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Prerequisites

1.1 Some references

Relevant notes:

1. Linear algebraic group: http://www.math.toronto.edu/murnaghan/courses/
algp.pdf

2. Rep theory of p-adic groups:

Check this out http://www.math.tau.ac.il/~bernstei/Publication_list/
publication_texts/B-Zel-RepsGL-Usp.pdf

See youtube lecture: https://youtu.be/jRq1TSiHeHo https://www.youtube.
com/user/iiserpunemedia/search?query=langlands https://www.youtube.
com/watch?v=r0dhI0vX38s https://sites.google.com/site/repsofpadic/
(see video of talks) (Somehow I can understand this lecture!)

https://math.mit.edu/~charchan/711LectureNotes.pdf http://virtualmath1.
stanford.edu/~conrad/conversesem/refs/snowden.pdf

http://virtualmath1.stanford.edu/~conrad/conversesem/ New notes found.

http://people.math.harvard.edu/~gaitsgde/Jerusalem_2010/GradStudentSeminar/
p-adic.pdf

https://webusers.imj-prg.fr/~corinne.blondel/Blondel_Beijin.pdf

http://www.ims.nus.edu.sg/Programs/liegroups/files/sing.pdf

http://www.math.lsa.umich.edu/~smdbackr/MATH/notes.pdf

http://www.math.toronto.edu/murnaghan/courses/mat1197/notes.pdf (The
Satake isomorphism, Macdonald’s formula and spherical representations)

https://math.uchicago.edu/~ngo/Rep-p-adic.pdf

http://www.math.columbia.edu/~phlee/CourseNotes/p-adicGroups.pdf

https://www.math.toronto.edu/~herzig/smooth_representations.pdf

http://www.ims.nus.edu.sg/Programs/liegroups/files/Rep-classical-groups.
pdf

https://www.uni-math.gwdg.de/rameyer/download/Guiraud_Diplomarbeit_
Jacquets_Functors_in_the_Representation_Theory_of_Reductive_p-Adic_
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Groups.pdf Very detailed explanation up to Jacquet functor and parabolic
induction.

Godement, IAS, about GL(2) http://www.math.ubc.ca/~cass/research/pdf/
godement-ias.pdf

https://www.math.ubc.ca/~cass/research/pdf/Jacquet.pdf

Admissible rep https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.
pdf

Summary http://www.math.tifr.res.in/~dprasad/dp-mod-p-2010.pdf

GL2 https://www.math.ucla.edu/~jonr/eprints/padic.pdf

3. Local Langlands for GLn/ GLn rep:

https://metaphor.ethz.ch/x/2018/fs/401-4114-18L/sc/representations.
pdf

http://web.stanford.edu/~vogti/LLC.pdf

http://www.math.tifr.res.in/~dprasad/ictp2.pdf (rep of GLn)

http://www.ma.huji.ac.il/~kazhdan/padic.pdf

4. Automorphic forms and representations: https://math.ou.edu/~kmartin/
papers/mfs.pdf

5. Mathematicians:

Bill Casselman.

6. Some about GL2/n over finite fields:

https://pdfs.semanticscholar.org/7572/0b6a0f87f340666863a17c43bcf94283f6d1.
pdf (last section)

https://www.imsc.res.in/~amri/html_notes/notes.html

http://www-users.math.umn.edu/~garrett/m/repns/notes_2014-15/04_finite_
GL2.pdf

https://www.ams.org/journals/tran/1955-080-02/S0002-9947-1955-0072878-2/
S0002-9947-1955-0072878-2.pdf

7. http://users.ictp.it/~pub_off/lectures/lns021/Wedhorn/Wedhorn.pdf

8. http://math.columbia.edu/~mundy/llp.html

9. http://math.columbia.edu/~mundy/lcnt.pdf Very short note leading up to
Tate’s thesis.

10. http://www.math.columbia.edu/~phlee/S17-Langlands/index.html More
ref.

11. https://math.columbia.edu/~rdobben/The%20Local%20Langlands%20Correspondences.
pdf A essay following C.J. Bushnell, G. Henniart’s book.
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1.2 Topology

1.2.1 General topology

Definition 1.2.1.1. Given a topological space X and subset S of X. The subspace
topology on S is defined as: a subset S′ of S is open if S′ = S ∩ X′ where X′ open
subset of X. S is then called subspace of X.

Definition 1.2.1.2 (Product topology). The topology of the product X = ∏i∈I Xi of
topological spaces Xi whose open sets are union of ∏i∈I Ui, where Ui open subsets
of Xi with the condition that Ui = Xi for all but finitely many indices i.

Definition 1.2.1.3. A topology is locally compact if every point in X has an open
neighborhood which is contained in a compact set. A topological space is compact
if each of its open covers has finite subcover.

Definition 1.2.1.4. A map f : X → Y is continuous if the preimage of any open set
is open.

closedmaplemmaLemma 1.2.1.5. Every continuous function f : X → Y from a compact space X
to a Hausdorff space Y is closed and proper (i.e. preimages of compact sets are
compact).

Continuous image of compact sets are compact. Projections out of product
spaces are open maps. More about basic general topology, see this blog. See also
Moller’s note.

Definition 1.2.1.6. The closure of A is the intersection of all closed sets containing
A.

Definition 1.2.1.7. A point x ∈ X is a limit point of A if every neighborhood of x
must contain a point in A other than x itself.

1.2.2 Topological groups

Definition 1.2.2.1 (Topological group). A topological group G is a topological
space that is also a group such that the group operations of product G× G → G
and of taking inverses G → G are continuous (i.e. for any open set U ⊂ G we have
f−1(U) is open in the domain of f , then the function f is continuous). Here G×G
viewed as a topological space with the product topology. So the product is con-
tinuous if for all open U ⊂ G such that xy ∈ U, there exists open V ×W ⊂ G× G
with (x, y) ∈ V ×W and V ·W ⊂ U, and taking inverse is continuous if for all
open U ⊂ G with x−1 ∈ G, there exists open V ⊂ G with x ∈ V and V−1 ⊂ U.

