover by affine schemes.

I learned this from Sam Raskin’s algebraic geometry lectures for UT Austin class in Fall 2018,
notes by Arun Debray. I couldn’t quite find an official reference for this. According to https:

//ncatlab.org/nlab/show/scheme#DG, it should be in Demazure, Gabriel, Groupes algebriques,
but too many French at the moment for me.

(1) Denote Spaces the category of convariant functors from (unitary commutative) rings, de-
noted Rings, to Sets. We will define (affine) schemes as a full subcategory of Spaces.

(2) The category Aff of affine schemes is the opposite of the category of (unitary commutative)
rings. By Yoneda lemma, this is equivalent to the full subcategory of Spaces, consisting of
convariant representable functors from Rings to Sets. For a ring A, we denote SpecA to be
the corresponding affine scheme, defined by (SpecA)(R) = Hom(A,R).

(3) We can give a Grothendieck topology on Aff as follows:
(a) A morphism Z = SpecB → SpecA = X of affine schemes is a closed immersion/embedding

if the induced map A → B is surjective. A morphism X → Y of spaces is a closed
immersion if for all maps SpecA→ Y , the pullback SpecA×Y X → SpecA is a closed
immersion of affine schemes.
For spaces X,Z, the complement X\Z is a space, whose points (X\Z)(R) corresponds
to elements x ∈ X(R) = HomSpaces(SpecR,X) such that the diagram

Spec(0) Z

SpecR Xx

is a fiber product diagram. Note that we have a map of spaces X \ Z → X.
For a space X, an open immersion/embedding of X is a map of spaces j : U → X such
that U = X\Z for some closed embedding Z → X 29

For instance, X = SpecA, let f ∈ A and Z = SpecA/(f), then the map A → A/(f)
induces a closed embedding Z → X. Its complement is SpecA[f−1], the localisation
of A at f .

(b) For a space X, a (Zariski) open covering of X is a collection of open embeddings
U = {(iU : U → X)} satisfying that for every nonempty SpecR and f ∈ X(R), there
is (U, iU ) ∈ U such that U ×X SpecR 6= 0 (i.e. informally, it means X(R) =

⋃
ıU (R)).

This makes Aff into a site with respect to the Zariski topology (see https://stacks.

math.columbia.edu/tag/00VG for a definition) 30.
(c) One can extend these definitions to the category Spaces.

(4) A space X is scheme if it satisfies

29An equivalent way to describe open immersion is as etale monomorphism, see Bertrand Toen’s master course on
algebraic stacks. I have not checked this, don’t even know what does etale mean. But the definition should be valid
viewed as maps of spaces.
30Note that all the notions of open/closed immersions are defined on Spaces, so to define a site for Aff, we need to
consider open/closed immersions for affine schemes, which is completely possible
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(a) X : Rings → Sets is a sheaf of sets on the site Aff, i.e. it a contravariant functor (i.e.
a presheaf) Aff→ Sets such that for every S ∈ Aff and open coverings {Si → S} of S,
the sequence

X(S)→
∏
i

X(Si) ⇒
∏
i,j

F (Si ×S Sj)

is exact.
(b) X admits an open covering (Ui → X) such that all Ui’s are affine schemes.

17.1.2. Formal spectrum and formal schemes. Formal spectrum are examples of formal schemes,
like affine schemes to schemes. I learned this from Daniel Murfet’s notes http://therisingsea.

org/notes/Section2.9-FormalSchemes.pdf. The standard reference seems to be EGA I (see Luc
Illusie’s notes Grothendieck’s existence theorem in formal geometry, in FGA explained for more
easier read https://ncatlab.org/nlab/show/FGA%20explained) and Hartshorne’s book.

Let A be a Noetherian ring, and I ⊂ A an ideal of A. We can define the I-adic topology on A
with basis of open sets a+ In. If A is complete and separated (i.e. Hausdorff) with respect to this
topology, then A ∼= lim←−nA/I

n, and we call A an adic Noetherian ring.

For such ring A, we define the formal spectrum Spf(A) to be the topologically ringed space
(ringed spaces whose sections are topological rings), with the underlying topological space SpecA/I
(which has the same topology with SpecA/In for any n ≥ 1) and sheaf of rings lim←−n OSpecA/In . In

particular, for open set U ⊂ Spf(A), Γ(U,OSpf(A)) = lim←−n Γ(U,OSpecA/In) 31.

Due to the Noetherian condition, one can show that Spf(A) is a locally ringed space (see Corollary
30 of the referenced notes, i.e. there is some nice behaviour of Noetherian ring with respect to
localisation, e.g. see theorem 6 of the referenced notes).

Example 48. For example, A = k[[t]], which is complete with (t)-adic topology. As A/(t) = k so
Spf A is a point. The structure sheaf has global section lim←−n k[[t]]/(t)n = k[[t]]. Compare with the

normal structure sheaf of SpecA/(t) = Spec k, which is just k, so one views Spf A as a ‘formal
thickening’ of A about ideal (t).

Remark 49. One can in fact define Spf(A) for any admissible ring A, i.e. a separated, complete
linear topological ring with an ideal a ⊂ A satisfying for each open neighborhood V of 0, there is
n > 0 such that an ⊂ V (such ideal is called ideal of definition). Then Spf(A) is a closed subspace
of SpecA consisting of all open prime ideals of A, which has sheaf of rings obtained by taking
inverse limit of OSpecA/a over all ideals of definition a.

A (Noetherian) formal scheme is then a topologically locally ringed space that is locally isomor-
phic to a formal spectrum of some adic (Noetherian) ring.

17.1.3. Ind-scheme. We have defined formal schemes (following EGA) as locally ringed spaces.One
could then ask if there is a functor-of-point definition of formal schemes, just like how we redefine
schemes as sheaves on Zariski site.

Recall that we can view schemes as sheaves on Zariski site of affine schemes. An ind-scheme
is a directed/filtered colimit of schemes inside the category of sheaves on the Zariski site of affine
schemes, where the transition maps are closed immersions.

Example 50. The formal spectrum Spf(A) = lim←−n Spec(A/In) is an ind-scheme, where the map

Spec(A/In)→ Spec(A/In+1) are closed immersions.

31Actually, we can define Spf(A) for preadic Noetherian ring, i.e. without the completeness assumption on A. But

because of Noetherian condition, we have Spf(A) = Spf(Â), where Â is the I-adic completion of A, since A/In ∼= Â/În
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Under nice conditions, a formal scheme is an ind-scheme: (see https://stacks.math.columbia.
edu/tag/0AJF): any quasi-compact and quasi-separated formal scheme has a fundamental system
of ideals of definition, making it into an ind-scheme; any Noetherian formal scheme is also an
ind-scheme (see 10.6.3 and 10.6.10 in EGA I).

This definition of ind-scheme is explored more in Neil Strickland https://arxiv.org/abs/math/

0011121 formal schemes and formal groups and Stack Project https://stacks.math.columbia.

edu/tag/0AI6.

17.1.4. Why should we care? At the moment, I don’t know exactly why, but I tried to learn this in
order to learn about Lubin-Tate’s local class field theory, where there is an appearance of formal
groups. Formal groups also links to stable homotopy theory (some name: Quillen) ...

Some references about formal groups that I have not had the chance to look at: Neil Strickland,
https://strickland1.org/courses/formalgroups/fg.pdf.
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18. January 2023

18.1. 06/01/2023: Bruhat decomposition. I tried to read a bit about Bruhat decomposition.
Let G be a split (connected) reductive group over a field k, T be a split maximal torus of G,
and B be a Borel subgroup of G containing T . Let W = NG(k)(T )/T (k) be the Weyl group,

Φ := Φ(G,T ) ⊃ Φ+ := Φ(G,B) be the corresponding choice of roots and positive roots. Let
w0 ∈W be the unique element that w0(Φ+) = −Φ+, called the long Weyl element.

Theorem 51 (Bruhat decomposition). There are decompositions (as algebraic varieties)

G/B =
⊔
w∈W

BwB/B.

Here BwB/B are locally closed 32 subvarieties of G/B, and Bw0B/B is the unique dense open
subset.

I would like to write down some main ingredients for the proof of Bruhat decomposition. I follow
Milne’s book Algebraic groups and his notes on Reductive groups.

Definition 52. Let R be a k-algebra, let ϕ : A1 \0→ X be a morphism of R-schemes. If ϕ extends
to a morphism ϕ̃ : A1 → X, we define limt→0 ϕ(t) to be the restriction of ϕ̃ to the closed subcheme
0 := SpecR[x]/(x) of A1.

Example 53. Let Gm acts on An by

t · (x1, . . . , xn) = (tm1x1, . . . , t
mnxn), t ∈ k×, xi ∈ k,mi ∈ Z (not all 0).

Let v = (a1, . . . , an) ∈ An(k), consider the orbit map

µv : Gm → An, t 7→ (tm1a1, . . . , t
mnan).

Then µv extends to the morphism µ̃v : A→ An iff mi ≥ 0 for all i. In such case, we have

lim
t→0

µv(t) = (b1, . . . , bn), where bi =

{
ai mi = 0

0 otherwise,

Note that limt→0 t · v = (b1, . . . , bn) is a fixed point by the action of Gm on An.

The above example explains the motivation for the definition of limits, i.e. if we are given a
scheme X with an action by Gm, then for x ∈ X, if the limit limt→0 t · x exists then it is a fixed
point by the action of Gm.

Theorem 54 (Bialynicki-Birula decomposition). Let X be a smooth algebraic variety over k
equipped with a locally affine action of Gm

33.

(1) For every connected component of XGm, there exists a unique smooth subvariety X(Z) of
X such that

X(Z)(k) =
{
y ∈ X(k)| lim

t→0
t · y exists and lies in Z(k)

}
.

and the limiting (regular) map γZ : X(Z)→ Z sending y 7→ limt→0 ty is a fiber bundle with
affine fiber, which can be described as follows: For z ∈ Z(k), which is fixed by Gm, then
Gm acts on the tangent space TxX at x, giving a decomposition TxX = ⊕i∈ZTx(X)i, where
t ∈ Gm(k) acts on Tx(X)i by multiplication by ti. Then the fiber at γZ(x) is isomorphic to
T+
x (X) = ⊕i>0(TxX)i.

(2) The topological space |X| is a disjoint union of locally closed subsets |X(Z)| as Z runs over
all the connected components of XGm.

32i.e. is open in its closure
33i.e. X admits a covering by Gm-equivariant open affine subschemes
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Proof. For the proof, we refer to Milne’s Algebraic groups, 13.47. �

Example 55 (Milne’s Algebraic groups, 13.33). Let G be a smooth algebraic group over k. A
cocharacter λ : Gm → G defines an action of Gm on G by t · g := λ(t)gλ(t)−1. From the theorem,
there exists unique smooth algebraic subgroups P (λ), U(λ), Z(λ) of G such that

P (λ)(k) =
{
g ∈ G(k)| lim

t→0
tg exists

}
,

U(λ)(k) =
{
g ∈ G(k)| lim

t→0
tg = 1

}
,

Z(λ) = CG(λGm).

With U(λ) being a normal subgroup of P (λ), the multiplication map U(λ) o Z(λ) → P (λ) is an
isomorphism of algebraic groups.

We also have Gm acts on the Lie algebra g of G through Ad ◦ λ. Let gn(λ) denote the subspace
of g on which Gm acts through the character t 7→ tn, and we let

g−(λ) =
⊕
n<0

gn(λ), g+(λ) =
⊕
n>0

gn(λ).

Then Lie(P (λ)) = g0(λ)⊕ g+(λ),Lie(U(λ)) = g+(λ),Lie(Z(λ)) = g0(λ).

