Last time: - Define a unitary rep of the Heisenberg group on $L^{2}(\mathbb{R})$:
Leis contains $\underset{\text { subgroups }}{\wedge} U_{b}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 \\ & 1\end{array}\right), V_{y}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & y \\ & 1\end{array}\right), W_{z}=\left(\begin{array}{cc}1 & z \\ 1 & 0 \\ & 1\end{array}\right)$
and these act an $L^{2}(R)$ by

$$
\begin{aligned}
& U_{x} \mapsto \tau_{x} \text { translation }(f(t) \mapsto f(t+\lambda)) \\
& V_{y} \mapsto m_{y} \text { multiplication }\left(f(t) \mapsto e^{i y t} f(t)\right)
\end{aligned}
$$

$W_{z} \mapsto$ scalar multiplication by $e^{i z}$.
unsoLVE: This rep is irreducible, using Schun's lemma.

- Part where we dónt understand last time:
- GLue group, H Wilbur space, we want to impose sore continuity condition on the rep $G \rightarrow$ End (H)
- The point is that asking for $G \rightarrow$ End (H) to be continuous is to strong, in the suse that the translation action $\mathbb{R} \rightarrow \operatorname{End}\left(L^{2}(\mathbb{R})\right.$ is not continuous \rightarrow can see this
\rightarrow Topology given by by noticing that operator norm
a very small trans action by $r \in \mathbb{R}$
i) very fat away from the identity operator.
$\left.a \mapsto T_{a} \quad\left\|T_{a}-i d\right\|_{o p} \geqslant \| T_{a}-i d\right) f \|_{/ \mid f \|}^{\text {is latge for }}$ good enough f
findicater func on some interval of $\operatorname{sizc} \ll$ a

$$
\begin{aligned}
& \left\|\left(t_{a}-i d\right) f\right\|=\left(\int_{\mathbb{R}}|f(x+a)-f(x)|^{2} d x\right)^{1 / 2} \\
& \text { nd, the corbanuity }
\end{aligned}
$$

- In the end, the continuity condition wet wat is $G \times H \rightarrow H$ being continuous.
Toddy: Want to give chacter formula for Hells $P L^{2}(\mathbb{R})$ $\$ 4.5,4.6$, that resembles Kivilov's char formula.
4.7 First problem: W_{z} acts as a scalar on $L^{2}(\mathbb{R})$ so cant of define trace of W_{z}.

Deal with this by working wot the the gap algebra of $G=$ Heirs.

* Group algebra: G locally campait group, $\pi: G \rightarrow U(H)$ irreducible rep. Then can define $L^{1}(G) \otimes^{\pi}{ }_{H}$ by

$$
A \in \hat{L}(G) \text { then } \pi(A) v=\int_{G} A(g)(g \cdot v) d g
$$

fix Haar measw of G

- $\Pi(A)$ is a banded operate $H \rightarrow H,\|\Pi(A) V\| \leqslant\|A\|_{L} \cdot\|v\|$.
- $C_{C}^{\infty}(G) \subset L^{\wedge}(G)$ is called group algebra of G.

Example: $G=\mathbb{R}^{2} L^{2}(\mathbb{R})$ by translation then $\quad A(x): A(-x)$

$$
(\pi(A) f)(H)=\int_{\mathbb{R}} A(x) f(x+t) d x=(f * A)(t)
$$

- Define a subspace H^{*} of H contains "smooth vectors" and H^{n} dense in H. What is purpose of this def?
* Compute the character from the gap algebra action:

$$
\begin{gathered}
A \in C_{C}^{\infty}(\text { Heis }),\left(T(A) f(t):=\int A\left(\begin{array}{cc}
1 & x \\
1 & z \\
1 & y
\end{array}\right) f(t+x) e^{i(y+z)} d x\right. \\
B(x, y):=\int A\left(\begin{array}{rr}
1 & x \\
1 & y \\
1 & 1
\end{array}\right) e^{i z} d z
\end{gathered}
$$

then

$$
(H(A) f)\left(H=\int B(x, y) f(x+t) e^{i t y} d x d y\right.
$$

Claim: $H(A) f$ is essentially $O p(\hat{B}) f$ up to a f fou signs, where \widehat{B} is Fowler transform on \mathbb{R}^{2}.
Sketch: $\tilde{B}(u, t):=\int B(x, y) e^{i(u x+t y)} d x d y$
Similar to, up to minis sign