For a topological group G, the left-multiplication map h 7→ gh is a homeomor-
phism. Therefore, in order to describe the topology on G, it is enough to specify
a base of open sets about a given element of G, for then one may just translate
this base via left-multiplication map to all element of G and get a base for the full
topology. For more, see here or here or here or here for some more properties of
topological group.
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TopGroupPropertiesProposition 1.2.2.2. For topological group G then

1. Subgroup H of G is also a topological group from the induced topology.

2. Subgroup H is open iff it contains nonempty open subset.

3. Open subgroup H of G is also closed. Furthermore, a closed subgroup H
of finite index in G is open.

4. U ⊂ G open iff gU open iff U−1 open iff Ug open.

5. The closure of a subgroup is a subgroup, the closure of a normal subgroup
is a normal subgroup.

6. If H subgroup of G then the quotient topology on G/H is defined such
as set U ⊂ G/H is open iff ρ−1(U) is open in the topology of G, where
ρ : G → G/H is the canonical projection map.

7. The canonical projection ρ : G → G/H is an open map.

8. Each translation map on G/H is continuous function.

9. G/H is Hausdorff iff H closed subgroup of G.

10. G/H discrete topological space iff H open subgroup of G. If furthermore,
G is compact then G/H discrete finite topological space iff H is open.

11. If G is Hausdorff, H compact subgroup then canonical projection ρ : G →
G/H is closed map.

12. If f : G → H is a continuous map of topological groups, then for any
closed (res. open) subgroup K of H, f−1(K) is a closed (resp. open)
subgroup of H.

13. H subgroup of G, then the closure of H is the intersection of all HU where
U open subset containing 1.

Proof. 1.

2. Suppose U ⊂ H is a nonempty open set then for any u ∈ U, h ∈ H we
have hu−1U ⊂ H is an open set (due to left-multiplication being homeomor-
phism). Hence, hu−1U ⊂ H is an open neighborhood of h, implying H is
open.

3. If H is open subgroup of G, we show H is closed by proving G \ H is open.
Since H is open so there exists open neighborhood U ⊂ H of 1 ∈ H. For
g 6∈ H, note gU ∩ H = ∅ and gU is open, implying G \ H is open. Thus, H
is closed.

10
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4. This is consequence of the fact that left/right-multiplication and taking in-
verse are homeomorphisms (being continuous is enough I think).

5. Let H the closure of subgroup H of G. If x is a limit point and h ∈ H then for
any neighborhood U of x, we have Uh a neighborhood of xh that contains
a point in H other than xh since U contains element in H other than x.
Hence, xh is a limit point of H, meaning xh ∈ H. Associativity and identity
element are inherited from group G. To check for invertible element of limit
point x, corresponding to neighborhood U of x we have U−1x−1 which is
neighborhood of U that contains element in H.

6. Just definition of topology of G/H.

7. Suppose U open map of G, then UH is also open in G. As ρ−1(ρ(U)) = UH
and ρ being continuous, we obtain ρ(U) being open in G/H. Thus, ρ is an
open map.

8. If U is an open set in G/H then
⋃

g∈U gH is open in G. Say we have left-

multiplication ρ′g by g′ ∈ G then as
⋃

g∈U g′−1gH is open in G so ρ
(⋃

g∈U g′−1gH
)
=

(g′)−1U open in G/H since projection ρ is open map. Thus, left-multiplication
by g′ on G/H is continuous.

Proposition 1.2.2.3. Denote G topological group and U filter of all neighbor-
hoods of 1.

1. Let A ⊂ G then A =
⋂

U∈U AU =
⋂

U∈U AU.

2. If A is closed and K compact subset of G, then AK is closed subset.

3. For every identity neighborhood U in G there is a closed identity neigh-
borhood C such that C ⊂ U.

1.3 Basic knowledge about local fields

I follow chapter II of Neukirch’s algebraic number theory book to learn definition
of local field.

There’s also a book of I.B. Fesenko and S.V. Vostokov about local fields and
their extensions.

1.3.1 Two constructions of field Qp of p-adic numbers

Via inverse limit

One view Zp as set of formal infinite series ∑∞
v=0 av pv (called p-adic integer) where

0 ≤ ai < p for all i = 0, 1, . . . We then expand Zp into formal series ∑∞
v=−m av pv

11
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where m ∈ Z and 0 ≤ av < p. Such series are called p-adic numbers and write Qp
set of all these p-adic numbers. If f ∈ Q is any rational number, then f = p−m · g/h
where g, h ∈ Z and gcd(gh, p) = 1. This way, we obtain canonical mapping
Q→ Qp which takes Z to Zp.

One can turn Zp into a ring and Qp into its field of fractions. The key is to
view Zp as lim←−n

Z/pnZ, i.e. element of Zp is viewed as sequence (s1, s2, . . .) where
sn = ∑n−1

v=0 av pv ∈ Z/pnZ. Addition and multiplication is obtained elementwise
in this sequence.

Via p-adic valuation

Representation of p-adic integer

a0 + a1 p + · · · , 0 ≤ ai < p (1.3.1.1) {eq:p-adicExpansion}

resembles very much the decimal fraction representation a0 + a1
1

10 + a2
( 1

10

)2
+

· · · , 0 ≤ ai < 10 of a real number between 0 and 10. But it does not converge as
the decimal fraction does. The field Qp can be constructed from the field Q in the
same fashion as the field of real numbers R. The key to this is replace the ordinary
absolute value by a new p-adic absolute value ||p with respect to which the series
eq. (1.3.1.1) converge so that the p-adic numbers appear in the usual manner as
limits of Cauchy sequences of rational numbers.

The p-adic absolute value ||p is defined as follow: Let a ∈ Q be nonzero
rational number. We can write a = pm · (b/c) where gcd(bc, p) = 1 and we put
|a|p = p−m. The exponent m in the representation of a is denoted by vp(a), and
one put formally vp(0) = ∞. This gives the function vp : Q → Z ∪ {∞}, which
can be checked to satisfy following property

1. vp(a) = ∞ ⇐⇒ a = 0,

2. vp(ab) = vp(a) + vp(b),

3. vp(a + b) ≥ min{vp(a), vp(b)}.

The function vp is called the p-adic exponential valuation of Q. The p-adic absolute
value is given by

||p : Q→ R, a 7→ |a|p = p−vp(a)

which satisfies the conditions of a norm on Q:

1. |a|p = 0 ⇐⇒ a = 0,

2. |ab|p = |a|p|b|p,

3. |a + b|p ≤ max{|a|p, |b|p} ≤ |a|p + |b|p.

12
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One will see later that the absolute values ||p and || essentially exhaust all norms
on Q.

Now, we give new definition of field Qp. A Cauchy sequence with respect to ||p
is a sequence {xn} of rational numbers such that for every ε > 0, there exists a
positive integer n0 satisfying |xn − xm| < ε for all n, m ≥ n0. A sequence {xn} in
Q is called a nullsequence with respect to ||p if |xn|p is a sequence converging to 0
in the usual sense.