Remark 56. One views Bialynicki-Birula decomposition as an algebraic Morse theory. https:

//www.konradvoelkel.com/2013/04/bialynicki-birula-decomposition/ Need to make more
sense of this

Remark 57. There is a functorial generalization of Bialynicki-Birula decomposition, given by Drin-
feld’s paper ‘On algebraic spaces with an action of Gm’. Actually, read the proof of this decom-
position in Milne’s book first!. There is also a generalization of this decomposition for action by
reductive groups, given by the work of Jelisiejew and Sienkiewicz. What are more applications of
this decompositions? On 07/07/2021, I discussed about Kempf-Ness theorem, which also involves
torus action, so is there any connection?

Sketch of proof of Bruhat decomposition. Here are the steps:

(1) There exists (regular) cocharacter λ : Gm → T of T such that B = P (λ) and Z(λ) = T
(see theorem 21.32 in Milne’s Algebraic groups, in particular, λ satisfies 〈α, λ〉 > 0 for all

α ∈ Φ+(B)). The latter condition Z(λ) = T implies (G/B)λ(Gm) = (G/B)T . We also
know that (G/B)T (k) is in bijection with W = NG(k)(T )/T (k), say w ∈ W corresponds to

ew ∈ (G/B)T (k).
(2) The chosen cocharacter λ induces an action of Gm on G/B, by Bialynicki-Birula decompo-

sition, G/B can be written as disjoint union of locally closed, smooth subvarieties C(w),
defined as C(w)(k) = {x ∈ (G/B)(k)| limt→0 tx = ew}, over w ∈W .

(3) We show that C(w) is the B-orbit of ew in G/B. As B = P (λ) = U(λ)oT so by definition,
if b = ut′ for u ∈ U(λ), t′ ∈ T , then limt→0 λ(t)bλ(t)−1 = t′, implying C(w) is stable
under the action of B. In particular, Bew ⊂ C(w). As C(w) is smooth, it suffices to
show (Bew)(k) = C(w)(k). Let Bx be a nonempty orbit of B in C(w)(k). By Kostant-
Rosenlight’s theorem 34, Bx is closed, implying ew ∈ Bx, implying Bew = C(w).

(4) Lastly, we show that C(w0) = Bw0B/B is the unique dense open subset of G/B. To show
uniqueness, note that W is finite, and each C(w) is locally closed, and G/B is connected,
all of these implies there is a unique w ∈W so that C(w) is dense.

34The theorem, see Milne’s Algebraic groups 17.64, says that for an affine scheme acted on by a unipotent smooth
algebraic group, the orbits are all closed. For our proof, apply our action to U(λ) on C(w), which is affine by
Bialynicki-Birula decomposition, and note that U(λ)x = Bx for x ∈ G/B
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Now, we show that Bw0B/B is open dense in G/B. The tangent space of G/B at w0B is
isomorphic to the quotient of g by the Lie algebra of StabG(w0B), which is w0b

35. Hence,
the tangent space of G/B at w0B is g/w0b. By Bialynic-Birula decomposition, we also
know C(w0) is an affine space isomorphic to ⊕α∈Φ+gα. Hence, the map C(w0) → G/B
induces an isomorphism on the tangent spaces at w0, implying that C(w0) is dense in G/B
36. Furthermore, as C(w0) is locally closed, we conclude C(w0) is open and dense in G/B.

We are done. �

Remark 58. Beyond the split case, we only get Bruhat decomposition at the level of k-points,
rather than the proven geometric stratification above (This is mentioned in Conrad’s lecture notes
on Linear algebraic groups, part 2). The standard way is to prove Bruhat decomposition at the
level of k-points is to first show that (G(k), B(k), N(k)) is a Tits system. Bruhat decomposition
arises as a consequence of this fact (see Milne’s Algebraic groups, 21.45).

Remark 59. We consider the action of G × G on G by (g, h) · a = gah−1. Then from the Bruhat
decomposition, the action of B ×B on G has a (unique) dense open subset Bw0B. This property
makes X = G into a spherical G×G-variety.

Remark 60. More facts about Bruhat decomposition G/B = tw∈WC(w) that we have not proved:

(1) C(w) are affine spaces of dimension `(w), where `(w) is the length of w ∈W .

(2) Taking Zariski closure C(w) = tz≤wC(z), where ≤ is the Bruhat order on W .
(3) We have (relative) Bruhat decomposition for general parabolic subgroup of G.

Next time! See Springer’s book Linear algebraic groups.

18.1.1. Another proof of Bruhat decomposition for GLn. In our proof of Bruhat decomposition,
the main idea lies in the study of T -action on G/B by left-multiplication. Applying a theorem of
Bialynicki-Birula, we get a decomposition of G/B into C(w) over w ∈ (G/B)T (k) = W , and each
C(w) happens to be a B-orbit of G/B.

There is another proof of Bruhat decomposition (at the level of k-points), at least for GLn, that
I know from https://mathoverflow.net/a/15554/89665, which I found to be very interesting!
It first relies on the identification

G\(G/B ×G/B)
∼=−→ B\G/B

via (gB, g′B) 7→ Bg−1g′B. In other words, we now study the action of G on G/B ×G/B.
Just a sketch:

(1) A choice of Borel B corresponds to a full flag in kn, where B is the stabilizer under the
action of G on such flag. Furthermore, G/B is the set of all full flags of kn (here G = GLn),
or equivalently, the set of Borel subgroups of G (the coset gB corresponds to Borel gBg−1).

(2) A choice of torus T corresponds to a decomposition of kn into 1-dimensional vector spaces.
(3) A choice of torus T together with a Borel T ⊂ B corresponds to a “labelled” decomposition

of kn = L1 ⊕ . . .⊕ Ln, such that L1 ⊂ L1 ⊕ L2 ⊂ · · · corresponds to the flag of B.
(4) The map

G\(G/B ×G/B)→W = NG(T )/T.

is given as follows: given two flags (F•, F
′
•), there is a decomposition of kn into 1-dimensional

vector spaces that realizes these two flags. In other words, we can order these subspaces of
kn in one way to get the flag F•, and in another way to get the flag F ′• (another way to
phrase this is that any two Borels contains a common torus). One can describe way to get
from the first ordering to the second ordering by an element of W = NG(T )/T .

35Consider the quotient map G→ G/B sending g 7→ gw0B.
36See Springer’s book Linear algebraic groups, theorem 4.3.6, which relates dominant morphism between smooth
varieties with the differential map
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Can one minic this proof to other groups? How far can you go with this proof’s intuition?

18.2. 07/01/2023: Dolbeault theorem, Serre duality, Jacobian variety. Just want to sum-
marize some interesting things I learned from a course on Riemann surfaces so far. I learned this
from the book by Forster, Lectures on Riemann surfaces.

18.2.1. Finiteness of H1(X,O). Let X be a compact Riemann surface, O sheaf of holomorphic
functions on X. Then H1(X,O) is a finite dimensional C-vector space, and its dimension is called
the genus of X. The proof from the book (section 14) uses Banach space theory heavily.

18.2.2. Periods and 1-forms. Let X be a connected Riemann surface, E(1) be the sheaf of C-vector
spacers of smooth 1-forms on X. For σ ∈ π1(X) and a smooth closed 1-form ω ∈ E(1)(X), we can
define

∫
σ ω (see section 10.1 of the mentioned book), called periods of ω, giving rise to an injective

group homomorphism

H1
dR(X)→ Homgroup(π1(X),C)

where H∗dR(X) is the de Rham cohomology of X. The fact that the map is well-defined and injective
follows from theorem 10.10 and theorem 10.15. In fact, if you replace π1(X) by H1(X,C), then
this is an isomorphism (but it is not proved in the book).

18.2.3. Dolbeault theorem. Let X be a Riemann surface, E sheaf of C-vector spaces of smooth
functions (valued in C) on X, E(1) be the sheaf of C-vector spaces of smooth 1-forms on X.

Let E(1,0), E(0,1) be subsheaf of E(1) so that locally at a holomorphic coordinate chart (z, U) of

X, E(1,0)(U) = {fdz : f ∈ E(U)} and E(0,1)(U) = {fdz : f ∈ E(U)}. We call these 1-forms of

type/degree (1, 0) or (0, 1). Let Ω be a subsheaf of E(1,0), such that locally at a coordinate chart
(z, U), Ω(U) = {fdz : f ∈ O(U)}, called it sheaf of holomorphic 1-forms on X. We can define maps

d = d′ + d′′ : E → E(1) by, at a coordinate (z, U) of X, d′f = ∂f
∂z dz and d′′f = ∂f

∂z dz. (See more
details in section 9).

Theorem 61 (Dolbeault’s theorem). Let X be a Riemann surface, then there are isomorphism

H1(X,O) ∼= E(0,1)(X)/d′′E(X), H1(X,Ω) ∼= E(2)(X)/dE1,0(X).

Sketch. We have two exact sequences of sheaves

0→ O→ E
d′′−→ E0,1 → 0

0→ Ω→ E1,0 d−→ E(2) → 0

Exactness follows from Dolbeault’s lemma (see 13.2). These induce long exact sequences of sheaf

cohomology, and note that H1(X,E0,1) = H1(X,E(2)) = 0 (due to partition of unity for smooth
functions), so we get the desired result. �

18.2.4. Serre duality and Riemann-Roch theorem. We will first state Serre duality and Riemann
Roch, then we list some of the applications from the book.

Let X be a compact connected Riemann surface. Let D be a divisor on X, M be sheaf of
meromorphic functions on X, Ω be sheaf of holomorphic 1-forms on X.

(1) We can define two sheaves OD and ΩD on X by

OD(U) := {f ∈M(U) : ordx(f) ≥ −D(x) ∀x ∈ U},
ΩD(U) := OD ⊗ Ω.
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Let ω be a non-trivial meromorphic 1-form on X (e.g. ω = df where f is a non-constant
meromorphic function), and K be the divisor of ω (called canonical divisor, and in fact, has
degree 2g − 2), then for any divisor D of X,

OD+K
∼−→ ΩD, f 7→ fω,

is an isomorphism of sheaf.
(2) H0(X,OD) and H1(X,OD) are finite dimensional vector spaces. Furthermore, we have

Riemann-Roch’s theorem

dimH0(X,OD)− dimH1(X,OD)− deg D = 1− g,

where g := dimH1(X,O) the genus of X.
A sketch of the proof: We first check this for D = 0. We show that the LHS of the

equality is the same for all divisors by using the exact sequence of sheaves, here P ∈ X,

0→ OD → OD+P → CP → 0,

where CP is the skyscraper sheaf at P ∈ X.
(3) The product Ω−D × OD → Ω sending (ω, f) 7→ fω induces a natural mapping

H0(X,Ω−D)×H1(X,OD)→ H1(X,Ω),

which is defined as follows: Via Cech cohomology, an element ξ ∈ H1(X,OD) can be
represented as, for some covering (Ui)i∈I of X, (fij)i,j∈I where fij ∈ OD(Ui ∩Uj) satisfying
fij + fjk = fik on Ui ∩ Uj ∩ Uk for all i, j, k. For ω ∈ H0(X,Ω−D), the map is then defined
by (ω, ξ) 7→ ωξ = (fijω)i,j∈I ∈

∏
i,j Ω(Ui ∩ Uj).

(4) Next, we define a linear map Res : H1(X,Ω)→ C. There are two ways to do this:

(a) By Dolbeault theorem, H1(X,Ω) ∼= E(2)(X)/dE0,1(X), so the Res map is defined by
integrating Res([ω]) := 1

2πi

∫
X ω.