$$
\operatorname{Tr}(o p(a))=\int a(00, \delta) d x d \xi
$$

$$
\begin{aligned}
& \text { So }(\pi(A) f)(t)=\int \hat{b}\left(u_{0} t\right) e^{-i u x s} f(t+x) d x d u \\
& =\int \frac{\hat{b}(u, t) e^{i u t} \hat{f}(-u)}{\|} d u \\
& :=\int_{\downarrow} \hat{B}(x, s) \hat{f}(\xi) \quad e^{-i x \varepsilon} d \xi . \\
& \text { op }(\hat{B}) f \text { of } u \text {, }<\widehat{B}(u, t)
\end{aligned}
$$

So, $\quad \operatorname{Tr} \pi(A) \sim \operatorname{Tr}(O P(\hat{B}))=\int \hat{B}(u, v) d u d v \stackrel{1}{=} B(0,0)$.

$$
=\int A(0,0, z) e^{i z} d z
$$

Actually, with the correct harmalisation of Fowler trans of B

$$
\begin{equation*}
\operatorname{Tr}(\pi(A))=(2 \pi) \int A(0,0, z) e^{i-} d z \tag{1}
\end{equation*}
$$

- Now, we wart a character formula of G :

See $\chi: G \rightarrow \mathbb{C}$ as a distribution $L^{\prime}(G) \rightarrow \mathbb{C}$ So χ as a distribution is defined as

$$
A \in L^{1}(G) \mapsto \int_{G} \chi(1) A(g) d g
$$

So we shoal interpret (1) as $X=(2 \pi) e^{1 t} \delta_{z \text {-axis }}$
Rencank: This suggests that τ_{x} ard m_{y} have trace 0 for $x, y \neq 0$. Ald we can show this for τ_{x} :
Choose a basis for $L^{2}(\mathbb{R})$ is which τ_{2} has entries supported strictly (above fie diagonal.

$$
f_{\sim} f\left(x x, \quad \psi_{n, k}(t)=e^{2 \pi i n t} \delta \quad \text { is a basis } \quad[\lambda \pi k, x(k+1))\right.
$$

so τ_{x} strictly above diagonal.
View the character as disvibation on g :

- Recall: For Hers,

$$
\exp \left(\begin{array}{ccc}
0 & x & y \\
& 0 & z \\
& & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & x & z+\frac{\lambda y}{2} \\
& 1 & y \\
& & 1
\end{array}\right) \text { is a differmaphism }
$$

with the Haar measure being preserved line. the jacobian $d x d y d z \longmapsto d>d y d z \quad$ is 1.

- If we pull back the character by exp we get a distribution on $\mathrm{Lie}($ Hers $)=y$

$$
\begin{aligned}
& C_{C}^{\infty}(g) \xrightarrow{\exp } C_{C}^{\infty}(G) \xrightarrow{x} \mathbb{C} \\
& \psi^{U} \longmapsto \exp ^{-1} \circ \psi \longmapsto \int_{\left(z^{\prime}\right)}\left(\exp _{G}^{-1} \circ \psi\right)(\Delta, 6, z) e^{i z} d_{z}
\end{aligned}
$$

Take fourier transform of the above or to get

$$
\begin{aligned}
& X\left(e^{x}\right)=\frac{1}{2 \pi} \int_{\alpha, \beta \in \mathbb{R}} e^{i\left(\alpha_{x}+\beta_{j}+z\right)} d \alpha d \beta \\
& \text { Because } \int \psi(0,0, z) e^{1 z} d z \sigma \int \hat{\psi}(\alpha, \beta, 1) d \alpha d \beta
\end{aligned}
$$

$$
\int_{t} e^{i t(1-z)} d z=\delta(1-+)=\int_{\substack{\text { Drac delta } \\ \text { func }}}=\underbrace{\int_{\left.\alpha, e^{x}\right)}^{e^{i(\alpha x+\beta y+z)}} d \alpha d \beta}_{\alpha, y, z}) \psi(x, y, z)
$$