The Cauchy sequences form a ring R, the nullsequences form a maximal ideal
m, and we define Qp := R/m. We embed Q in Qp by associating to every element
a ∈ Q the residue class of the constant sequence (a, a, . . .). The p-adic absolute
value ||p on Q is extended to Qp by giving element x = {xn} mod m ∈ R/m the
absolute value

|x|p := lim
n→∞
|xn|p ∈ R.

This limit exists because {|xn|p} is a Cauchy sequence in R (||xn|p− |xm|p| ≤ |xn−
xm|p < ε), and it is independent of the choice of the sequence {xn} within its class
mod m because any p-adic nullsequence {yn} ∈ m satisfies limn→∞ |yn|p = 0.

The p-adic exponential value vp on Q extends to an exponential valuation
vp : Qp → Z ∪ {∞} as follow: If x ∈ Qp is the class of Cauchy sequence {xn}
where xn 6= 0, then vp(xn) = − logp |xn|p either diverges to ∞ or is a Cauchy
sequence in Z which eventually must become constant for large n since Z is
discrete. Hence, we put

vp(x) = lim
n→∞

vp(xn) = vp(xn) for n ≥ n0.

The field of Qp is complete with respect to ||p, i.e. every Cauchy sequence in
Qp converges with respect to ||p.

Due to an important property of ||p, which is |x + y| ≤ max{|x|p, |y|p}, we
obtain the fact that the set Zp := {x ∈ Qp : |x|p ≤ 1} is a subring of Qp and is the
closure with respect to ||p of the ring Z in Qp.

The group of units of Zp is Z∗p = {x ∈ Zp : |x|p = 1}. Every element
x ∈ Q∗p admits a unique representation x = pmu with m ∈ Z, u ∈ Z∗p. Indeed,
if vp(x) = m ∈ Z then vp(xp−m) = 0, hence |xp−m|p = 1, i.e. u = xp−m ∈ Z∗p.
Furthermore, we find that the nonzero ideals of the ring Zp are the principal ideal
pnZp = {x ∈ Qp : vp(x) ≥ n}, with n ≥ 0 and one has Zp/pnZp ∼= Z/pnZ.
With this, we can show that Zp is exactly the same as in first definition, i.e. Zp ∼=
lim←−n

Z/pnZ.

1.3.2 Valuations

We generalize the previous procedure of producing Qp from Q using the concept
of valuation:

Definition 1.3.2.1. A valuation of a field K is a function |.| : K → R satisfying
following

13
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1. |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0,

2. |xy| = |x||y|,

3. |x + y| ≤ |x|+ |y|

If the stronger condition |x + y| ≤ max(|x|, |y|) holds, then |.| is nonarchimedean.

With this, one can turn K into a metric space (in paricular a Hausdorff topo-
logical space) by defining distnce between x, y ∈ K by d(x, y) = |x − y|. Two
valuations of K are called equivalent if they denote the same topology on K. One
can show that two valuations ||1 and ||2 on K are equivalent iff there exists real
number s > 0 such that |x|1 = |x|s2 for all x ∈ K.

We then have approximation theorem (but I guess it is irrelevant at this point
to write out).

The valuation || is called nonarchimedean if |n| stays bounded for all n ∈ N.
Equivalently, it is nonarchimedean iff the inequality |x + y| ≤ max {|x|, |y|}.

Let || be nonarchimedean valuation of field K. Putting

v(x) = − log |x| for x 6= 0 and v(0) = ∞,

we obtain a function v : K → R∪ {∞} satisfying the same properties for vp of Qp.
Function v on K with these properties is called exponential valuation on K. For any
exponential valuation v we obtain a valuation (which will be called multiplicative
valuation or absolute value) || by putting |x| = q−v(x) for some fixed real q > 1.

Example 1.3.2.2 (Valuation of rational function field). Let k(t) rational function
field over k, we have the ring k[t] inside k(t), the prime ideal p 6= 0 which are
given by monic irreducible polynomial p(t) ∈ k[t]. For every such p, one defines
absolute value ||p : k(t) → R as follow: Let f (t) = g(t)/h(t), g(t), h(t) ∈ k[t] be
nonzero rational function. We extract from g(t), h(t) the highest possible power
of irreducible polynomial p(t), say power is m, and put

vp( f ) = m, | f |p = q−vp( f )
q .

where qp = qdp , dp being the degree of residue class field of p over k and q fixed
real number > 1. Furthermore, we put vp(0) = ∞ and |0|p = 0.

For function field k(t), there is one more exponential valuation v∞ : k(t) →
Z∪∞, namely v∞( f ) = deg h− deg g, where f = g/h 6= 0, g, h ∈ k[t]. y

Example 1.3.2.3 (Valutation of Qp). We have vp(0) = 0 and for any x ∈ Q×p then
exists m ∈ Z, u ∈ Zp so x = pmu. Let vp(x) = −m. y

The conditions for v imply that

Proposition 1.3.2.4. The subset O = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1} is
a ring with group of units O∗ = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1} and
the unique maximal ideal p = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1}.

14
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O is an integral domain with field of fractions K and has the property that for
every x ∈ K, at least one of x, x−1 must be in O. Such a ring is called valuation
ring. Its only maximal ideal is p = {x ∈ O : x−1 6∈ O}. The field O/p is called the
residue class field of O. A valuation ring is always integrally closed.

An exponential valuation ring v is called discrete if it admits a smallest positive
value s. In this case, one finds v(K∗) = sZ.

Question 1.3.2.5. Why having s as smallest positive value would imply v(K∗) =
sZ.

It is called normalized if s = 1. Dividing by s we may always pass to normalized
valuation without changing the invariants O,O∗, p. Having done so, an element
π ∈ O such that v(π) = 1 is a prime element, and every element x ∈ K∗ admits
unique representation x = uπm with m ∈ Z and u ∈ O∗. For if v(x) = m, then
v(xπ−m) = 0, hence u = xπ−m ∈ O∗.

Proposition 1.3.2.6. If v discrete exponential valuation of K, then O = {x ∈ K :
v(x) ≥ 0} is a principal ideal domain, hence a discrete valuation ring (i.e. a
principal ideal domain with unique maximal ideal). Suppose v is normalized.
Then the nonzero ideals of O are given by

pn = πnO = {x ∈ K : v(x) ≥ n}, n ≥ 0,

where π is a prime element, i.e. v(π) = 1. One has pn/pn+1 ∼= O/p.

