Talk 3 - $\$ 2$ of Venkatesh's nites
Recall: V_{N} rep of $\mathrm{SO}_{3}(\mathbb{R})$ of ali $2 N+1$ X_{N} char of V_{N}
Then $\left(x_{N} \sqrt{j}\right)\left(e^{X}\right)=\frac{e^{i\left(N+\frac{1}{2}\right) s}-e^{-i\left(N+\frac{1}{2}\right) s}}{i s}$
where $X \in S 0_{s},|X|=s \underset{\text { basis }}{\underset{\text { w rt }}{ }, J_{y}, J_{z}}$
$j \frac{\text { Jacobian at } X \text { of } \exp : 5 O_{3} \rightarrow \mathrm{SO}_{3}(\mathbb{R})}{4 \text { need }}$
4 meed to che ck....

- Dent $\widehat{\mu}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the Fries transform of the area measure of $S_{R}^{2} \subseteq \mathbb{R}^{3}$. then

$$
\begin{gathered}
\hat{\mu}(k)=\frac{e^{i R \lambda}-e^{-i R \lambda}}{\lambda \pi R} \\
\lambda=|k| \cdot, k \in \mathbb{R}^{3} \frac{i \lambda}{}
\end{gathered}
$$

\Rightarrow If we nasalise μ st. factor $2 \pi R$ dis apter and the total area is $2 N+1=\operatorname{din} V_{N}$ then
*)

Today: Ignore jacibian j, focw an explaning $S_{N+\frac{1}{2}}^{2}$ and $\mu_{\text {. }}$
Corolling: $X=0$

$$
\left.2 N t 1=\operatorname{din} V_{N}\right)=\int_{S_{N+\frac{1}{2}}^{2}} d \xi=\left(\begin{array}{c}
\text { area } \\
S_{N+1}^{2} \\
2_{N}
\end{array}\right.
$$

* Speculations of (*):
(1) Fprocorllary, there exsts $\left\{v_{1}, \ldots v_{N}\right\}$ basis of V_{N} in bjection with partition

$$
S_{N+\frac{1}{2}}^{2}=L_{K=1}^{2 N+} \theta_{K}
$$

sit. $\mu\left(\theta_{k}\right)=1$.
(2) If each v_{k} schsfies $\xi_{k} \in \Theta_{k}$

$$
s_{3} \approx V_{N} \frac{d_{j+f f_{3}}^{2} V_{N}}{} X \cdot \theta_{k} \simeq i\left\langle\xi_{k}, x\right\rangle V_{k} \text { for sme }
$$ then $e^{x}-v_{k} \simeq e^{i\langle\xi k\rangle} v_{k}$

then $\operatorname{Tr}\left(e^{x}\right)=\sum e^{i\left\langle\xi_{k}, x\right\rangle}=\int_{S_{N+\frac{1}{2}}^{2}} e^{\langle\xi, x\rangle} d \xi$
\Rightarrow Decomposition $S_{N+\frac{1}{2}}^{2}=\Delta O_{K}$ carrespand to diagmalisation of $\mathrm{SO}_{3}(\mathbb{R})$-action

- But the above picture is not correct as V_{N} is then som of 1 - him rep
- Better way ti speculate: v_{k} camber decomposed as sum of X-eigenvieetars, each witt elgralue $i\langle\xi, \lambda\rangle$ for same $\xi \in O_{k}$. Why wold $>[X, y] \cdot v_{k}=i\left\langle s_{\mid u s}[X, y]\right\rangle v_{k} \notin \theta$ this speculation $[x, y] \theta_{k}=X Y \theta_{k}-Y X v_{k}=0$ of ix this issue?

$$
i_{x}: \theta_{k} \rightarrow \mathbb{R} e_{x} \xi \mapsto\langle\xi, \lambda\rangle
$$

$$
v_{k}=\sum_{i=1}^{r} \alpha_{i} t_{i}, x t_{i}=i\left\langle\xi_{i} x\right\rangle t_{i}
$$

(*) General formala:

- G Le grp, $\xi \in g^{*}$

Adjointaction Ad: $G \rightarrow G L(g)$

- co-adjoint a ation $A d^{*}: G \rightarrow G L\left(g^{*}\right)$ by $\langle A d(g) v, f\rangle=\left\langle\theta, A d^{*}\left(g^{-1}\right) f\right\rangle$
- Let θb orbit of $\xi \in g^{*}$. differant.

$$
\begin{aligned}
& a d^{*}: g \rightarrow G d\left(c^{*}\right) \\
& r_{U_{1}} X^{*} v \in g^{*}
\end{aligned}
$$

$$
Y^{\prime}(0)=x, y(b)=1 \quad \ll \exp ^{\prime \prime}(x): I \rightarrow G
$$

$$
a d^{*}(x) v:=\frac{d}{d t} \int_{t=0}^{A d^{*}}(\exp (x)) v
$$

- Clain: $\operatorname{Tan}_{\xi} \theta=\left\{a d_{x}^{*}(\xi): x \in \mathcal{G}\right\}$