(b) Let ξ ∈ H1(X,Ω) be represented by a Cech cocycle (ωij) ∈
∏
ij Ω(Ui ∩ Uj), where

(Ui)i is a covering of X. Since H1(X,M(1)) = 0 (see 17.17), where M(1) is the sheaf

of meromorphic 1-forms on X, this cocycle splits relative to the sheaf M(1), i.e. there
is ωi ∈ M(1)(Ui) so ωij = ωi − ωj ∈ Ω(Ui ∩ Uj) (we say ξ satisfies the Mittag-Leffter
condition, see 17.2). In particular, it means Resa(ωi) = Resa(ωj) for all a ∈ Ui∩Uj , and
we denote this as Resa(ξ). The residue map can be defined as Res(ξ) :=

∑
a∈X Resa(ξ).

In fact, this is an isomorphism, see 17.11.
(5) Serre duality asserts that the pairing

H0(X,Ω−D)×H1(X,OD)→ H1(X,Ω)
Res−−→ C

is a perfect pairing, i.e. we have an isomorphism of C-vector spaces H0(X,Ω−D)
∼=−→

H1(X,OD)∗.

Some consequences

(1) The point is that holomorphic functions on compact X are constant, so not that interesting.
Riemann-Roch and Serre duality allows one to study meromorphic 1-forms and functions
on X. For instance, 17.19 says that if deg D ≥ 2g, then there exists meromorphic function
f on X so ordx(f) = −D(x) for all x ∈ X.

(2) (17.22) Let D be a divisor of degree at least 2g+1, and f1, . . . , fN be a basis of H0(X,OD),
then the map (f0 : · · · : fN ) : X → PN is an embedding. Hence, knowing enough about
meromorphic functions on X, we can explicitly describe X.
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18.2.5. Jacobian variety, Abel-Jacobi theorem. Let X be a compact Riemann surface of genus g.
One could ask given a divisor D, does there exist meromorphic function f such that (f) = D? A
necessary condition is that deg D = 0.

(1) Let Pic0(X) be the subgroup of the Picard group Pic(X) represented by divisors of degree
0.

(2) Let ω1, . . . , ωg be basis of H0(X,Ω) ∼= H1(X,O). We can define a lattice Γ in Cg, whose
elements are of the form

(∫
α ω1, . . . ,

∫
α ωg

)
where α ∈ π1(X). Then Jac(X) := Cg/Γ is a

g-dimensional torus, which we call Jacobian variety of X. A different choice of basis of
Ω(X) gives a complex manifold isomorphic to Jac(X).

(3) We define a map Φ : Div0(X) → Jac(X) by sending D ∈ Div0(X) to a continuous chain
c ∈ C1(X) such that its boundary δc = D. Then Φ(D) :=

(∫
c ω1, . . . ,

∫
c ωg

)
.

(4) The Abel-Jacobi theorem (see 21.7) states that we obtain an isomorphism of abelian groups

j : Pic0(X)→ Jac(X),

giving Pic0(X) structure of a variety.
As a consequence (see 20.7), a divisor D of degree 0 has meromorphic function f so

(f) = D iff there is a chain c ∈ C1(X) with boundary δ = D, so
∫
c ω = 0 for every

ω ∈ Ω(X).
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18.3. 10/01/2023: Motivate model categories from derived categories. I learned the role
of model categories in defining derived categories of abelian categories, by skimming through the
notes ‘The zen of∞-categories’ by Aaron Mazel-Gee https://etale.site/writing/zen-of-infty-cats.
pdf. Following are just motivations, and I tried my best to avoid technical argument but still por-
tray the story.

Slogan: Model categories provide explicit models to work with localization of categories.
Given an abelian category A, we can define the derived category D(A) of A: Let C(A) be the

category of chain complexes of A, S be the set of all quasi-isomorphisms in C(A), then D(A) =
C(A)[S−1]. This category exists (for small abelian category A), but it does not have meaningful
explicit description. A morphism between x, y ∈ C(A) in D(A) can be represented in C(A) by

x
∼←− • → • ∼←− · · · → • ∼←− y,

where the left-pointing arrow refers to an element in S. We would like to have a nice presentation
of such morphism in D(A). And this is the motivation for model categories.

In particular, we can associate to (C(A), S) a model structure, roughly by specifying full subcat-
egories

C(A)c ↪→ C(A)←↩ C(A)f

of cofibrant objects and of fibrant objects. Here is the main point (proven by Quillen)

(1) Every object of M is weakly equivalent to a cofibrant object and is also weakly equivalent
to a fibrant object.

(2) For ∗ = c, f , the embedding C(A)∗ ↪→ C(A) induces equivalence of categories C(A)∗[(S ∩
C(A)∗)−1]→ C(A)[S−1] = D(A).

(3) Suppose x ∈ C(A) is cofibrant and y ∈ C(A) is fibrant, then the map homC(A)(x, y) →
homD(A)(x, y) is surjective.

From these, it turns out that we can represent a morphism from x to y in D(A) as x
∼←− • → y.

Remark 62. One 28/11/2021, D(A) is defined by passing to the homotopy category K(A) first,
then take localization with respect to quasi-isomorphisms. It turns out that these constructions are
the same, i.e. there is an equivalence of categories between K(A)[S−1] and C(A)[S−1], inducing
from the localization functor C(A)→ D(A). See homological algebra folder, notes by Yuri Berest,
Daniel Miller, Sasha Patotski, lemma 3.2.3. In fact, (I believe) this is how we give the model
structure for C(A) when we pass through K(A) (see theorem 3.3.1 of the same notes).

To do: Learn these definitions properly, see homological algebra notes by Yuri Berest, Daniel
Miller, Sasha Patotski in homological algebra folder (which I think explains Verdier’s interpre-
tation of D(A) as triangulated category), Aaron Mazel-Gee Higher algebras notes. Work out
a model structure for derived category of R-modules ... How to interpret derived functors from
Quillen adjunction? See also these notes https://math.columbia.edu/~amattoo/S22_Infinity_
Categories_Talks.pdf (cat theory folder).
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18.4. 16/01/2023: Euler systems seminar I: Heegner point in X0(N). I want to digest
the definition of Heegner points, learned from our Johns Hopkins number theory seminar about
Euler systems. My naive goal is to understand the main idea of Kolyvagin’s work for the BSD in
terms of Euler/Kolyvagin systems, of motivic and relative (i.e. spherical) languages, Gross-Zagier
connection (see Chao Li webpage) ... http://www.math.columbia.edu/~chaoli/EC3.pdf

18.4.1. Modular curves X0(N) and Y0(N). Here I follow Milne’s Elliptic curves.
For an integer N ≥ 1, there is an algebraic curve Y0(N) defined over Q, whose k-points param-

etrize isomorphism classes of pairs (E,S) where E is an elliptic curve over k, S is a Zariski-closed
subset of E such that S(k) is cyclic subgroup of E(k) of order N 37. A morphism from (E,S) to
(E′, S′) is a morphism E → E′ of elliptic curves sending S onto S′.

The complex points of Y0(N) have the structure of a Riemann surface, analytically isomorphic

to Γ0(N)\H, where H is the upper-half plane, Γ0(N) =

{
x ∈ SL2(Z) : x ≡

(
∗ ∗
0 ∗

)
(mod N)

}
acts on H by linear transformation

(
a b
c d

)
z =

az + b

cz + d
. To match with the previous description,

we check that the map

Φ : Γ0(N)\H ∼−→ Y0(N)(C), τ 7→ (C/(Z + Zτ), 〈τ/N〉)

is a bijection:

(1) Elliptic curve over C is isomorphic (as complex Lie groups) to C/Λ for some lattice Λ ⊂ C.

We have Aut(C/Λ) = C×, given by dilation z 7→ λz in C, inducing C/Λ ∼−→ C/λΛ. With a
fixed embedding Λ ⊂ C, automorphisms of Λ as Z-module commuting with this embedding
is GL2(Z).

(2) Surjectivity: given (C/Λ, S) ∈ Y0(N)(C), say Λ = Zω1 + Zω2 and S = 〈(cω1 + dω2)/N〉 for

some c, d ∈ Z, which can be chosen so gcd(c, d) = 1 38. Hence, there is

(
a b
c d

)
∈ SL2(Z)

so Λ = Zω′1 + Zω′2 and S = 〈ω′2/N〉. By dilating Λ, (C/Λ, S) is isomorphic to the pair
(C/(Z + τZ), 〈Zτ/N〉) where τ ∈ H.

(3) Injectivity and well-definedness: Say we are given τ, τ ′ ∈ H so that Φ(τ) = Φ(τ ′), which

implies Λ = Z + τZ = Z + τ ′Z, i.e. there is M =

(
a b
c d

)
∈ SL2(Z) so M

(
1
τ

)
=

(
1
τ ′

)
. In

particular, we have τ ′/N = (c+ dτ)/N in C/Λ. Under this isomorphism of C/Λ (inducing
from the identity map on C), we require 〈τ/N〉 = 〈τ ′/N〉 as cyclic subgroup of order N
in C/Λ. Hence, we find c ≡ 0 (mod N) and gcd(d,N) = 1 (which follows from the fact
M ∈ SL2(Z) once we know c ≡ 0 (mod N)). Thus, M ∈ Γ0(N).

Let X0(N) be the compactification of Y0(N) (to be honest, at the moment I don’t see where X0(N)
is used in later parts, so let me postpone describing this ...)

18.4.2. CFT with complex multiplication. For this section, I follow Cox’s Primes of the forms x2 +
ny2.

Let K be an imaginary quadratic field. Any order O of K (i.e. subring of OK that is a free
Z-submodule of rank 2) can be written of the form Om = Z + nOK (see Cox, Primes of the form
x2 + ny2, II.7), where m is called conductor of Om.

37In other words, S(k) is a subgroup of order N of E(k) such that it is stable under action of Gal(k/k). See Milne,
Elliptic curves, V.2
38note (cω1 + dω2)/N + aω1 + bω2 is the same as (cω1 + dω2)/N in C/Λ
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There is a one-to-one correspondence between the class group Cl(Om) of Om
39 and isomorphism

classes E(Om) of elliptic curves E over C with End(E) ∼= Om (called elliptic curves with complex
multiplication by Om), given by [a] 7→ C/a.

Furthermore, each of such E ∈ E(Om) is defined over Km = K(j(E)) 40, and one can show that
Km is the ray class field of of K of modulus mOK , i.e. the unique finite abelian extension Km/K so

primes ofK ramified inKm must dividemOK , and we have an isomorphism Cl(Om)
∼−→ Gal(Km/K)

given by a 7→ (Km/K, aOK) where (Km/K, •) is the Artin map 41. We call Km the ring class field
of order Om. We refer to Cox’s book, p.220 for the proof of this claim.

In fact, this isomorphism Cl(Om)
∼−→ Gal(Km/K) is compatible with their action on E(Om), i.e.

for any a, b ∈ Cl(Om), we have

(C/a)(Km/K,bOK) = C/b−1a.

We refer to Cox’s book, Corollary 11.37 for the proof of this.

18.4.3. Heegner points in X0(N). The references are my notes for the seminar, David Hansen
The Gross-Zagier formula: a brief introduction TheGross-Zagierformula:abriefintroduction,
Gross’s paper ‘Heegner points on X0(N)’.

Choose integer N ≥ 1 and an imaginary quadratic extension K/Q so that every prime p|N splits
in K. Then there exists ideal n so that OK/n ∼= Z/NZ 42. Let Om be an order of K of conductor
m, let m = Om ∩ n, then m−1/Om ∼= Z/NZ 43. We consider xm = (C/Om,m−1/Om) ∈ X0(N)(C),
called this Heegner point of conductor m in X0(N). From previous section, we know the elliptic
curve C/Om is defined over Km, so xm ∈ X0(N)(Km).