Question 1.3.2.7. Why pn = πnO?

Answer. Since v is discrete exponential normalized valuation of K so v(K∗) = Z.
Hence, if v(x) > 0 means v(x) ≥ 1. This follows from the definition of p that
p = {x ∈ K : v(x) ≥ 1} so π ∈ p. Note v(π−1) = −v(π) = −1 so v(pπ−1) ≥ 0
implying pπ−1 ⊂ O. Conversely, O ⊂ pπ−1 due to valutation v.

In a discrete valued field K the chain O ⊃ p ⊃ p2 ⊃ p3 ⊃ · · · consisting
of the ideals of the valuation ring O forms a basis of neighborhoods of the zero
element. Indeed, if v is normalozed exponential valuation and || = q−v(q > 1) an
associated multiplicative valuation, then

pn =
{

x ∈ K : |x| < q1−n
}

.

Question 1.3.2.8. Why pn is like this? Shouldn’t it be |x| ≤ q−n?

Answer. Note we are talking about discrete normalized valuation v so v(K∗) = Z,
so v(x) ≥ n equivalent to v(x) > n− 1 which gives |x| < q1−n.

Example 1.3.2.9. So here we have K = Qp,O = Zp and pn = pnZp. y

Example 1.3.2.10. In case of rational function field K = k(t), say p = (x − a)
then with vp as defined before, we find O consists of rational functions f (t) =
(x− a)m · g(t)/h(t) where m ≥ 0. The residue class field then is just k. y

15
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As a basis of neighborhoods of element 1 of K∗, we obtain in the same way the
descending chain O∗ = U(0) ⊃ U(1) ⊃ U(2) ⊃ · · · of subgroups

U(n) = 1 + pn =
{

x ∈ K : |1− x| < q1−n
}

, n > 0,

of O∗. U(n) is called the nth higher unit group and U(1) the group of principal units.

Proposition 1.3.2.11. O∗/U(n) ∼= (O/pn)∗ and U(n)/U(n+1) ∼= O/p, for n ≥ 1.

1.3.3 Completions

Definition 1.3.3.1. A valued field (K, ||) is called complete if every Cauchy sequence
{an} in K converges to an element a ∈ K, i.e. limn→∞ |an − a| = 0.

From any valued field (K, ||) we get a complete valued field (K̂, ||) by process
of completion. Take ring R of all Cauchy sequence of (K, ||), consider maximal
ideal m of all nullsequences with respect to ||, and define K̂ = R/m. One emebed
the field K into K̂ by sending every a ∈ K to (a, a, . . .). The valuation || is extended
from K to K̂ by giving a = {an} ∈ K̂ the absolute value |a| = limn→∞ |an|. The
limit exists because {|an|} is a Cauchys sequence. One then proves K̂ is complete
with respect to the extended ||.

Fields R and C are example of complete fields with respect to an archimedean
valuation. There are no other of this type, due to following

Theorem 1.3.3.2 (Ostrowski). Let K be a field which is complete with respect to
an archimedean valuation ||. Then there is an isomorphism σ from K to R or C

satisfying |a| = |σa|s for all a ∈ K, for some fixed s ∈ (0, 1].

Hence, we will restrict attention to nonarchimedean valuations. Let v be ex-
ponential valuation of such field K. It is canonically continued to an exponential
valuation v̂ of the completion K̂ by setting v̂(a) = limn→∞ v(an) where a = {an}.
Observe that sequence v(an) has to become stationary (provided a 6= 0) because
one has v̂(a− an) > v̂(a), so that it follows from the remark on p. 119 that

v(an) = v̂(an − a + a) = min {v̂(an − a), v̂(a)} = â.

Question 1.3.3.3. Why v̂(a− an) > v̂(a)

It therefore follows that v(K∗) = v̂(K̂∗), and if v is discrete and normalized,
then so is the extension v̂.

Proposition 1.3.3.4. If O ⊂ K, resp Ô ⊂ K̂, is the valuation ring of v, resp. of
v̂, and p, resp. p̂, is the maximal ideal, then one has Ô/p̂ ∼= O/p and, if v is
discrete, one has furthermore Ô/p̂n ∼= O/pn for n ≥ 1.
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Example 1.3.3.5. With K = Q, using the p-adic absolute value ||p we find valuation
ring of Q is the local ring O = Z(p) =

{ z
n : z, n ∈ Z, p - n

}
.

Taking the completion of Q with respect to ||p gives Qp and we know Ô = Zp
and p̂ = pZp. Hence, from above proposition, we obtain

Zp/pnZp ∼= Z(p)/pnZ(p)
∼=Z/pnZ.

This gives us proposition (2.4) in the book. y

Following proposition generalizing p-adic expansion to any discrete valutation
v of K:

Proposition 1.3.3.6. Let R ⊂ O system of representatives for κ = O/p such that
0 ∈ R, and let π ∈ O be a prime element. Then every x 6= 0 in K̂ admits a
unique representation as a convergent series

x = πm(a0 + a1π + . . .)

where ai ∈ R, a0 6= 0, m ∈ Z.

Example 1.3.3.7. In case of K = Q and p-adic valuation vp, we have K̂ = Qp,
the numbers 0, 1, . . . , p − 1 form a system of representatives R for residue class
field Zp/pZp ∼= Z/pZ of the valuation, and we get back representation of p-adic
numbers. y

Example 1.3.3.8. In case of K = k(t) and valuation vp attached to prime ideal
p = (t− a) of k[t], we take system of representatives R of the field of coefficients
of k itself. The completion is the field of formal power series k((x)), x = t − a,
consisting of all formal Laurient series

f (t) = (t− a)m(a0 + a1(t− a) + a2(t− a)2 + · · · ),

with ai ∈ k and m ∈ Z. y

Proposition 1.3.3.9. There is a canonical isomorphism O → lim←−n
O/pn and is

also a homeomorphism. The same is true for the mapping O∗ → lim←−n
O∗/U(n).

Next, we concern about finite extension L/K of a complete valued field.

Theorem 1.3.3.10. Let K be complete with respect to valuation ||. Then ||may be
extended in a unique way to obtain a valuation of any given algebraic extension
L/K. This extension is given by formula |α| = n

√
|NL/K(α) when L/K has finite

degree n. In this case L is again complete.
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1.3.4 Local fields

Local fields are fields with respect to a discrete valuation and have a finite residue
class field. For such local fields, the normalized exponential valuation is denoted
by vp, and ||p denotes the absolute value normalized by |x|p = q−vp(x), where q is
the cardinality of the residue class field.

