Last time: . Heirs ${ }^{\pi} L^{2}(\mathbb{R})$

- Describe Kimilor character formula for π.

Today: Kurrilov's theorem for Heirs

* Theorem: There is a $1-1$ correspondence between Heirs (space of ir unitary reps of Heirs) and obits θ of Heirs \otimes Le (Leis)*
This correspondence is determined by: fa each θ there exists a unique rep π_{θ} satisfying

$$
\begin{equation*}
\operatorname{Tr} \pi_{G}\left(e^{x}\right)=\int_{0} e^{i\langle\xi, x\rangle} d \xi \tag{*}
\end{equation*}
$$

Precisely, should understand this formula in the sense of distributions: $=\operatorname{rep} \pi_{0}$ of H as a rep of $C_{C}^{\infty}(H)$.
ie. $f \in C_{c}^{\infty}(H), v \in\left(v, \pi_{0}\right)$
raking trace makes sense
$f, v=\int_{H}^{2} f(h) h v d t$
\rightarrow Taking truce makes sense.

- far RHS: character $X: H \rightarrow \mathbb{C}$ cube sues as a distribution $\mathrm{C}_{C}^{\infty}(\mathrm{H}) \rightarrow \mathbb{C}$ by

$$
f \mapsto \int_{H} f(h) x(h) d h=\int_{h} f(x) x(x) d x
$$

$$
\begin{aligned}
& =\int_{x \in \eta} f(x)\left(\int_{0} e^{i\langle\xi, x\rangle} d \xi\right) d x \\
& =\int_{0} \hat{f}(\xi) d \xi .
\end{aligned}
$$

$\Rightarrow(*)$ should be understood as: $f \in C_{0}^{\infty}(h)$

$$
\operatorname{Tr}\left(\int f(x) e^{x} d x\right)=\int_{0} \hat{f}(\xi) d \xi .
$$

Remarks: - When θ is a point, measure on θ is point mass of measure 1 .
-This theorem hills for any simply-conected, nilpotent Le group, lie. a connected Lie subgip of $\left(\begin{array}{lll}1 & * & \\ & 1 & * \\ & & 1 \\ & & 1\end{array}\right)$

* Construct π_{0} :
- For $\left(C=\theta_{\alpha, \beta}=\{(\alpha, p, 0)\}\right.$ then π_{θ} vs 1 -din.

$$
\left(\begin{array}{c}
1 x \\
1 \\
1 \\
1 \\
1
\end{array}\right) \mapsto e^{i(\alpha x+\beta y)}
$$

- $\operatorname{Fr} O=\theta_{1}=\{(\alpha, \beta, 1): \alpha, \beta \in \mathbb{R}\}$, we have seen that $L(\mathbb{R})$ works.
- Far $\theta=\theta_{y}$ Where $Y \neq 1$:
- Notice that $Y \in \mathbb{R}^{x}$ acts Heirs by conjugating with $\binom{-1}{1_{1}}$.
$\rightarrow A$ now rep of Heirs: Hers $\xrightarrow{\gamma}$ Heirs $\xrightarrow{\theta_{1}} U\left(L^{2}(N)\right)$ $U_{x} \mapsto$ translation by γ_{x}
$V_{y} \mapsto$ multiplication by y
$W_{z} \mapsto$ scale mattiplication by $e^{i y z}$.

$$
\left(\begin{array}{ll}
\gamma_{1} & \\
& 1
\end{array}\right)\left(\begin{array}{cc}
1 & x z \\
1 & y \\
1 & 1
\end{array}\right)\left(\begin{array}{l}
\gamma_{1}^{-1} \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x y & z y \\
& 1 & y \\
& & 1
\end{array}\right) .
$$

Sos we car repeat $\$ 4$ to compute char formula
for this rep \rightarrow corresponding co-adjont orbit is Or.
In other wands, $\mathbb{R}^{x} \times \widehat{\text { Heirs induces }} \mathbb{R}^{x}$ orbits by $Y \cdot \theta_{\alpha}=\theta_{Y \alpha}$