(P.S. In Gross-Zagier’s work for GZ formula, Heegner points are constructed generally as (C/a,m−1a/a)
for a ∈ Cl(Om), but Kolyvagin’s work for Birch-Swinnerton-Dyer only deals with xm’s, i.e. when
a = Om ...)

18.4.4. Adelic description of Heegner point. One can give an adelic description of the Heegner
points, given as follows (learned from Yiannis’s talk, and I couldn’t find an official reference talking
about this, i.e. how useful is this perspective?)

(1) We can show that the upper-half plane H ∼= GL2(R)/ SO2(R)R×, and we also have

Γ0(N)\GL2(R) ∼= GL2(Q)\GL2(AQ)/K0(N),

where K0(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : N |c

}
44. This gives

Y0(N)(C) = GL2(Q)\GL2(AQ)/K0(N) SO2(R)R×.

39let I(Om) be the abelian group of proper fractional Om-ideals of K, i.e. Om-submodule a of K satisfying Om =
{α ∈ K : αa ⊂ a}, with the group structure given by multiplication. Let P (Om) be the subgroup of I(Om) consisting
of principal fractional ideals, i.e. αOm for α ∈ K×. Then Cl(Om) := I(Om)/P (Om). See Cox, Primes of the form
x2 + ny2, p.136, for more details. For example, why I(Om) forms an abelian group ...
40one can show that j(E) for E ∈ E(Om) are Galois-conjugate to each other, so Km is independent of a particular
choice of such E
41note that one must first show that Cl(Om) is isomorphic to the ray class group of conductor mOK via a 7→ aOK
with inverse a 7→ a ∩ Om, see p.146, then by Artin map, we get such isomorphism, see Cox, Primes of the forms
x2 + ny2, p.180
42Indeed, for p|N splits in K, there exists prime ideal p of K lying above p so N(p) = |OK/p| = p, i.e. OK/p ∼= Z/p.
Hence, if N = pk11 · · · p

kh
h then n = pk11 · · · p

kh
h

43see Proposition 7.20(i) of Cox’s book, which prove isomorphism Om/m
∼−→ OK/n

44See Getz Hahn Introduction to Automorphic representations, II.6. The adelic quotient ... But this is equivalent to
GL2(A∞) = GL2(Q)K0(N) ... NEED TO CHECK THIS! I know this is true for SL2 due to strong approximation
theorem, but is this true for GL2?
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(2) Given a quadratic field K = Q(
√
d), viewed as two-dimensional vector space over Q, we

have an embedding T = ResK/Q(Gm)→ GL2 of algebraic groups, given by, for Q-algebra R,

a+
√
Db ∈ Gm(K⊗QR) 7→

(
a db
b a

)
∈ GL2(R), where a, b ∈ R. This induces a topological

embedding
[T ] = T (Q)\T (A) ↪→ GL2(Q)\GL2(A) = [GL2]

In fact, note that [T ] ∼= K×\A×K canonically 45.
(3) By idele-theoretic global class field theory, as Km is the ray class field of modulus mOK ,

one can associate an open subgroup

UmOK =
∏

v|∞,ev=0

K×v
∏

v|∞,ev=1

(K×v )>0

∏
v-∞,ev=0

O×v
∏

v-∞,ev>0

(1 + pevv )

of A×K , where the product is over places of K, mOK =
∏
v p

ev
v , so that the global Artin map

A×K → Gal(K/K) induces an isomorphism

K×\A×K/UmOK

∼−→ Gal(Km/K) ∼= Cl(Om) ∼= E(Om)46.

Thus, the Heegner points are images under the embedding

[T ] [T ] /UmOK E(Om)

[G] [G] /K0(N) SO2(R)R× Y0(N)(C)

∼

∼

Need to do: check that this diagram commutes!

45See https://math.mit.edu/classes/18.785/2021fa/lectures.html, lecture 25, for instance
46see MIT Number theory notes, https://math.mit.edu/classes/18.785/2021fa/LectureNotes28.pdf, lecture 28,
for instance of this claim
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18.5. 27/01/2023: Six functor formalisms and perverse sheaves. The references I will use

W. Geordie Williamson. An illustrated guide to perverse sheaves.
A. Pramod Achar. Perverse sheaves and application to representation theory.
L. Losev. Notes on Perverse sheaves

RW. Anna Romanov, Geordie Williamson. Langlands correspondence and Bezrukavnikovs equiv-
alence

Consider an algebraic variety X over C, we equipped X(C) with the analytic topology and from
now on refer to X(C) as X.

18.5.1. Constructible sheaves and its derived categories. We denote Sh(X) the abelian category of
sheaves of k-modules on X.

Example 63. Given a k-module V , equipped with a discrete topology, we can define a sheaf
V X(U) := {continuous f : U → V }. We call V X constant sheaf with values in V . Note that
if U is connected then V X(U) ∼= V .

Example 64. Let x ∈ X and a k-module V , we can define sheaf V x on X by U 7→ V if x ∈ U and
0 otherwise. We call this sky-scraper sheaf at x with value V .

Definition 65. A local system (or locally constant sheaf) on X is a sheaf F of k-modules on X
such that for all x ∈ X, there is open U of x such that F|U is a constant sheaf on U of some finitely
generated k-module.

Theorem 66. (See [A. Theorem 1.7.9]) For a ‘nice’ connected topological space X, and x0 ∈
X. There is a bijection (in fact an equivalence of categories) between local systems on X and
representations of k-modules of π1(X,x0) (called monodromy representation).

Sketch. Given a local system L on X, we will associate an action of π1(X,x0) on Lx0 . Take a
closed path γ ∈ π1(X,x0). By compactness of [0, 1] and that L is a local system, there exists finite
set of connected open subsets (Ui)

n
i=1 of X so that L|Ui is a constant sheaf for every i, and as one

goes along γ, one travels along γ(0) ∈ U1, . . . , Un 3 γ(1) = x0. The monodromy action of γ on Lx0
can be described as compositions of various restrictions map

Lγ(0)
∼←− L(U1)

∼−→ L(U1 ∩ U2)
∼←− L(U2)

∼←− · · · ∼−→ Lγ(1).

PICTURE! �

Example 67. Local system on C is in bijection with k-modules. (more generally, every local system
on simply connected space is trivial, i.e. is a constant sheaf).

The constant sheaf V X corresponds to the trivial representation on π1(X,x0).
Local system L on C× are in bijection with invertible linear maps µ : V → V of (finitely

generated) k-modules V = L1. One can also compute H0(C×,L) = V µ, the µ-invariant subspace
of V from the previous theorem.

For a field k, denote Sh(X) be the category of sheaves of k-modules on X. Let C(X) be the
category of chain complexes of Sh(X), let Q be the set of all quasi-isomorphisms in C(A) (i.e.
morphisms between chain complexes that are isomorphic under taking cohomology H i). Then the
dervied category D(X) of sheaves of k-modules on X is the localization D(X) := C(X)[Q−1] ∼=
K(X)[Q−1] 47. Its objects are C(X), and morphisms from X• to Y • can be represented (up to

taking homotopy between chain complexes) by X•
f←− Z• g−→ Y • where f is a quasi-isomorphism.

One can endow D(X) with a triangulated structure (see 28/11/2021). I only skim-read these,
and these are what I know so far:

47here K(X) is the homotopy category of C(X), i.e. objects are C(X), morphisms are equivalence classes of C(X)
modulo morphism of chain complexes that are homotopic to 0
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(1) We have the shift/suspension functor [1] : D(X) → D(X) by taking the chain complex C
48 to C[1], i.e. (C[1])i = Ci+1 and diC[1] = −di+1

C . Denote [i] := [1]i.

(2) Taking cohomology H i : D(X)→ Sh(X) makes sense. Note that H i = H0 ◦ [i].
(3) There is a collection of diagrams (called distinguished triangles),

T
f−→ Y

g−→ Z
h−→ T [1]

in D(X) 49. It has the properties that when taking cohomology H0, we get a long exact
sequence

· · · → H0(Z[−1])
H0(−h[−1])−−−−−−−→ H0(T )

H0(f)−−−−→ H0(Y )
H0(g)−−−−→ H0(Z)

H0(h)−−−−→ H0(T [1])
H0(−f [1])−−−−−−→ H0(Y [1])→ · · ·

in Sh(X). See [A. Definition A.4.8].

To say F ∈ D(X) is bounded means H i(F) = 0 for |i| >> 0. From now on, we denote D(X) to
mean the bounded derived category of sheaves on X (i.e. consists of objects that are bounded).

Definition 68. A constructible sheaf on X is a sheaf F of k-modules on X such that with respect
to a stratification Λ, i.e. X =

⊔
λ∈ΛXΛ

50, F|Xλ is a local system.

Example 69. Constructible sheaves on X with respect to the trivial stratification are local systems
on X.

Example 70. Take X = CP1 with stratification P1 = {∞} ∪ C, and F a constructible sheaf on P1

with respect to this stratification. Since C and ∞ are simply-connected, F|∞ and F|C are constant
sheaves with the corresponding k-modules V∞ = F∞ and V0 = F0.

There is only one glueing data needed to specify: let D be a disk centered at ∞, D× = D \ {∞}
be the punctured disk, then we have a restriction map V∞ ∼= Γ(D,F)→ Γ(D×,F) ∼= V0.

So every constructible sheaves on P1 with respect to the stratification P1 = {∞}∪C is equivalent
to giving two k-modules V0, V∞ and a linear map V∞ → V0.

Definition 71. We say F ∈ D(X) is constructible if H i(F) ∈ Sh(X) is constructible. Let Dc(X)
be subcategory of D(X) consisting bounded constructible F ∈ D(X). Dc,Λ be the bounded derived
category of constructible sheaves of k-modules on X with respect to stratification Λ.

18.5.2. Six-functors formalism. Let f : X → Y , one can construct the following (triangulated)
functors between derived categories 51

f∗, f∗, f
!, f!,H om,⊗

We hope to give enough information about these functors to do computations, with the main
example is when f is a locally closed inclusion (i.e. open in its closure), of which closed/open
embeddings (e.g. C× → C and {0} → C) are instances. All of these are taken from [A. Chapter 1]:

(1) Push-forward f∗ : Sh(X) → Sh(Y ) by (f∗F)(U) = F(f−1(U)), inducing (right) derived
functor f∗ : D(X) → D(Y ), defined as follows: Given A ∈ D(X), there is an injective
resolution A→ B• 52 then f∗(A) = (f∗(B

i))•. See 17/12/2021.

Example 72. We compute f∗kC× at the level of sheaves (instead of at the level of derived
category) for f : C× ↪→ C. So (f∗kC×)(U) = kC×(U ∩C×) = k if U is connected. This gives
f∗kC× = kC.

48in increasing degree
49one views this as a replacement for short exact sequences in D(X). See [A. Definition A.5.4] for how to define these
50there are some conditions one needs to impose, for instance Xλ are locally closed in X, closure of Xλ is a union of
strata Xµ ... See [A. Definition 2.3.1]
51sends distinguished triangles to distinguished triangles
52i.e. a quasi-isomorphism where each Bi are injective sheaves on X.
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Remark 73. I don’t know any way to explicitly compute f∗ at the level of derived category for
general f . One reason I found is that the construction of resolution is highly uncomputable.

But we shall see later that for closed embedding f , f∗ is an exact functor, i.e. we don’t
need to take resolution to compute.

For open embedding f , one can try to compute ‘table of stalks’ for a local system L (see
Example 85), which tells you some information about f∗L.