Proposition 1.3.4.1. A local field K is locally compact. Its valuation ring O is
compact.

Question 1.3.4.2. There is an argument in this proof saying that a + O is open
and compact neighborhood of a in K. Is this true it is open while O is closed.
Also, I.B. Fesenko and S.V. Vostokov’s book claim that with the topology of K
induced by discrete valuation v (page 7) then α+πnO, n ∈ Z form a basis of open
neighborhoods of α. Why open?

Answer. Note we are talking about discrete valuation v, meaning v(K∗) = Z, so
O = {x ∈ K : v(x) ≥ 0} is the same as {x ∈ K : v(x) > −1} = {x ∈ K : |x| < q−1}
which is open. Hence a +O is open.

Similarly, πnO for n ∈ Z is the set {x ∈ K : v(x) ≥ n} = {x ∈ K : v(x) >
n− 1} and hence is open.

Proposition 1.3.4.3. The local fields are precisely finite extensions of the fields
Qp and Fp((t)).

Hence, the local fields of characteristic p are the power series fields Fq((t)) with
q = p f . The local fields of characteristic 0, i.e. finite extensions K/Qp, are called
p-adic number fields.

18



Chapter 2

Smooth representations

http://www.math.wm.edu/~vinroot/PadicGroups/

2.1 Locally profinite groups

2.1.1 Definition

Definition 2.1.1.1. Directed partially ordered set, inverse limit, ...
A partially ordered set I is called direct set if for any i, j ∈ I, there exists k ∈ I

such that i ≤ k and j ≤ k.

Definition 2.1.1.2. Let G be category of finite groups and J be an filtered index
category (i.e. a directed partially ordered set I). A profinite group is the limit (also
called inverse limit or projective limit) of the diagram F : J → G, where F(i) = Gi.
We write G = lim←−i

Gi.
As a set, we have

G =

{
(gi)i∈I ∏

i∈I
Gi : ϕij(gi) = gj i ≥ j

}
.

If each Gi is assumed to be discrete topology and ϕi,j as continuous homomor-
phisms of groups then G is a topological group, , a subspace topology from prod-
uct topology ∏ Gi. Also ϕi : G → Gi are continuous homomorphisms of groups.

Due to Gi being finite, so G ⊂ ∏i∈I Gi is closed, and since ∏i∈I Gi, as the
product space of compact space, is still compact, G is also compact. One can also
see that G is totally disconnected (i.e. connected components of G are point-sets).
Hence, any profinite group is compact and totally disconnected. As a conse-
quence, all open subgroups of profinite group are closed, and a closed subgroup
is open iff it is of finite index.

Exercise 1. Show G is a topological group with corresponding requirement. Explain
more.
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Proposition 2.1.1.3. Let C be formation of finite groups (i.e. image of F(J )).
Then the following condition on a topological group G are equivalent:

1. G is a profinite group with C as set of finite groups;

2. G is compact Hausdorff totally disconnected, and for each open normal
subgroup U of G, G/U ∈ C;

3. The identity element 1 of G admits system U of open neighborhoods
U such that each U normal subgroup of G with G/U ∈ C, and G =
lim←−U∈U G/U.

Proof. See theorem 2.1.3 of book Profinite groups. Or theorem §2, chapter 4 of
Neurkind algebraic number theory book. Some links: MSE

Definition 2.1.1.4. A locally profinite group is a topological group G such that every
open neighborhood of the identity in G contains a compact open subgroup of G.

Any discrete group is locally profinite. A closed subgroup of a locally profinite
group is locally profinite. The quotient of a locally profinite group by a closed
normal subgroup is locally profinite.

The relation between definition of locally profinite group and of profinite
group is as follow: Locally profinite group G is isomorphic to lim←−G/K where
K ranges over open normal subgroups of G. A (locally) profinite group is (locally)
compact and totally profinite. Conversely, a (locally) compact, totally discon-
nected group is (locally) profinite.

Remark 2.1.1.5. Read more at here or the book Profinite groups by Luis Ribes.

Exercise 2. Proof above statement.

Exercise 3. Let G be a locally profinite group, and let H be a closed subgroup of G.Thus
H is also locally profinite.

2.1.2 Non-Archimedean local field F is locally profinite
subsection1.2

F is non-Archimedean local field. Thus, F is field of fractions of discrete valuation
ring o. Let p be the maximal ideal of o and k = o/p be the residue class field. We
assume that k is finite, and we denote cardinality of k to be q.

Since k is finite so pn and o are compct as argued in the book.

2.1.3 F× is locally profinite

2.1.4 Mn(F) and GLn(F) are locally profinite

2.1.5 o-lattice and lattice of F-vector space
section1.5

Let V be F-vector space of finite dimension n. An o-lattice in V is a finitely gener-
ated o-submodule L of V such that the F-linear span FL of L is V.
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Proposition 2.1.5.1. Let L be o-lattice of V. There is an F-basis {x1, . . . , xn} of
V such that L = ∑n

i=1 oxi.

Proof. Same as in the book. One can multiply both side of ∑ aiyi = 0 by element
of F× to assume that all ai ∈ o and that one of them, aj say, is a unit of o. Indeed,
at the beginning, we know that not all ai’s are zero. For nonzero ai, i.e. ai ∈ F×,
from §

subsection1.2subsection1.2
2.1.2, one can write ai = uvn for u ∈ UF, n ∈ Z. Note that if n < 0 then

ai 6∈ o, if n ≥ 0 then ai ∈ o so one can find the smallest n < 0 and multiply both
side by v−n, which will give what we want.

In particular, the o-lattice L is a compact open subgroup of V. The o-lattice in
V give a fundamental system of open neighborhoods of 0 in V.

Explain. We know V ∼= Fn via F-basis {x1, . . . , xn} given in previous proposition.
This gives a topology for V. Note L = ∑n

i=1 oxi from previous proposition so L is
identified with on. Note that o is compact so L is compact. Furthermore, also from
L = ∑n

i=1 oxi, L is a subgroup of F since o is a subring of F. Note o is also open
since we are talking about discrete valuation v.

More generally, a lattice in V is a compact open subgroup of V. Here we have

Lemma 2.1.5.2. Let L subgroup of V. Then L is a lattice in V iff there exists
o-lattices L1, L2 in V such that L1 ⊂ L ⊂ L2.