* Classify all $T \in \widehat{H e i s}$:
- By Scar's lemma: Action by the center $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ indices operators on $I 1$ that commute with Heir
So by Schul's, we know $\left(\begin{array}{cc}1 & z \\ & 1 \\ & 1\end{array}\right) v=\lambda_{z} v$
$f \times$ all $v \in(V, \pi)$, for same $\lambda_{z} \in \mathbb{C}$. Hes $\times V \rightarrow V$
We also have $\lambda_{z+z^{\prime}}=\lambda_{t} \lambda_{z^{\prime}}$. Because π is continuous,
$s^{0} \lambda: \mathbb{R} \rightarrow S^{1}$ is continues and multiplicative.

$$
\leadsto \lambda(z)=e^{i} r^{z} \text { for some } \mu \in \mathbb{R} \text {. }
$$

\rightarrow If $\mu=0$, ie. $\left(\begin{array}{c}1, z \\ 1 \\ 1\end{array}\right)$ act as identity on V i.e. rep factors through Heis $/ Z\left(\right.$ Heir $\left._{6}\right) \simeq\left(\mathbb{R}_{j}^{2}+\right)$, which is abelians so all reps are 1 -dim.

- If $\mu \neq 0$, who $\mu=1$ by $\mathbb{R}^{x} \Omega_{\text {Leis. }}^{\mu}$

A the sram of Stane-ven Neumann that the anly iry keps with $\mu=1$ (s, up to iso, $L^{2}(\mathbb{R})$ ob theis If (π, V) is an (mepo 5 Heis
forn Heis \xrightarrow{y} Heis $\xrightarrow{\pi} U(v)$ is also iwep beccause $\gamma(1)$ an automarphim an Heis.
Remark: (Heis, $L^{2}(\mathbb{R})$ velates to quantum mechanico

- We get an acticn of Le(Heis) on $L^{2}(\mathbb{R})^{\infty}$.
- Luc(Heis) geneatied by

$$
u=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0
\end{array}\right), V=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 \\
& 0
\end{array}\right), W=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) \text {. }
$$

sitisfying $[U, v]=W$

- Because $\exp (W)$ us central, W a ts by scalar
le. $[U, V]=\lambda I d$.
$\xrightarrow[p-\text { sition }]{\longrightarrow}$ momentam.

Now,... Go to $\xi 7$: Kivrilov's theovem fa nilpetent grps.
Today: State the theorem.

- $G:$ connected) sinply-cwnect-d, Le grp with pilptent Lee alg i.e. $y=L_{e}(G)$ is nilpotent means

$$
g \supset[g, g] \supset[g,[g, g]] \supset_{\ldots}
$$

Is eventually 0 .

- For such G, exp: $g \rightarrow G 16$ a diffeo.
\rightarrow can think of the grp stucture being an g, giventoy the Camplell-Buker-Hansdarff formula:

$$
\exp (x) \exp (y)=\exp \left(x+y+\frac{1}{2}[x, y]+\ldots\right)
$$

- G is a closed subgrp of unpptent gip ($\left.\begin{array}{c}1 \\ 1 \\ 1 \times \\ 1 \\ 1\end{array}\right)$
- Theorem: $\left\{\begin{array}{l}\text { Irr unitary } \\ \text { reps of } G\end{array}\right\} \stackrel{\sim}{\longleftrightarrow}\left\{\begin{array}{c}G \text {-aboils } \\ \text { an } g^{*}\end{array}\right\}$
kivilov char farmula

$$
\begin{gather*}
\pi_{0} \longleftrightarrow \text { arbit } 0 \\
\text { s.t. } x \in g \quad \sqrt{j}\left(e^{x}\right) \operatorname{Tr} \pi_{0}\left(e^{x}\right) \tag{*}
\end{gather*}
$$

j Jacabian of exp $: g \rightarrow G<=$ Froviert rans $\begin{gathered}\text { of meackec } \\ \text { falk } 2\end{gathered}\left(\frac{\text { Volume measuee }}{\text { on } \theta)}\right)$.
$\left(\frac{\omega}{2 \pi}\right)^{d}$ where ω
symplactic $\operatorname{fan}_{\text {an }} 0,2 d=\operatorname{din} 0$

- When G is nilpotent: $j=1$, and (*) is understood is the sense of distributions: $1.1, f \in C_{c}^{\infty}(g)$ then
where $\hat{f}(\lambda)=\int f(x) e^{i\langle\lambda, x\rangle} d x$. 0
Note: the convergence of beth sides is nit obvious.