(2) Pull-back f∗ : Sh(Y ) → Sh(X) sends F ∈ Sh(Y ) to the sheafification of the presheaf
U 7→ lim−→V⊃f(U)

F(V ) where the direct limit is over open subsets V of Y . Because f∗ is

exact, we don’t need to take resolution to define the derived functor f∗ : D(Y )→ D(X).
(3) Proper push-forward (or f -lower-shriek) f! : Sh(X) → Sh(Y ) defined by (f!F)(U) = {s ∈

F(f−1(U))|f |supp(s) is proper} 53. This induces (right) derived f! : D(X)→ D(Y ) by taking
injective resolution then apply f! at each degree of the complex. See 17/12/2021.

Example 74. If f is a proper map then f! = f∗, hence the name ‘proper push-forward’.

Example 75. For a locally closed inclusion (i.e. open in its closure) h : Y ↪→ X then (h!F)x
is isomorphic to Fx if x ∈ Y and 0 otherwise. This is [A. Lemma 1.3.1].

(4) Proper pull-back (or f -upper-shriek) f ! : D(Y )→ D(X) constructed to be right-adjoint to
f!. This functor does not usually exist at the level of Sh(X) (so that it is right-adjoint to
f!). See 21/01/2022.

However, when f : X ↪→ Y is a locally closed (open in its closure) embedding, f ! :
Sh(Y )→ Sh(X) exists and is given by

(f !F)(U) = lim−→
V⊂Y open,V ∩X=U

{s ∈ F(V )|supp s ⊂ U}.

Example 76. Let j : U ↪→ X be an open embedding then j! ∼= j∗. This is [A. Lemma 1.3.3].

(5) Internal hom Hom : Sh(X)op × Sh(X) → Sh(X) by Hom(F,G)(U) := HomSh(U)(F|U ,G|U ).
This induces the (right) derived functor (in both variables) H om : D(X)op×D(X)→ D(X)
as follows (See 14/01/2022): For chain complexes (A, dA), (C, dC) ∈ D(X), to compute
H om(A,C), pick an injective resolution (C, dC) → (B, dB), define the chain complex
H om(A,B) of Sh(X) by

H om(A,B)n =
⊕
j−i=n

Hom(Ai, Bj),

with differential given by

d(f) = dB ◦ f + (−1)j−i+1f ◦ dA, f ∈ Hom(Ai, Bj).

(A cool property of this, HomD(X)(A,B) = H0(Γ∗(H om(A,B))) where Γ : X → pt).

Remark 77. One can show that H om(kX ,F) ∼= F from the definition, where F ∈ D(X).

(6) For F,G ∈ Sh(X), the tensor product sheaf F ⊗ G is the sheafification of the presheaf
U 7→ F(U) ⊗ G(U). This induces (left) derived functor (in both variables): ⊗ : D(X) ×
D(X)→ D(X): In this case, one needs to take flat resolution, then define a tensor-product
complex wrt to the resolution (as in the case of H om): For chain complexes A,B of Sh(X),
define (A⊗B)n :=

⊕
i+j=nA

i ⊗Bj with differential given by

d(a⊗ b) = dA(a)⊗ b+ (−1)ia⊗ dB(b), for a⊗ b ∈ Ai ⊗Bj .

A list of properties:

53 supp s = {x ∈ X|s 6= 0 in Fx}
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(1) Adjunction: (f∗, f∗), (f!, f
!), (− ⊗ G,H om(G,−)), (f ◦ g)! = f! ◦ g! and (f ◦ g)∗ = g∗ ◦ f∗

etc.

Hom(f∗F,G) ∼= Hom(F, f∗G),

Hom(f!F,G) ∼= Hom(F, f !G),

Hom(F ⊗ G,H) ∼= Hom(F,H om(G,H))

(2) Morphism of functors f! → f∗. If f is proper then this map is an isomorphism.
(3) Open-closed distinguished triangle: Given a decomposition X = U t Z into open U and

closed Z, write Z
i−→ X

j←− U . Then i∗ = i! (since i is proper) and j∗ = j! (since j is open
embedding). We have the following maps

D(Z) D(X) D(U)
i∗=i! j∗=j!

i∗

i!

j∗

j!

These maps satisfy the following properties (recollement diagram):
(a) By adjunction property, we know that any map above is left adjoint to the map lying

right below it.
(b) We have j• ◦ i• = 0 where • ∈ {!, ∗}.
(c) We have the following distinguished triangles

j!j
! → Id→ i∗i

∗ [1]−→

i!i
! → Id→ j∗j

∗ [1]−→

where the first two morphisms in each triangle are adjunction maps.
(d) The functors i•, j• are fully faithful. Equivalently, the adjunction maps i∗i∗ → id, id→

i!i!, j
!j! → id, id→ j∗j∗ are all isomorphisms.

See [A. Theorem 1.3.10].

Remark 78. The adjunction implies that i∗ = i! and j! = j∗ are exact functors, i.e. one
does not need to take resolution in order to compute these functors.

(4) Duality: For X, define

DX(·) := H om(·, a!
Xk) : Dc(X)→ Dc(X)opp,

where aX : X → pt. For f : X → Y , the following are true
(a) D is an equivalence of categories and D2 is naturally isomorphic to id.
(b) We have f! ◦ DX ∼= DY ◦ f∗ and f∗ ◦ DX ∼= DY ◦ f !.
(c) We have f ! ◦ DX ∼= DY ◦ f∗ and f∗ ◦ DX ∼= DY ◦ f !.
(d) We have H om(F1,F2) ∼= H om(DF1,DF2).

(5) Relation with classical cohomology: Let L be a local system on X and Γ : X → pt. Then

Hk(Γ∗L) = Hk
sing(X,L),

Hk(Γ!L) = Hk
sing,c(X,L)

The subscripts “sing” refers to singular cohomology. This example indicates that f∗, f!

should be thought as relative versions of taking the cohomology and compactly supported
cohomology.

(6) Base change theorem: Here is an instance of base change theorem: Consider the pull-back
diagram
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X ′ X

Y ′ Y

g′

f ′ f

g

then we have an isomorphism of functors

g∗f!
∼= f ′! (g

′)∗

An useful example: Let Y ′ = {y} for some y ∈ Y , we have the following pull-back square
(if it exists, a necessary condition, e.g. f−1(y) 6= ∅) is nonempty

f−1(y) X

{y} Y

Γ f

By base change theorem, for F ∈ D(X), we find

(f!F)y ∼= Γ!(F|f−1(y)).

Furthermore, if f is proper then so is Γ, implying f!
∼= f∗ and Γ! = Γ∗. Hence, we get

(f∗F)y ∼= Γ∗(F|f−1(y)).

In particular, f∗F (or f!F) is a sheaf which gathers together the information of the (com-
pactly supported) cohomology of all the fibers of f with values in the restriction of F.

(7) Behaviour under smooth maps: If f : X → Y is smooth of relative dimension d then one
has isomorphism f∗F[2d] ∼= f !F for F ∈ D(Y ). There is also something called smooth base
change.

(8) The octahedron: I don’t know enough to say what this means, but apparently one can use
it to get long exact sequence of homology with closed supports ...

Remark 79. From this list of properties, one can deduce Poincare duality in (co)homology, e.g. see
[A. Remark 2.11.2]. One can also see the cup product of H∗ from Hk(X, k) ∼= HomD(X)(kX , kX [k])
(see [A. Remark 1.2.5]).

Example 80. Let j : C× ↪→ C and L be a local system on C×. We will compute cohomology of the
stalk (j∗L)0 at 0 of j∗L

54 We have

Hn ((j∗L)0) ∼= Hn

(
lim−→
V 30

Γ∗((j∗L)|V )

)
,(8)

∼= lim−→
V 30

Hn
(
Γ∗
(
(j|j−1(V ))∗(L|j−1(V ))

))
,(9)

∼= lim−→
V 30

Hn
(
Γ∗(L|j−1(V ))

)
,(10)

∼= lim←−
V 30

Hn
sing(j

−1(V ),L),(11)

∼= Hn
sing(C×,L),(12)

∼= Hn (RHom(kC× ,L)) ,(13)

∼= Hn
(
RHomk[π1(C×,1)](k,L1)

)
.(14)

Some explanations:

54This is enough to determine the complex (j∗L)0 ∈ D(k-mod), as any complex of k-modules over a field k is
completely determined by their cohomology
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(8) See [A. Lemma 1.2.10]. I see this as an analogue in the level of sheaf, where we have
Fx = lim−→V 3x Γ(F|V ) over open neighborhood V of x, F is a sheaf on X 3 x.

(9) This is open base change (see [A. Proposition 1.2.16]), which says the following: for contin-
uous map f : X → Y with V ⊂ Y open, we have the following pull-back square

f−1(V ) X

V Y

f |f−1(V )
f

The base change theorem says we have an isomorphism: take F ∈ D(X), pushforward-then-
pullback is isomorphic to pullback-then-pushforward.

We then apply our base change to j : C× → C.
(10) Follows from composition law of push-forward: (f ◦ g)∗ = f∗ ◦ g∗.
(11) Follows from relation between derived push-forward of Γ : j−1(V ) → pt to singular coho-

mology.
(12) Because for open disk V around 0, we have Hn

sing(V ∩ C×,L) ∼= Hn
sing(C×,L) as V ∩ C×

and C× are homotopic to each other.
(13) We know L ∼= H om(kC× ,L) (follows from definition of H om), giving Γ∗L = Γ∗H om(kC× ,L) =

RHom(kC× ,L). Then Hn
sing(C×,L) = Hn(Γ∗L).

(14) We have an equivalence of categories Mon : Loc(C×) → Rep(k[π1(C×, 1)]) between local
systems on C× and monodromy representations of π1(C×, 1). This gives a natural isomor-
phism between two functors HomSh(C×)(•, •) and Homk[π1(C×,1)(Mon•,Mon•). Therefore,
by lifing to the derived level, we get a natural ismorphism between RHomSh(C×)(, ) and
RHomk[π1(C×,1)](Mon,Mon).

So we know that (j∗L)0 = RHomk[Z](k, V ) where V = L1 is the monodromy representation of

π1(C×, 1) = Z = 〈T 〉. We have H0(RHomk[T±1](k, V )) = Homk[T±1](k, V ) = V T , the T -invariant

subspace of V . To compute H1, we consider the following projective resolution of k by k[Z] =
k[T±1]-modules

P • := · · · → 0→ k[T±1] = P 1 1−T−−−→ k[T±1] = P 0 → 0

Apply Hom, we find that

H1(RHomk[T±1](k, V )) =
Hom(P 1, V )

im(Hom(P 0, V )→ Hom(P 1, V ))
= V/〈v − Tv : v ∈ V 〉 =: VT ,

the T -coinvariants of V . This also gives that H i = 0 for all i > 1.

18.5.3. Perverse sheaves. Let X = tλ∈ΛXλ be a stratification of X, let iλ : Xλ ↪→ X.

Definition 81. We define

pD≤0
Λ := {F ∈ Dc,Λ|∀λ ∈ Λ, H i(i∗λF) = 0 ∀i > −dimXλ},

pD≥0
Λ := {F ∈ Dc,Λ|∀λ ∈ Λ, H i(i!λF) = 0 ∀i < −dimXλ},

PervΛ(X) := pD≤0
Λ ∩

pD≥0
Λ .

We call PervΛ(X) the category of perverse sheaves with respect to the stratification Λ.

Remark 82. According to [RW, §7.5], if Λ′ is a refinement of Λ then we have a fully-faithful inclusion
PervΛ′ ↪→ PervΛ, and then we can define Perv(X) = lim−→Λ

PervΛ(X). An equivalent way to define
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Perv(X) is

pD≤0 := {F ∈ Dc|dim suppH i(F ) ≤ i ∀i},
pD≥0 := D(pD≤0) = {F ∈ Dc|dim suppH i(DF ) ≤ i ∀i},

Perv(X) := pD≤0 ∩ pD≥0.