Proof. Suppose L1 ⊂ L ⊂ L2, where Li are o-lattices. Since L contains L1 so it is
open and hence closed (for any x ∈ L then x + L1 ⊂ L an open neighborhood of
x in L, implying L is open; for any limit point x ∈ V of L, open set x + L1 must
contain some element in L, implying x ∈ L, hence L is closed). Since closed L is
contained in compact L2, it is compact. Thus, L is a lattice in V.

Conversely, if L is a lattice in V, it must contain an o-lattice (since L open
neighborhood of 0 since L subgroup), and so FL = V. In the opposite direction,
we choose a basis {x1, . . . , xn} of V. The image of L under obvious projection
V → Fxi is a compact open subgroup of Fxi (since projection is an open map,
and continuous map sends compact to compact, the projection is also group ho-
momorphism). It is therefore contained in a group of the form aixi, for some
fractional ideal ai = pai

i of o. (OK I stuck this part but let’s just skip it for now)

2.1.6 Characters of locally profinite group
section1.6

Let G locally profinite group.

Proposition 2.1.6.1. Let ψ : G → C× be group homomorphism. The following
are equivalent:

1. ψ is continuous.

2. the kernel of ψ is open.
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If ϕ satisfies these conditions and G union of its compact open subgroups, then
the image of ψ is contained in the unit circle |z| = 1 in C.

Proof. (2) =⇒ (1) since preimage of f (g) in G is g+ker ψ, which is open and also
union of any number of open sets is open. Conversely, let N open neighborhood
of 1 in C. Thus ψ−1(N ) is open containing identity of G so it contains a compact
open subgroup K of G (since G is locally profinite group). However, if N is chosen
sufficiently small, it contains no non-trivial subgroup of C× (say N contains some
non-trivial subgroup of C× which contains some z = reh then for sufficiently
larger n, zn = rnehn can be very far from 1 out of N , a contradiction). Thus,
K ⊂ ker ψ which follows ker ψ is open.

The unit circle S1 is the maximal compact subgroup of C×. If K is a compact
subgroup of G, then ψ(K) is compact so it is contained in S1.

We define a character of locally profinite group G to be continuous homomor-
phism G → C×. We usually write 1G, or even just 1, for the trivial (constant)
character of G. We call a character unitary if its image is contained in the unit
circle.

2.1.7 Characters of F
section1.7

Set of characters of F is a group under multiplication, we denote it F̂. Since F is
union of its compact open subgroups a + pn, n ∈ Z, all characters of F are unitary.

If ψ 6= 1 is a character, then there is least integer d such that pd ⊂ ker ψ (due to
definition of pd).

Definition 2.1.7.1. Let ψ ∈ F̂, ψ 6= 1. The level of ψ is the least integer d such that
pd ⊂ ker ψ.

If we fix d, the set of characters of F of level ≤ d is the subgroups of ψ ∈ F̂
such that ψ|pd = 1.

Proposition 2.1.7.2 (Additive duality). Let ψ ∈ F̂, ψ 6= 1, have level d.

1. Let a ∈ F. The map aψ : x 7→ ψ(ax) is a character of F. If a 6= 0, the
character aψ has level d− vF(a).

2. The map a 7→ aψ is a group isomorphism F ∼= F̂.

Proof. Showing aψ is character is obvious. Note that apd−vF(a) ⊂ pd ⊂ ker ψ so
the level of aψ must be at most d− vF(a). To do that, we must show there exists
ovd−v(a)−1 ∈ pd−v(a)−1 such that ψ(aovd−v(a)−1) 6= 1. Indeed, first as a 6= 0, we
write a = uvv(a) with u ∈ o×. Hence, aovd−v(a)−1 = uovd−1. On the other hand,
since d level of ψ so exists b = u′ψd−1 ∈ pd−1 such that ψ(b) 6= 1 where u′ ∈ o×.
Hence, this suggests to choose o such that uo = u′. Thus, d− vF(a) is the level of
aψ.
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Why map a 7→ aψ is an injective group homomorphism?
Let θ ∈ F̂, θ 6= 1 and let l be level of θ. Let v be prime element of F, and

u ∈ UF. The character uπd−lψ has level l, and so agree with θ on pl . The characters
uvd−lψ, u′vd−lψ, u, u′ ∈ UF, agree on pl−1 if and only if u ≡ u′ (mod p) Stuck

Exercise 4. Let L be a lattice in F and χ be character of L. Show that there exists a
character ψ of F such that ψ|L = χ.

2.1.8 Characters of F×
section1.8

We turn to the multiplicative group F×. Let χ be a character of F×. By argument
in proposition

section1.6section1.6
2.1.6, χ is trivial on Um

F = 1 + pm for some m ≥ 0:

Definition 2.1.8.1. Let χ be non-trivial character of F×. The level of χ is defined to
be least integer n ≥ 0 such that χ is trivial on Un+1

F .

We use the same terminology for characters of open subgroups of F×. Observe
that a character of F× need not to be unitary: for example, the map x 7→ ‖x‖ is a
character. Note also that, in contrast to the additive case, F× has a unique maximal
compact subgroup, namely UF.

Question 2.1.8.2. Why UF is unique maximal compact subgroup of F×?

The structure of the group of characters of F× is more subtle than that of F̂.
However, we shall make frequent use of a partial description in additive terms.
Let m, n be integers, 1 ≤ m < n ≤ 2m. The map x 7→ 1 + x gives an isomorphism
pm/pn ∼= Um

F /Un
F . Indeed, it is a group homorphism as for x, y ∈ pm, since 2m ≥ n

so xy ≡ 0 (mod pn), implying

x+ y (mod pn) = x+ y+ xy (mod pn) 7→ 1+ x+ y+ xy = (1+ x)(1+ y) (mod Un
F)

It is certainly bijective. Hence, this gives an isomorphism of character of groups
̂(pm/pn) ∼= ̂(Um

F /Un
F). And we can use

section1.7section1.7
2.1.7 to describe the group ̂(pm/pn). Fix a

character ψF ∈ F̂ of level 1. For a ∈ F, we define a function

ψF,a : F → C×, ψF,a(x) = ψF(a(x− 1)).

Proposition
section1.7section1.7
2.1.7 then yields:

Proposition 2.1.8.3. Let ψ ∈ F̂ have level 1. Let m, n be integers, 0 ≤ m < n ≤
2m + 1. The map a 7→ ψF,a|Um+1

F
induces an isomorphism

p−n/p−m → ̂Um+1
F /Un+1

F .

