

Last time: tiers
$$T [2(P)]$$

. Describe Kirribov character formula for TT .
Today : Kirribov's theorem for theis
Theorem : There is a 1-1 correspondence between theis
(space of ivr unitary repsof Heis) and
Notis O of Heis (V Lie (Heis)*
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
The correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
This correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
The correspondence is determined by : for each O
there exists a unique rep TT_0 sortisfying
The correspondence is formula in the seare of
distributions : - rep T_0 of H as a rep of $C^{\circ}_{-}(H)$.
i.e. $f \in C^{\circ}_{-}(H)$, $v \in (MT_0)$
 $f = f(N) e^{i} dX$
 $TT(G) = (f(X) e^{i} dX)$
 $Tr(G) = (f(X) e^{i} dX)$
 $Tr(G) = (f(X) e^{i} dX)$
 $f(Y) e^{i} dX$
 $f = f(Y) e^{i} dX$

$$= \int \int W \left(\int_{0}^{\infty} e^{i\langle \xi, X \rangle} d\xi \right) dX$$

$$= \int_{0}^{\infty} \int f(\xi) d\xi \cdot$$

$$\Rightarrow \quad \forall A \text{ should be understood as:} \quad f \in C_{*}^{\infty}(h)$$

$$\text{Tr} \left(\int f(X)e^{X} dX \right) = \int_{0}^{\infty} \int f(\xi) d\xi \cdot$$

$$\frac{\text{Remarks}}{\text{In ass of the source of } O \text{ is point}}$$

$$\text{In ass of the source of } O \text{ is point}$$

$$\text{In ass of the source of } O \text{ is point}}$$

$$\text{This theorem halds for and sumply-connected, nellected is up of the source of $\binom{1}{2} \frac{X}{2} \frac{X}{1}$

$$\text{Construct To:} \quad (122) \text{ for } 0 \text{ of } (122) \text{ for } 0 \text{ of } 122) \text{ for } 0 \text{ of } (122) \text{ for } 122)$$

$$\text{Tr} \left(\frac{122}{13} \frac{X}{13} \right) \mapsto e^{1} (dX + \beta \theta) \cdot (122) \frac{1}{13} \frac{1}{13$$$$

Vy → multiplicition by y
W₂ → scalor multiplicitin by e¹Y².

$$\binom{\gamma_{A}}{A}\binom{\gamma_{A}^{+}}{A}\binom{\gamma_{A}^{+}}{A} = \binom{A - 2\gamma - 2\gamma}{A}$$
.
So, we can repeat §4 to compute obser formula
for this rep → corresponding co-adjoint arbit
is O_Y.
In other words, W^{X} (reflects induces W^{X} (relations)
by $\gamma \cdot O_{A} = O_{YX}$
 $\bigotimes Classify all T \in Heis$:
• By Schur's lemma: Action by the center $\binom{1-2}{A}$
induces operators on T that commute with theis
So by Schur's, we know $\binom{1-2}{A}V = A_{2}V$
for all $V \in (V,T)$, for some $A_{2} \in C$. Heis $V \rightarrow V$
We also have $A_{2+2'} = A_{2}A_{2'}$. Because T is continuous,
s⁻ A: $IR \rightarrow S^{+}$ is continuas and multiplicative.
→ $\lambda(2) = e^{1}r^{2}$ for some $\mu \in R$.
- If $\mu = 0$, we be all reps are 1-dom.
- If $\mu = 0$, which $\mu = 1$ by $IR^{X} \cap Heis$.

A theorem of Stare-van Neumann that the and it is in veps with
$$\mu = 1$$
 is, up to iso, $L^2(\mathbb{R})$ theis
If (T, V) is an interpose theis
there there I there I and (V) is also interpose because
 γ is an antomorphism on theis.
Remark: (there, $L^2(\mathbb{R})$ relates to quantum mechanics
- We get an action of Lic (there's) on $L^2(\mathbb{R})^m$.
- Lic (there's) generated by
 $U = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.
Siths fyrms $[Y, V] = W$
- Because exp(W) is central, W atts by scalar
i.e. $[Y_0, V] = \lambda Id$.
position

Now,... Go to
$$\xi_7$$
: Kirrilov's theorem for nilptent grps.
Today: State the theorem.
-G: connected, simply-connected, Lie gyp with milptent lie alg
i.e. $g = \text{Lie}(G)$ is nilpotent means
 $g \supseteq [g, g] \supseteq [g, [g, g]] \supseteq_{iii}$
U eventually 0.
. For such G, exp: $g \rightarrow G$ is a diffeo.
 \Rightarrow can think of the gyp structure being a g s given by
the Campbell-Balker-Hansdorff formula:
 $exp(X) exp(Y) = exp(X+Y+\frac{1}{2}[X,Y]+...)$
. G is a closed subgrp of uniptent grp $\begin{pmatrix} 1 \times X \\ Y \end{pmatrix}$
. Theorem: $\left\{ \text{Iver unitary} \right\} \xleftarrow{} f G - adnils \\ rups of G & Y \\ ru$

- When G is nilpotent:
$$j=1$$
, and (*) is inderstood
in the sense of distributions: i.e., $f \in C_c^{\infty}(g)$ then
 $Tr\left(\int_X f(X) Tr(e^X) dX\right) = \int f(g) dg$,
where $f(f) = \int f(X) e^{i\langle X \rangle X} dX$.
Note: the convergence of both sides is not obvious.