To see why they are equivalent, we refer to [A. Lemma 3.1.6]. For instance, pD≤0
Λ = pD≤0 ∩Dc,Λ.

Example 83. Let Λ be the trivial stratification on X, then PervΛ(X) = Loc(X)[dimX]. This
follows from definition.

Example 84. Let j : U ↪→ X be an open embedding, i : Z ↪→ X be a closed embedding, then

(1) j∗ sends pD≤0 to pD≤0 and pD≥0 to pD≥0.
(2) j! sends pD≤0 to pD≤0.
(3) j∗ sends pD≥0 to pD≥0.
(4) i∗ sends pD≤0 to pD≤0 and pD≥0 to pD≥0.
(5) i∗ sends pD≤0 to pD≤0.
(6) i! sends pD≥0 to pD≥0.

We refer to [A. Lemma 3.1.4] for the proof.
This implies that i∗ and j∗ are t-exact, i.e. i! : Perv(Z)→ Perv(X) and j∗ : Perv(X)→ Perv(U).

For instance, let L be a local system on U , then L[dimU ] ∈ Perv(U) from the previous example,
implying then i!L[dimU ] ∈ Perv(X).

Example 85. (Following [RW. Example 17.6] or [L. Example 3.6]) Let X be an algebraic curve over
C, with a ‘good’ stratification X = U t {x1} t · · · t {xm} 55. Let j : U ↪→ X, L be a local system
on U . We show that j!L[1] and j∗L[1] are both perverse. To check if F ∈ Dc,Λ is perverse, we draw
the table:

i− 1 i i+ 1
U · · · H i(F|U ) · · ·
xi · · · H i(F|xi) · · ·

From Example 75, we know that (j!L)x = 0 if x 6∈ U 56. This gives

(j!L)|U = j∗j!L = j!j!L = L 57

H i((j!L[1])|xi) = H i+1((j!L)xi) = 0.

Hence, the table for j!L[1] is

−2 −1 0 1
U 0 L 0 0
xi 0 0 0 0

We find j!L[1] ∈ pD≤0
c,Λ. Now, we draw the corresponding table for j∗L[1]. With the same argument,

we know (j∗L)|U = j∗j∗L = L, so it suffices to computeH i((j∗L)|xi). This follows from Example 80,
and we can draw the table for j∗L[1] as

−2 −1 0 1
U 0 L 0 0
xi 0 V µ Vµ 0

55The examples we can keep in mind are C = {0} ∪ C× and P1 = {∞} ∪ C
56this is true at the derived level as well, since extension-by-0 j! is exact
57since j is open embedding so j∗ = j!, and we know the adjunction morphism id → j!j! for open embedding is an
isomorphism
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Thus, we have shown j!L[1] ∈ pD≤0
c,Λ and j∗L[1] ∈ pD≤0

c,Λ.

Because D(j!L) = j∗D(L) and D(pD≤0
c,Λ) = pD≥0

c,Λ, we find j!L[1] and j∗L[1] are also in pD≥0
c,Λ.

Thus, j!L[1] and j∗L[1] are perverse.
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18.6. 30/01/2023: Inertia groups and decomposition groups. Just want to digest something
I learned from Ashwin’s number theory class last semester. I learned this from Ashwin’s lecture
notes and this notes about Galois representations http://math.bu.edu/people/midff/buntes/

spring_2019/galois_representations.pdf.

18.6.1. Ramifications from decomposition and inertia groups for finite Galois extension. Let L/K
be a finite Galois extension of number fields and let p be a prime ideal in L. We can then define
the following objects

K ⊂ LDp ⊂ LIp ⊂ L
G = Gal(L/K) ⊃ Dp . Ip ⊃ 0

q splits completely p′ inert p′′ totally ramified p
kq = OK/q ⊂ kp′ ⊂ kp′′ ⊂ kp

Here q = p ∩ OK prime in K lying below p; Dp = {σ ∈ G : σ(p) = p} is the decomposition group;
Ip = ker(Dp → Gal(kp/kq)) the inertia group; LDp and LIp are the fixed fields of Dp and Ip; p

′ and
p′′ are the primes in LDp and LIp , respectively; since L/K is Galois, all g primes in L lying above
q have the same ramification index e and inertia degree f , in particular, |G| = [L : K] = efg.

We will check the following

(1) q splits completely in LDp :
(a) We first show |Dp| = ef . Indeed, consider the set S = {h prime in OL : h | q} of g

elements, which carries a transitive action of G. The stabiliser of p ∈ S is Dp. By
orbit-stabilizer theorem, |G|/|Dp| = g = |G|/ef , implying |Dp| = ef .

(b) Now, we look at the Galois extension L/LDp . Consider now the transitive action
of Gal(L/LDp) = Dp on S = {h prime in OL : h | p′}. The stabilizer of p ∈ S is
{σ ∈ Dp : σ(p) = p} = Dp. It implies that S has just one element. Therefore,
|Gal(L/LDp)| = ep′fp′ as L/LDp is Galois, where ep′ , fp′ are ramification index and
inertia degree of any prime in L lying above p′.

(c) Combing the above two observations, noting also that ep′ ≤ e, fp′ ≤ f , we find ep′ =

e, fp′ = f , implying the ramification index and inertia degree of any prime in LDp lying

above q are all 1. Thus, q splits completely (into g distinct primes) in LDp .
(2) p′ is inert in LIp :

(a) We first show |Ip| = e. Indeed, by definition, we find |Ip| = |Dp|/|Gal(kp/kq)| = e.
(b) We look at the Galois extension L/LIp . Consider the decomposition group of p with

respect to L/LIp , which is {σ ∈ Ip : σ(p) = p} = Ip. The corresponding inertia group
is then ker(Ip → Gal(kp/kp′′)) = {σ ∈ Ip : σ(x) ≡ x (mod p) ∀x ∈ OL} = Ip. Thus, it
implies that Gal(kp/kp′′) = 1, i.e. fp′′ = 1.

(c) As q splits completely (into g distinct primes) in LDp , and as L/Lp is Galois, we know
|Ip| = |Gal(L/LIp)| = ep′′fp′′ . Combining with the previous two observations, we find

ep′′ = e i.e. any prime in LIp lying above p′ has ramification index 1 and inertia degree
fp′ = f .

Note that [LIp : LDp ] = [L : LDp ]/[L : LIp ] = f , so the only way to the above to be
possible is when p′ is inert in LIp .

(3) p′′ is totally ramified in L: This follows from fp′′ = 1, ep′′ = e and |Gal(L/LIp)| = e, as
proven above.

Remark 86. A consequence of the above analysis: p in L is unramified in L/K iff Ip = 0. In fact,
because L/K is Galois, all the ramification index of primes lying above q = p ∩ OK in K are the
same, meaning the consequence is equivalent to saying that q is unramified in L/K.

18.6.2. Inertia and decomposition groups for absolute Galois extensions. Just want to learn how to
define inertia and decomposition groups for infinite Galois extensions.
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Let K be a number field and a prime q of K. Fix an algebraic closure K of K and an algebraic
closure Kq of Kq. Let GK and GKq to be the absolute Galois groups of K and Kq, respectively.

(1) We choose an embedding ι : K ↪→ Kq extending K ↪→ Kq ↪→ Kq, i.e. we have the
commutative diagram

K K

Kq Kq

ι

We show that such a choice corresponds to a choice of prime ideal of OK dividing q, or

equivalently, choices of prime ideals dividing q for every extension K ⊂ L ⊂ K. Indeed,
there exists a unique norm on Kq extending the norm on Kq

58, making K ↪→ Kq → Kq into

a norm-preserving map. The elements of Kq with absolute value at most 1 form a closed
local subring OKq

with maximal ideal mKq
. The preimage of this maximal ideal under

K ↪→ Kq must be q, and hence ι−1(mKq
) is a prime ideal in OK dividing q, as desired.

Such a choice of ι : K ↪→ Kq induces a map

GKq ↪→ GK : σ 7→ ι−1 ◦ σ ◦ ι

given by restriction (which makes sense, since K/K is a normal extension), and is an
embedding since ι has dense image 59. In fact, the image of GKq is the decomposition group
Dp|q = {σ ∈ GK : σ(p) = p}, where p is the prime ideal of OK coming from the embedding
ι.

One can also do this for infinite place: Suppose K has a real place K ↪→ R, then each
embedding K ↪→ C gives rise to an injection embedding {1, c} = GR = Gal(C/R) ↪→ GK ,
where c is refered to as complex conjugation. By construction, all complex conjugations in
GK are conjugate to each other.

(2) The field OKq
/mKq

is an algebraic closure of of the finite field Fq := OKq/qOKq , which we

denote as Fq. This induces a continuous map GKq → GFq , which is surjective. Its kernel
IKq is called the inertia group of GKq . Its image in GK is the inertia group Ip|q. We have
the following diagrams

Iq|p Dq|p GK

1 IKq DKq GFq 1

∼= ∼=

where the bottom row is exact. In fact, we can see each of the group in the diagram as
inverse limit of corresponding groups in the finite-extension case, where we have the exact
same diagram.

58For a finite extension L/Kq, there exists a unique norm on L extending Kq, defined by | · |L := |NL/Kq(·)|1/[L:Kq]

Kq
.

Using this, one can construct a norm on Kq
59To see this, it suffices to show that any finite extension L/Kq has L∩K dense in L. By a consequence of Krasner’s

lemma, there exists a number field F/K and a prime p of F so that Fp = L, and we know that F ⊂ L ∩K is dense
in L = Fp
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19. July 2023

19.1. 04/07/2023: Condensed mathematics: How does it help? Continuation from 23/10/2021
and 22/01/2022. I managed to learn more about condensed mathematics. First, let’s list the three
big references

Sch1. Condensed Mathematics https://people.mpim-bonn.mpg.de/scholze/Condensed.pdf.
Sch2. Lectures on Analytic Geometry https://people.mpim-bonn.mpg.de/scholze/Analytic.

pdf.
Sch3. Condensed Mathematics and Complex Geometry https://people.mpim-bonn.mpg.de/

scholze/Complex.pdf

Goal: One wishes do algebra when your rings/modules/groups carry a topology. To carry this
goal, one meets many obstacles (see https://people.maths.ox.ac.uk/brantner/condensed1.

pdf for a list). I will try to explain 3 such obstacles that I barely got to appreciate, and how
Clausen-Scholze’s condensed mathematics help.

(1) Category of topological abelian groups, topological R-vector spaces or Banach spaces are
not abelian categories. For example, consider identity map R → R where we identity the
domain R with the discrete topology. This is a continuous map, a monomorphism and
epimorphism but not an isomorphism of topological spaces. This is a problem for studying
continuous representation of topological groups on topological vector spaces/abelian groups.
why this is a problem?

How Clausen-Scholze deal with this: Embed category of topological spaces/groups/rings
R into category of condensed sets/groups/rings R. The category Cond(Ab) of condensed
abelian groups is abelian, with closed symmetric monoidal structure Hom,⊗; has enough
projectives; and containing large class of topological abelian groups ([Sch1, Lecture 2]).