Observe that, viewed as character of Um+1
F , the function ψF,a has level −vF(a).

Also, the condition relating m and n can be re-formulated as bn/2c ≤ m < n.

Question 2.1.8.4. Explain above proposition. How do we exactly describe p̂m/pn

from proposition
section1.7section1.7
2.1.7?
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2.2 Smooth representations of locally profinite groups

2.2.1 Smooth representation
section2.1

Let G locally profinite group, and (π, V) representation of G. Thus, V complex
vector space and π group homomorphism G → AutC(V). The representation
(π, V) is called smooth if, for every v ∈ V, there is a compact open subgroup K of
G (depending on v) such that π(x)v = v, for all x ∈ K. Equivalently, if VK denotes
the space of π(K)-fixed vectors in V, then V =

⋃
K VK where K ranges over all

compact open subgroups of G.
A smooth representation (π, V) is called admissible if the space VK is finite-

dimensional for each compact open subgroup K of G.
Let (π, V) be a smooth representation of G, then any G-stable subspace of G

provides a further smooth representation of G. Likewise, if U is a G-subspace of
V, the natural representation of G on the quotient V/U is smooth. One says that
(π, V) is irreducible if V 6= 0 and V has no G-stable subspace U with 0 6= U 6= V.

For smooth representation (πi, Vi) of G, the set HomG(π1, π2) is just the space
of linear maps f : V1 → V2 commuting with the G-actions: f ◦ π1(g) = π2(g) ◦ f
for all g ∈ G. With this definition, the class of smooth representation of G forms a
category Rep(G). We remark that the category Rep (G) is abelian.

Question 2.2.1.1. What is abelian category?

We say two smooth representations (π1, V1), (π2, V2) of G are isomorphic, or
equivalent, if there exists C-isomorphism f : V1 → V2 which is also homomorphism
of representations.

Example 2.2.1.2. A character of G can be viewed as representation χ : G → C× =
AutC(C). The representation (χ, C) is smooth as ker χ is open according to propo-
sition

section1.6section1.6
2.1.6, and since G is locally profinite, ker K contains a compact open sub-

group K of G, implying χ(K) = 1C. A one-dimensional representation of G is
smooth iff it is equivalent to a representation defined by a character of G. It suf-
fices to show that a one-dimensional smooth representation is also a character of
G. Indeed, being smooth implies there exists compact open subgroup K of ker χ.
This implies gK also open, implying ker χ is open. From proposition

section1.6section1.6
2.1.6, we find

χ is continuous, meaning χ is a character. y

example_smoothRep_profiniteExample 2.2.1.3. Suppose G is compact, hence profinite. Let (π, V) be irreducible
smooth representation of G. The space V is then finite-dimensional. For, if v ∈
V, v 6= 0, then v ∈ VK, for a compact open subgroup K of G. The index (G : K) is
finite (properties of compact topological groups) and the set {π(g)v : g ∈ G/K}
spans V (since V is irreducible, so {π(g)v : g ∈ G} spans V, and note π(k)v = v
for k ∈ K). This implies V is finite-dimensional.

Further, if K′ =
⋂

g∈G/K gKg−1, then K′ is an open (intersection of open sets)
normal subgroup (not hard to prove) of finite index (since [G : H ∩ K] ≤ [G :
H][G : K]), acting trivially on V (for v′ ∈ V then v′ = π(g)v for some g ∈ G/K,
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hence with k′ ∈ K, k′ = gkg−1, we find π(k′)v′ = v′). Thus, as V is irreducible rep-
resentation of G, we find V an irreducible representation of finite discrete group
G/K′. y

2.2.2 Semisimple
section2.2

semisimple_criterionProposition 2.2.2.1. Let G be locally profinite group, and let (π, V) be smooth
representation of G. The following conditions are equivalent:

1. V is the sum of its irreducible G-subspaces;

2. V is the direct sum of a family of irreducible G-subspaces;

3. any G-subspace of V has G-complement in V.

Proof. We start with (1) =⇒ (2). Take family {Ui : i ∈ I} of irreducible G-
subspaces Ui of V such that V = ∑i∈I Ui. We consider the set I of subsets J of
I such that the sum ∑i∈J Ui is direct. The set I is nonempty, we will show it
is inductively ordered by inclusion. For, suppose we have a totally ordered set
{Ja : a ∈ A} of elements of I . Put J =

⋃
a∈A Ja. If the sum ∑j∈J Uj is not direct,

there is a finite subset S of J for which ∑j∈S Uj is not direct. Since S is finite, and
{Ja : a ∈ A} is a totally ordered set, there exists a ∈ A so S ⊂ Ja, which implies a
contradiction. Therefore, J ∈ I . We apply Zorn lemma to get maximal element J0
of I , for this we have V =

⊕
i∈J0

Ui as required for (2).
In (3), let W a G-subspace of V. By (2), we can assume V =

⊕
i∈I Ui, for a

family (Ui) of irreducible G-subspaces of V. We consider the set J of subsets J
of I for which W = ∩∑i∈J Ui = 0. Again, set J is nonempty and inductively
ordered by inclusion. If J maximal element of J , the sum X = W + ∑j∈J Uj is
direct. If X 6= V, there is i ∈ I so Ui 6⊂ X, so the sum X + Ui is direct, and so
J ∪ {i} ∈ J , contrary to the hypothesis. Thus (2) =⇒ (3).

Suppose (3) holds. Let V0 sum of all irreducible G-subspaces of V and write
V = V0⊕W for some G-subspace W of G. Assume for a contradiction that W 6= 0.
By its definition, space W has no irreducible G-subspace. However, there is a non-
zero G-subspace W1 of W which is finitely generated over G (e.g. take W1 = Gvw
for some w ∈ W). By Zorn’s lemma, W1 has maximal G-subspace W0, and then
W1/W0 is irreducible (due to the fact W0 being maximal). Due to (3), we have
V = V0 ⊕W0 ⊕U for some G-subspace U of G and hence a G-projection V → U.
This projection restricted to W1 will have kernel W0 so the image of W1 in U is
isomorphic to W1/W0, which is irreducible G-subspace of U. This irreducible
subspace is not contained in V0, a contradiction. Thus, V = V0 and (3) =⇒
(1).

