Last time: - Defined pscudo-diff operators Op (a) for same "differential operator" $a(x, \xi)$
where $\{$ viewed as "differential symbol", x as variable for the cued of the operator

$$
\begin{aligned}
& (O p(a) f)(x)=\int a(x, \underbrace{\xi) \hat{f}}_{r}(\xi) e^{-\dot{D} \xi} d \xi . \\
& a \hat{f}^{\prime}=\left(\frac{d}{d x} f\right)(\xi) \Rightarrow O p(1) f=\frac{d}{d x} f
\end{aligned}
$$

egg: $a=-i \xi \mid \ldots 2 n$

- Describe conditions far $O p(a)$ to approximate an operator that localise both $f \subset L^{2}\left(\mathbb{R}^{2}\right)$ and \hat{f}.
(can only be approximation because f and \hat{f} cannot be both localised) Last time Op (a) f is localised but Op (a)f is new 0 far avay frame some.
- a smooth approx of $\chi_{I \times J}$
where I, J closed intervals in $\mathbb{R}\}$
- Length $\ell(I) \ell(J) \gg 1$ for $O p(a)$ to be a projection.
Today: - Discuss decomposition of $L^{2}(\mathbb{R})$ using pends diff operators.
$\$ 3.43 .5$ - Make sense of what is a precisely
Venkatesh routes

Now, $\mathbb{R}^{2}=\bigsqcup_{i \in N} \theta_{i}$ where $\theta_{i}=$ very la ge rectangle $I_{i} \times J_{i}$.
then $\quad I d_{E^{2}(\mathbb{R})}=O P(1)=O P\left(\sum_{i \in N} \chi_{\theta_{i}}\right)$

$$
\begin{gather*}
\simeq \sum_{i \in \mathbb{N}} \underbrace{O p\left(a_{i}\right)} \text { where } a_{i} \operatorname{smoth}_{\text {of }} \begin{array}{c}
\text { of } x_{\theta_{i}} \\
\approx \text { proportion operator. }
\end{array} \tag{1}
\end{gather*}
$$

- Let $V_{i}:=\operatorname{Im}_{L^{2}(\mathbb{R})} O p\left(a_{i}\right) \quad\binom{$ viewed approximately a_{s} fuchass }{$-f$ supported on I_{i} and $\hat{f}}$ supported an J_{i}
Then fran (1), $\mathbb{R}(\mathbb{R})=\sum_{i \in N} v_{i}$
In fact, $L^{2}(\mathbb{R})=\bigoplus_{\overparen{N}} V_{i}$ because $O P\left(a_{i}\right)$ are projection operators.
Indeed, size $\operatorname{Op}\left(a_{i}\right): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ projection, we hive $L^{2}(\mathbb{R})=V_{i} \oplus(\underbrace{1-O p\left(a_{j}\right)}_{j \neq i})) L^{L}(\mathbb{R})$
So f we have $f \in V_{i} \cap V_{j}$ then $f=0+f=f+0$,
a contradiction to above decomposition.
- Thus, we have a decompisitan of $L^{2}(\mathbb{R})$ that is vary geometric, is. it is based from partitioning \mathbb{R}^{2} into
rectangles!!
- In fact, the $d_{i m} V_{i}$ is related to trace of op $\left(a_{i}\right)$:

Claim: $\operatorname{Tr}\left(\operatorname{op}\left(a_{i}\right)\right)=\int_{\theta_{i}} a(x, \xi) d x d \xi \approx \operatorname{Area}\left(\theta_{i}\right)$.
Proof: Assume that $\theta_{i} f$ is Schwartz $<L^{2}(\mathbb{R})$:

$$
\begin{aligned}
(\text { Op (ai) } f)(x) & =\int a(x, \xi) \hat{f}(\xi) e^{-i x)} d \xi \\
& =\int a(x, \xi)\left(\int e^{i j \xi} f(y) d y\right) e^{-i x \xi} d \xi \\
& =\int \underbrace{\int a(x, \xi) e^{i(y-1) \xi} d \xi f(y) d y}_{K(x, y) \cdot \text { kernel }}
\end{aligned}
$$

If $O p(a)$ is of trace class (ie. $L^{2}(\mathbb{R})$ Hi bart \rightarrow orthonchal So trace of an integral kernel basis $\{x i\} \rightarrow$ trace

$$
\text { is } \begin{aligned}
\operatorname{Tr}(\operatorname{op}(a))=\int K(x, x) d x & =\int a(x, s) d x d s . \\
& \simeq \operatorname{Area}\left(\theta_{1}\right)
\end{aligned}
$$

because $a_{p} \approx \chi_{O_{i}}$
What symbols a are allowed to male sense of

$$
\begin{aligned}
& \text { bo ls a cate allowed to tala sense of } \\
& O p(a) O P(b)=O p\left(a b+i \partial_{\xi} a \partial_{x} b+\ldots\right)^{?} \text { ? }
\end{aligned}
$$

Answer: $a \in S_{m}=$ "diff operates of order $\leq m$ with banded coif".

$$
\left(>\sup _{x, j} \frac{\left|\partial_{x}^{i} \partial_{i}^{j} a(x, \xi)\right|}{(1+|\xi|)^{m-j}} \leqslant \cos +(i, j)\right.
$$

Fact: 1) If $a \in S_{m i} b \in S_{m^{\prime}}$

$$
\begin{aligned}
& \text { then } \exists c \in S_{m+m^{\prime}} \text { so } O p(a) O p(b)=O p(c) . \\
& 2 c \approx \sum_{N=0}^{\omega} \frac{i N}{N!} \partial_{\xi}^{N} a \partial_{x}^{N} b \text { for large } w .
\end{aligned}
$$

Remark: The theory is not symmetric in the sense that it desist work if \mathbb{R}^{2} is patituned into rotated ractangks, fr example.
§4 of Venkatesti's lectures
Next+ask: Using arid method, $L^{2}(\mathbb{R})$ should be a rep of same gray H so that the corresponding co-adjont ambit of H is \mathbb{R}^{2}.

- And the kivillovolaracter formula should correspond to

$$
\operatorname{Tr}(o p(\lambda))=\int_{\mathbb{R}^{2}} a(\lambda 1, \xi) d x d \xi
$$

- The decomposition of $L^{2}(Q) \mathbb{R}^{2}$ and of \mathbb{R}^{2} reflect gun speculation.
Q: What is H then? \rightarrow suggests that localised functions (ier. tho er in V_{i}) should be eigenvectors under the action of H.
- \hat{f} beng lralised is equivalent to faro $\frac{e^{i \xi s x} \text { ? Why is this }}{\text { ? the? }}$
\Rightarrow H should catain translation operator y $\left(\tau_{y} f\right)(t)=e^{i \xi(t+9)}$

$$
\left(\tau_{y} f\right)(t)=f(t+y)
$$

$$
=e^{i \xi y} f(H)
$$

Take the Fourier transform of the above to get that H should als. catain multiplication operator?
$(m, f)(t)-e^{i x y} f(x)$?

$$
\begin{gathered}
\left(m_{y} f\right)(t)=e^{i x y} f(x) \\
f=\delta \quad \hat{\tau}_{y}(f)\left(A=\tau_{y}(\hat{f}) \mid(t)=\widehat{f}(y+t) \gamma^{f=e^{i s t}}\right. \\
\leftarrow \delta_{i=}^{\infty}(y+t-\xi)^{2} \\
\int_{-\infty}^{-2+i(y+t-\xi) z} d z
\end{gathered}
$$