(2) Six-functor formalism 60: There is no 6-functor formalism in coherent cohomology (i.e. given
a scheme X, one can construct abelian category QCoh(X) of quasi-coherent sheaves on X,
inducing the derived category Dqcoh(X)). In particular, there is no proper/shriek push-
forward. For example, consider open embedding j : U = Spec k[T ](T ) → A1 = Spec k[T ],
which induces the pullback-functor

j∗ : QCoh(A1) = k[T ]-mod→ QCoh(U) = k[T ](T )-mod

M 7→M ⊗k[T ] k[T ](T )

If there is a six-functor formalism, j∗ = j! : Dqcoh(A1)→ Dqcoh(U) should admit left adjoint
j! : Dqcoh(U)→ Dqcoh(A1). This is not possible as j∗ does not preserve limits. For example,(
lim
n
k[T ]/(Tn)

)
⊗k[T ] k[T ](T ) = k[[T ]]⊗k[T ] k[T ](T ) 6= 0 = lim

n

(
k[T ]/(Tn)⊗k[T ] k[T ](T )

)
How Clausen-Scholze deal with this: For X = SpecR where R is a (discrete) ring, one

is tempting to define QCoh(X) to be the category of condensed R-modules (i.e. condensed
abelian groups with R-module structure), but this does not fix the problem, as the tensor
product defined here still do not commute with limits. One replace this with the abelian
subcategory of solid R-modules: Given (finitely generated ring) R, one can construct an
analytic ring R� (in particular, it is a condensed ring), then we can define solid R-modules
to be certain abelian subcategory of condensed R�-modules (see [Sch1. Lecture VII]). This
gives us the category of solid quasicoherent sheaves on schemes D(OX,�), which contain
Dqcoh(X) as certain fullsubcategory. The construction of proper push-forward is then de-
fined in [Sch1. Lecture VIII], giving six-functor formalism for solid quasicoherent sheaves.

60A reference I enjoyed reading from in order to write this down: https://webspace.science.uu.nl/~dobbe012/

doc/six-functors.pdf
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Having this, they then prove Grothendieck-Serre (solid) coherent duality (see [Sch1. Lec-
ture XI]) (before this, Grothendieck’s proof for coherent duality, due to the adhoc definition
of proper push-forward at the time, is said to be very complicated).

When R = R, one wish to do the similar construction as solid modules for discrete rings,
but at the same time wish it to be close to the notion of complete locally convex R-vector
spaces (e.g. Banach spaces). These are p-liquid R-vector spaces (see [Sch2. Theorem 6.5],
which is the main content of the first 9 lectures). Something I wish to know more: One of
the ingredients in this definition (even for solid modules) is that we want those condensed
R-vector spaces where one can do integration over compact Hausdorff spaces ?? What is
the use of developing something like this? I think it is explained in [Sch3.], where they
reprove some important theorems in complex manifolds. A result in spectral theory ([Sch3.
Appendix to Lecture V]) can be also reproved for p-liquid C-vector spaces!!

(3) Continuous group cohomology does not admit long exact sequences 61. For example, take
G = S1 acts on the short exact sequence 0 → Z → R → S1 → 0 where S1 acts trivially.
Then H1

cont(S
1,Z) = H1

cont(S
1,R) = H2

cont(S
1,Z) = 0 while H1

cont(S
1, S1) 6= 0.

How Clausen-Scholze deal with this: replaceH i
cont(G,M) by RHomZ[G](Z,M) where Z[G]

this time is a condensed set (see https://www.math.uni-bonn.de/people/ja/homology_

profinite.pdf, as I don’t know much to say more).

19.2. 04/07/2023: Six-functor formalism for representations of finite groups. Just saw
this notes https://www.math.nagoya-u.ac.jp/~larsh/teaching/S2021_A/ by Lars Hesselholt,
for an introductory course in representation theory, but using language of six-functor formalism
(see lecture 9,10,11) to prove induction-restriction adjunctions, and Mackey’s theorem. Although I
don’t find f ! being defined in the notes ...

61For how continuous group cohomology is defined, see (see https://stacks.math.columbia.edu/tag/0A2H). Let
M be a topological abelian group with continuous action by topological group G. When M has discrete topology,
Hi
cont(G,M) is the i-th derived functor of HomZ[G](Z,−). In this case, we do have long exact sequences. The nasty

case is when M has nondiscrete topology, then Hi
cont(G,M) is defined by continuous cochains
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20. August 2023

20.1. 01/08/2023: Non-formulated explanation of “entropy”. There is this nice intro-
ductory talk about entropy by Askay Venkatesh https://youtu.be/4EEjHji6axA, giving a non-
formulated explanation for the meaning of the word “entropy”.

To understand/categorize certain objects (or understand certain information) we view them as
inputs for potentially complicated processes/algorithm/information encoding, and the goal is to use
the outputs of to tell us as much as possible about the inputs. Entropy refers to ways to “count”
the inputs and outputs, while treating the process as black boxes, in order to reach certain extend
of our goal.

Some examples given in the talk:

(1) License plate: The inputs are the cars, the outputs are their license plate. Regardless of how
the assignments of license plates to cars are carried out, different cars must have different
license plates, i.e. number of inputs is less than number of outputs. From this count, we
find that densely populated territories tend to have longer license plate.

(2) Group testing: Given a group of people, the inputs are all the possible lists of people get
COVID among this group (suppose we know that at most N percent of them have COVID).
The process are the complicated testing protocols, and the outputs are the testing outcomes.
A successful testing protocol must have different testing outcomes to different different
scenarios of COVIDs in the group. By counting, one can obtain the minimal number of
tests needed in order to have any successful testing protocol.

(3) Shanon (1948) viewed the role of encoding information as inputs/outputs process, entropy
refers to the count of inputs and outputs.

(4) Second law of thermodynamics (origin of the word entropy): Heat can be turned into
motion/energy via various processes called heat engines. Entropy refers to the efficiency
of the engines, e.g. how many percent of heat is turned into motion, or how many is
wasteful into nature. And this entropy does not depend on how the engine is designed
(given a fixed input, i.e. a certain kind of heat)! So, an amazing thing is that one can use
entropy to distinguish different kinds of heat! Entropy (coined by Clausius 1865) comes
from the Greek word “trope”, meaning “transformation” or “tropics” in English, refers to
the “tranformational content” in this situation.

Q: Where does entropy is used in Venkatesh’s work? https://www.math.ias.edu/~akshay/

research/eklexp.pdf. What is this? https://ncatlab.org/johnbaez/show/Entropy+as+a+

functor

20.2. 02/08/2023: q-deformation, Sn vs GLn. I found a personal introductory notes https://
nicolaslibedinsky.cl/wp-content/uploads/2022/03/Introsurvey.pdf on representation the-
ory, focusing on categorification and deformation.

There are strong relations between symmetric groups Sn and general linear groups GLn

(1) GLn(Fq) is a q-deformation of Sn: We define the q-integer [n]q := 1 + q + . . .+ qn−1 ∈ Z[q]
which gives us n when q = 1. The q-deformation of the set n = {1, . . . , n} is said to be the
projective space nq := P(Fnq ) (the set of lines in the space Fnq ), as the cardinality of P(Fnq )
is [n]q, while the cardinality of {1, . . . , n} is n.

Likewise, the q-deformation of the set nk := {S ⊂ n : |S| = k} is the set nkq :=

{V subspace of Fnq : dim(V ) = k}. Because, the former set has n!
k!(n−k)! elements, while

the later has
[n]q !

[k]q ![n−k]q !
elements, where [n]q! := [n]q · · · [2]q[1]q.

The symmetric group is the group of all functions f : n→ n sending nk to itself, for all
k. Its q-deformation should then be the set of maps f : nq → nq sending nkq to itself, for
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all k. This is the group PGLn(Fq). The author explained why one should expect PGLn
instead of GLn in the notes. Don’t really understand this part

If one tries to compute cardinality between Sn and its expected q-deformation PGLn(Fq)
as before, we have the following result by Tits (1957): For Chevalley group scheme (e.g.
PGLn,GLn,SLn, Sp2n, SOn) over Z, then

Z[q] 3 |G(Fq)|
(q − 1)r

q→1−−−→ |W |.

where r is the rank of G and W is its Weyl group. By ignoring (q − 1)r = |T (Fq)|, this
suggests Tits to define G(F1) := W .

(2) From Sn to GLn and from GLn to Sn: The two groups are also related by Bruhat decom-
position B\GLn(k)/B ∼= Sn.

(3) Schur-Weyl duality: Irreducible representations of Sn over C are Sλ over all partitions λ of
n. Irreducible representations of GLn(C) are Vλ⊗deti where Vλ is irreducible representation
corresponding to partition λ (called Weyl modules), and det : GLn(C) → C× is the deter-
minant representation. Furthermore, one can see the duality between Sλ and Vλ by looking
at (Cn)⊗n under the action of Sn×GLn(C) on (Cn)⊗n. This gives us a decomposition into
tensor product of irreducible representations for the two groups

(Cn)⊗n =
⊕
λ`n

Sλ ⊗ Vλ

Another version of Schur-Weyl duality is that

EndC[Sn]((Cn)⊗n) ' C[GLn(C)],

EndC[GLn(C)]((Cn)⊗n) ' C[Sn].

20.3. 03/08/2023: Motivation: crystalline cohomology. There is a youtube talk https:

//youtu.be/FFH5HSbfcdg of Jacob Lurie on crystalline cohomology. I only listened to the first
half of the talk, which nicely motivates the reason for its existence and part of its definition.

(1) From singular to de-Rham: Suppose we have a smooth manifold X. de-Rham theorem
says that singular cohomology of X is the same as de-Rham cohomology of X. Now,
if X comes from a smooth algebraic variety over C, then we can construct its algebraic
de-Rham complex Ω∗X,alg, and the claim is that its cohomology is the same as singular

cohomology. Algebraic de-Rham complex gives a much easier (because Ω0
X,alg is a finitely

generated C-algebra, and Ωk
X,alg is a finitely generated Ω0

X,alg-module) way to compute
singular cohomology of X.

(2) de-Rham over field of positive characteristic: Now, algebraic de-Rham complex can also
be defined for smooth affine algebraic variety X over any field k. However, it has some
drawbacks when k is a field of positive characteristic p > 0. First is, H∗dR(X) := H(Ω∗X,alg)

is a k-vector space, which is almost always infinite-dimensional (for example, consider X =

A \ {0} has de-Rham complex k[z±1]
zn 7→nzn−1dz−−−−−−−−→ k[z±1]dz, giving non-trivial cohomology

of degree in multiples of p). It also implies that H∗dR(X) is a p-torsion abelian group. Under
many applications (e.g. point counting over finite fields), having p-torsion is not what we
desired for (because then we can only count things modulo p).

(3) To crystalline cohomology: To remove the obstacle of being positive characteristic, for
smooth affine algebraic variety X over Fp with coordinate ring R, we can choose a charac-

teristic zero lift of R i.e. a p-torsion free ring R with R ∼= R/pR, then consider algebraic
de-Rham complex Ω∗

R
, which satisfies Ω∗

R
/pΩ∗

R
' Ω∗R.
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Note that this definition depends on the choice of lift, and given any two lifts R and R
′

of R, they may not be isomorphic. However, they are isomorphic under p-adic completions.
This suggests to define

Ω̂∗
R

= lim←−
n

Ω∗
R
/pnΩ∗

R
.

Then given two lifts of R, the corresponding completed de-Rham complexes are isomorphic
(however, there is no canonical isomorphism). The non-canonical isomorphism suggests

Ω̂∗
R

does not depend functorially on X = SpecR, and hence, is difficult to extend the

construction for non-affine algebraic varieties. However, the cohomology group H∗(Ω̂∗
R

)
turns out to depend functorially on X!! These are crystalline cohomologies. The definition
of it (by Berthenot and Grothendieck) is very adhoc, in order for it to not depend on the
choice of lifts.

(4) Defining crystalline cohomology via deRham-Witt complex: Bloch, Deligne, Illusie associ-
ated to any smooth affine algebraic variety X over Fp with coordinate ring R, a cochain

complex WΩ∗R, depend functorially on R, and is isomorphic to Ω̂∗
R

for any lift R of R. These
are called de Rham-Witt complex, which gives crystalline cohomology. The disadvantage of
this definition is that the complex is very hard to describe explicitly, hence hard to compute.