Priof: $\operatorname{fath} \underset{x}{\gamma(t)}=A d^{*} \underset{\sim}{\exp (t x)} \underset{\operatorname{epp} \text { of } x}{(\xi)} \underset{x}{ } x \in g$

$$
\begin{aligned}
& Y(0)=A d_{1}^{*}(\xi)=\xi . \\
& Y_{x}^{*}(0)=a d_{x}^{*}(\xi) \in T_{\xi}(0)
\end{aligned}
$$

Thus, we have defied a linear map

$$
\begin{aligned}
& g \rightarrow \operatorname{Tan}_{\xi}(0) \\
& X \mapsto Y_{x}^{\prime}(0)
\end{aligned}
$$

Its kernel those $x \in g$ sit. $a_{d}^{*} x(\xi)=0$.

$$
\left.\operatorname{ad}_{[x, y]}^{\alpha}=\left[\operatorname{ad}_{x}^{\alpha}, a d_{y}^{-}\right] \quad g_{\xi} \cdot \operatorname{Ln} \frac{s d}{d} \right\rvert\, g \text { of } g \text {. }
$$

- g_{ξ} is lee alg of G_{ξ}, stabiliser of ξ under $A d^{*}$.
Indeed, $\exp \left(g_{\xi}\right) \subset G_{\xi} \rightarrow T_{i d} G_{\xi} \supset J_{\xi}$.
Centrally, if $Y: I \rightarrow G_{\xi} \rightarrow Y(H) \in G_{b}$ ire. $A d_{Y(t))^{*}}=\xi \quad \forall^{3}$.

$$
\left.\operatorname{diff}_{d+1}^{d} C_{t=0} C_{y} a d^{*} y_{(0)}^{3}\right\}=0 \Rightarrow y^{\prime}\left(d \in g_{\delta} .\right\lrcorner
$$

- Injection $\mathrm{g} / \mathrm{g}_{\xi} \hookrightarrow \operatorname{Tan}_{\xi}(0)$
$O=G / G_{\xi}$ so $\mathrm{g} / \mathrm{g}_{\xi}$ and Tan_{ξ} (o) Lave Same din. \Rightarrow surgestive

$$
O=G \cdot \xi
$$

- There is a natural G-inuariat nandeg symplectic form w on O (i.e. an alternating na-deg bibilner furm on TUO) de fined by

For eart $t_{11} t_{2} \in \operatorname{Tan}_{\xi} \theta$, choose

$$
x, y \in g \text { sit. } x \cdot \xi=t_{1,} y \cdot \xi=t_{2}
$$

$$
w\left(t_{1}, t_{2}\right):=\xi([X, Y]), \quad \text { ad* }(*) \xi
$$

Cananical, ire. dresnit dependan ξ

Q well-defined, does net cepend on the choice of X and Y.
replace ξ by anythig in \mathcal{O}.

- Wis G-invariat: $g \in G, a_{n} T_{g \cdot \xi}(\theta)$ w_{2} have $\omega_{g_{9}^{\prime}}\left(g_{*}, t_{1}, g_{*} t_{\alpha}\right)=w_{4}\left(t_{1}, t_{2}\right)$ where $g_{*}^{g}: \operatorname{Tan}_{\xi_{s}}(0) \rightarrow \operatorname{Tan}_{g_{s}}(\theta) \begin{aligned} & \text { beccurse } \\ & g: O \rightarrow \theta \\ & \mathrm{Tad}^{*}\end{aligned}$ $\Rightarrow(\sigma, \omega)$ is a symplectic manifold. $A d^{*}$
- Example: - Adjont actiar of SO_{3} an So_{3} is iso to the rotation astier of SO_{3} on \mathbb{R}^{3}
\Rightarrow Co-adjoint action (conjugatotranspos of atgoint a tias) is alsi rotatia on \mathbb{R}^{3}
\Rightarrow Co-adjuit arbits camespond to Spheres in \mathbb{R}^{3}
O
Talways $\quad \operatorname{din}^{\prime \prime} 2$
evendim.
Theorem (Kivillov, others) G cynected Le grp (either nipotent or semisimple). T tempered rep of G (1,e. π^{n} lies" in $\left.L^{2}(G) \circlearrowleft G\right)$. Then there is ar arbit θ of G on g^{*} sit. $\left(X_{+}+\sqrt{j}\right)\left(e^{x}\right)=$ Fourler trans of $\left(\frac{\omega}{2 \pi}\right)^{d}$ an $0 \quad 1 w$ sympletic form to 0 $2 d=$ real dim of $0!?$
Upshot: $\left\{\begin{array}{l}\text { Klow where } O \text { cives } \\ \text { (1) Describe } 2 \text { explicitly fow to defie the } \mathrm{SO}_{3} \text { : }\end{array}\right.$ how to defiee the measure (exer 2.3 .7, p. 8) next time