Question: What is exactly the definition of de Rham-Witt complex?

20.4. 03/08/2023: Measures on semi-algebraic sets. The main reference is Yiannis’ paper
The Schwartz space of a smooth semi-algebraic stacks. I just want to write down what I understand
from it.

(1) (A sketchy definition of semi-algebraic geometry over R) A set M ⊂ Rn is semi-algebraic if
it can be written as finite union of sets defined by polynomial equalities and inequalitites.
They are closed under complements, finite unions/intersections, finite products, projections.
For a set X, one can give this a analytic structure by specifying its functions f : X → Z
are those with finite image and preimage f−1(z) is semi-algebraic. Then for semialgebraic
map X → Y , one can define pullback of functions, and push-forward by integrations.

(2) One can also define semi-algebraic over any local fields F (see Yiannis’ paper The Schwartz
space of a smooth semi-algebraic stacks). In fact, one can define a notion of semi-algebraic
manifolds/stacks, called Nash manifolds/stacks, i.e. to associate Nash topology and Nash
functions given a (F -analytic) scheme/algebraic stack.

(3) Why do we want to do this sort of semi-algebraic geometry? One of the purpose of the
paper is to construct Schwartz measures on F -analytic manifolds/stacks, and the paper
shows one should view these as cosheaf on the corresponding Nash manifolds/stacks. why
is that so? why can’t this just be cosheaf on the normal F -analytic topology? where does
the semi-algebraic plays a role here?

(4) Some examples of stacks where we care about Schwartz functions (over local fields) on it:
spherical varieties (mentioned in Yiannis’ paper), BunG (see Braveman, Kazhdan paper
Automorphic functions on moduli spaces of bundles on curves over local fields: a survey;
section 2, 3).

(5) Limitations of semi-algebraic geometry? There seems to be a lot to explore in this area
(see Yiannis’ paper). For example, it seems that we need F -analytic condition to define
semi-algebraic (see definition 2.1.3), so can we remove this condition? Check out bunch of
definitions in Yiannis’ paper.

20.5. 30/08/2023: Intersection theory: Chow rings of Pn. I read a bit about intersection the-
ory, following this friendly notes https://web.ma.utexas.edu/users/gregoric/EnumerativeFun.
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pdf of Rok Gregoric. The goal for the notes now is to define Chow rings and compute the Chow
ring of Pn.

(1) Chow rings: We will first define Chow ring of a smooth algebraic variety X of dimension n,
which is a convenient place to study intersection of subvarieties of X. An algebraic i-cycle is
a formal sum α = n1Z1 + . . .+nkZk with nj ∈ Z and Zj ⊂ X are i-dimensional subvarieties.
These i-cycles form an abelian groups Zi(X). We wish to identify two algebraic i-cycles if
they can be deformed one into another, i.e. α ' α′ (called rational equivalence as i-cycles if
there exists α ∈ Zi+1(X × P1), such that its restriction to fibers αt := α|X×{t} are i-cycles
in X, and α0 = α, α∞ = α′. We define the ith-Chow group of X to be Ai(X) := Zi(X)/ '.
We think of Chow groups as algebro-geometric analogue of homology group H∗(X,Z) for
compact oriented n-dimensional manifold X (because for a subvariety/submanifold Z ⊂ X,
one can make sense of [Z] in homology, just like how [Z] makes sense in Ai(X), called
fundamental class). From this analogy with homology where we have Poincare duality, we
also denote Ai(X) := An−i(X) where a subvariety Z is now indexed by its codimension.

We want to equip the ring structure on the Chow groupA∗(X) :=
⊕

iA
i(X) by essentially

taking intersections of subvarieties. For subvarieties Z,W of dimension i, j, respectively,
we want to define [Z] · [W ] = [Z ∩W ]. But to preserve the grading, Z ∩W has to has
codimension i + j, which is only possible when they intersect transversely, i.e. for any
p ∈ Z ∩ W , TpZ + TpW = TpX. To deal with non-transverse intersection, we use the
Moving Lemma, which roughly says there exists rationally equivalent cycles Z ' Z ′ and
W ' W ′ so that Z ′ intersects W ′ transversely. Then we can define [Z] · [W ] = [Z ′ ∩W ′],
which is independent of the choice of transversal representatives.

(2) Functoriality of Chow groups: For a map f : X → Y of smooth varieties, one can pullback
f∗ : A∗(X) → A∗(Y ) on Chow rings by f∗[Z] := [f−1(Z)] for subvariety Z ⊂ Y . In fact,
one can recover the intersection multiplication by pulling back the diagonal map ∆ : X →
X × X, precomposing with the natural map A∗(X) ⊗Z A

∗(X) → A∗(X × X), sending
(Z,W ) 7→ Z ×W .

Pushforward of Chow groups can only be defined for proper map f : X → Y of smooth
varieties. For a subvariety Z ⊂ X, its image f(Z) is a subvariety of dimension ≤ dimZ, we
define

f∗[Z] :=

{
0 dim f(Z) = dimZ,

deg(f |Z)[f(Z)] dim f(Z) = dimZ,

where the degree of f |Z is the number of points in its generic fiber 62. how to think of this
extra factor of degree, in terms of (co)homology? in terms of functions/measures?

(3) Chow rings of an affine stratified variety: If we have a stratification of X = tαXα into
(locally closed) affine subvarieties then A∗(X) is generated by fundamental classes of closed
strata [Xα].

(4) Chow rings of Pn: We have an affine stratification Pn = pt t A1 t · · · t An−1 where we
identity the (closed) strata with point, lines, planes, ... up to a hyperplane in Pn. Observe:
a point in P1 is a generic intersection n hyperplanes, a line is a generic intersection of
n − 1 hyperplances, ... Hence, if we choose a hyperplane H, giving ξ = [H] ∈ A1(Pn), by
Moving Lemma, the fundamental classes of these closed strata are ξn, . . . , ξ, respectively.
By previous proposition, we know these classes generated the Chow groups Ai(Pn) for
1 ≤ i ≤ n, while A0(P1) is generated by ξ0 = [Pn]. Thus, the Chow ring of a projective
space is A∗(Pn) = Z[ξ]/(ξn+1).

62or in arbitrary fiber, counted with multiplicity
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Somthing more to learn: It turns out computation of Chow rings can help to solve many enumer-
ative geometry questions (even the computation of Chow rings of Pn is very geometry). Some appli-
cations of intersection theory to enumerative geometry? Need to continue reading Gregoric notes.
Some more notes https://www.math.columbia.edu/~chaoli/docs/IntersectionTheory.html

on this theme.

20.6. 30/08/2023: K-theory vs G-theory vs Chow rings. I briefly learned about the relations
between (algebraic) K-theory (or G-theory) with Chow rings from this lecture notes https://www.
preschema.com/lecture-notes/intersection/ by Adeel A. Khan. A summary of what I learned

(1) Algebraic K-theory: (Lecture 13 lo. cit.) For a scheme X, K0(X) is the abelian group freely
generated by quasi-isomorphism classes of perfect complexes on X (i.e. chain complex of
quasi-coherent sheaves on X which restricts to perfect complexes over some open covering
...) modulo relations coming from exact triangles. When X is affine, K0(X) is the same as
the definition of K0 of a ring Γ(X,OX). Classically, for an algebraic variety X, its K0(X)
is then the same as Grothendieck group of vector bundles on X need to make more sense
of the vector bundle definition.

One can define a (cup) product on K0(X) (see lecture 8, which is only defined for affine
Noetherian X) by taking derived tensor product of perfect complexes. so how to define this
product for non-affine?

(2) Algebraic G-theory: If X is Noetherian, G0(X) is the abelian group freely generated by iso-
morphism classes of coherent sheaves on X, modulo relations coming from exact sequences
of coherent sheaves. The group G0(X) has a filtration, where for each p, G0(X)≥p is the
subgroup generated by class [F] so that codim(supp F)) ≥ p.

(3) K-theory vs G-theory: If X is regular (in particular, smooth), we have a canonical isomor-
phism K0(X) → G0(X). This gives G0(X) a ring structure. Why is this considered as
K-theoretic analogue of Poincare duality for singular (co)homology?.

In lecture 8, this is described when X = SpecA is affine: We know K0(X) = K0(PerfA)

with the product being derived tensor product. The isomorphism G0(X) = G0(A)
∼−→

K0(X) sends [M ] 7→ [M [0]] with inverse [M•] 7→
∑

i(−1)i[Hi(M•)]. The product on G0(X)
is then defined by, for finitely generated A-modules M,N :

[M ] ∪ [N ] =
∑
i≥0

(−1)i[Hi(M ⊗L N)].

(4) K-theory (G-theory) vs Chow rings: For smooth scheme X, there is a map of groups
Z∗(X)→ G0(X), sending [Y ] 7→ [OY ], which descends to a surjection A∗(X)→ Gr∗G0(X)
of graded rings(!), where GrpG0(X) := G0(X)≥p/G0(X)≥p+1 that is functorial with pull-
backs. This is an isomorphism after tensoring with Q (equivalently, the kernel is torsion).

Where is the role of derived algebraic geometry in intersection theory/K-theory? See https:

//www.preschema.com/lecture-notes/cohdag2022/cohdag2022.pdf, a lecture notes by Adeel
A. Khan. From what I understand so far: In Chow rings, we have Moving Lemma (or Thoms
transversality theorem in Borel-Moore homology) to remedy in defining product for non-transversal
intersection, but there is no such analogue for equivariant geometry, or in algebraic geometry in
other theories. The entry of derived algebraic geometry is that one can defined “derived intersec-
tion” Y ∩X Z of two subvarieties Y,Z of X, so that when taking its image in the corresponding
theories, gives us the derived intersection product. So what is derived intersection, why does it give
the same intersection product? Does it help in computation?

20.7. 30/08/2023: Relative spectrum and locally free sheaves as vector bundles. We
know that an A-algebra R, i.e. a ring map A→ R, corresponds to the map SpecR→ SpecA. Now
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we are given scheme X and a quasicoherent sheaf F of OX -algebras, we would like to construct a
scheme SpecF over X, called the relative spectrum of F over X.

There are two ways to see SpecF → X:

(1) Pulling back π : SpecF → X along affine open SpecA→ X gives Spec Γ(SpecA,F).
(2) It has a universal property: Let µ : W → X be an X-scheme then any morphism W →

SpecF of X-schemes is in functorial bijection with a morphism F → µ∗OW of sheaves of
OX -algebras. This in particular implies that we have an isomorphism F → π∗OSpecF.

Another motivation for this construction is that it gives a way to view locally free sheaves as vector
bundles, i.e. given a locally free sheaf F, we can construct a affine morphism Spec(Sym•F∨)→ X
who sheaf of sections is F (this is exercise §17.1.G of Ravi Vakil’s FOAG, Jul 31,2023 draft https:
//math.stanford.edu/~vakil/216blog/FOAGjul3123public.pdf). We call Spec(Sym•F∨) the
vector bundle associated to F.

Let X = P1 and F = O(−2), the cotangent sheaf. Then F∨ = Hom(O(−2),OX) = O(2), the
tangent sheaf. Then T ∗P1 = Spec(Sym•O(2)), viewed as a scheme over P1. As Sym•O(2) =⊕

i≥0 O(2i), and via (1), we know Spec
(⊕

i≥0 O(2i)
)

can be computed affine locally on P1, where

we know Γ(P1,O(2i)) consists of polynomials of degree at most 2i, we find

Γ(T ∗P1,OT ∗P1) =
⊕
i≥0

Γ(P1,O(2i))

So this is the space of all homogeneous polynomials of even degree in 2 variables. Suprisingly, this is
isomorphic to the associated graded of the noncommutative ring U(sl2)/(c) where c is the Casimir
element!
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