One says (π, V) is semisimple if it satisfies the condition of the above propo-
sition. Interesting locally profinite group G usually have many representations
which are not semisimple. However, we have the following:
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Lemma 2.2.2.2. Let G locally profinite group, let K compact open subgroup of
G. Let (π, V) be smooth representation of G. The space V is the sum of its
irreducible K-subspaces.

Proof. View V as representation of K and repeat same argument as in exam-
ple 2.2.1.3: let v ∈ V, v is fixed by an open normal subgroup K′ of K, and it gen-
erates a finite-dimensional K-space W on which K′ acts trivially (i.e. if v fixed by
compact open K′′ of K then W = {π(g)v : g ∈ K/K′′} and K′ =

⋂
g∈K/K′′ gK′′g−1).

W is finite-dimensional representation of finite discrete K/K′ and so is the sum
of its irreducible K subspaces (Maschke’s theorem?). Since v ∈ V is chosen at
random, the lemma follows.

Question 2.2.2.3. Smooth representation of discrete finite group is the same as
normal representaion of that group? If that is the case then we’ve used Maschke’s
theorem to above?

The lemma says that V is K-semisimple.

2.2.3 Decompose rep V of G into K-subspaces
section2.3

Let G be a locally profinite group and K compact open subgroup of G. Let K̂
denote the set of equivalence classes of irreducible smooth representations of K. If
ρ ∈ K̂ and (π, V) a smooth representation of G, we define Vρ to be the sum of all
irreducible K-subspaces of V of class ρ. We call Vρ the ρ-isotypic component of V.
In particular, VK is the isotypic subspace for class of trivial representation of K.

Proposition 2.2.3.1. Let (π, V) be a smooth representation of G and let K be
compact open subgroup of G.

1. The space V is the direct sum of its K-isotypic components V =
⊕

ρ∈K̂ Vρ.

2. Let (σ, W) be a smooth representation of G. For any G-homomorphism
f : V →W and ρ ∈ K̂, we have f (Vρ) ⊂Wρ and Wρ ∩ f (V) = f (Vρ).

Proof. Since V is K-semisimple so we write V =
⊕

i∈I Ui for family of irreducible
K-subspaces Ui of V. We let U(ρ) be the sum of those Ui of class ρ. We then have
V =

⊕
ρ∈K̂ U(ρ). Note that Ui is just family of irreducible K-subspaces, not all

irreducible K-subspaces. Hence, to show U(ρ) = Vρ) we need to show that for W
irreducible K-subspace of V of class ρ then W ⊂ U(ρ): otherwise there would be
a nonzero K-homomorphism W → Ui, for some Ui of class τ 6= ρ.

In (2), image of Vρ is sum of irreducible K-subspaces of W, all of class ρ and
therefore contained in Wρ. Moreover, f (V) is the sum of images f (Vρ), τ ∈ K̂ and
f (Vρ) ⊂ Wρ. Since the sum of Wρ is direct, f (V) is the direct sum of the f (Vρ)
and the second assertion follows.

We frequently use part (2) of the proposition in following context:
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Corollary 2.2.3.2. Let a : U → V, b : V → W be G-homomorphisms between
smooth representations U, V, W of G. The sequence

U a−→ V b−→W

is exact iff
UK a−→ VK b−→WK

is exact, for every compact open subgroup K of G.

Question 2.2.3.3. Prove this corrolary.

If H subgroup of G, we define V(H) to be the linear span of {v− π(h)v : v ∈
V, h ∈ H}. In particular, V(H) is an H-subspace of V.

Corollary 2.2.3.4. Let G be locally profinite group, and let (π, V) be smooth
representation of G. Let K compact open subgroup of G. Then

V(K) =
⊕

ρ∈K̂,ρ 6=1

Vρ, V = VK ⊕V(K),

and V(K) is the unique K-complement of VK in V.

Proof. Sum W =
⊕

Vρ with ρ not trivial, is K-complement of VK in V so there
is K-surjection V → VK with kernel W. Note V(K) is contained in kernel of any
K-homomorphism V → VK (indeed, f (v− π(k)v) = f (v)− f (π(h)v) = f (v)−
π(k) f (v) = 0) so W contains V(K). On the other hand, if U an irreducible K-space
of class ρ 6= 1, then V(K) ⊃ U(K) = U implying Vρ ⊂ V(K) so W ⊂ V(K).

Question 2.2.3.5. Prove that K-complement V(K) of VK is unique?

AbstractToSmoothRep Exercise 5. 1. Let (π, V) be an abstract (not necessarily smooth) representation of G.
Define V∞ =

⋃
K VK where K ranges over the compact open subgroups of G. Show

that V∞ is G-stable subspace of V. Define homomorphism π∞ : G → AutC(V∞) by
π∞(g) = π(g)|V∞ . Show that (π∞, V∞) is a smooth representation of G.

2. Let (π, V) be smooth representation of G and (σ, W) an abstract representation. Let
f : V → W be G-homomorphism. Show that f (V) ⊂ W∞, hence, HomG(V, W) =
HomG(V, W∞).

3. Functor V 7→ V∞ is left-exact.

2.2.4 Smooth induction
section2.4

Let G locally profinite group, and let H closed subgroup of G. Thus H is also
locally profinite.

Let (σ, W) smooth representation of H. We consider the space X of functions
f : G →W which satisfy

1. f (hg) = σ(h) f (g), h ∈ H, g ∈ G;
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2. there is a compact open subgroup K of G (depending on f ) such that f (gx) =
f (g) for g ∈ G, x ∈ K.

We define homomorphism ∑ : G → AutC(X) by ∑(g) f : x 7→ f (xg) for x, g ∈
G. The pair (∑, X) provides a smooth representation of G 1. It is called the
representation of G smoothly induced by σ, and is usually denoted (∑, X) = IndG

Hσ.
The map σ 7→ IndG

Hσ gives a functor Rep(H)→ Rep(G).

Remark 2.2.4.1. Function satisfying only the second condition is said to be right lo-
cally constant. Two notions of left and right locally constant are actually coincides,
since gx = x(x−1gx).

There is a canonical H-homomorphism

ασ : IndG
Hσ→W, f 7→ f (1).

The pair (IndG
Hσ, α) has following fundamental property:

Theorem 2.2.4.2 (Frobenius reciprocity). Let H closed subgroup of locally profi-
nite group G. For a smooth representation (σ, W) of H and a smooth represen-
tation (π, V) of G, the canonical map

HomG(π, IndG
Hσ)→ HomH(π, σ), φ 7→ ασ ◦ φ,

is an isomorphism that is functorial in both variables π, σ.

Proof. Let f : V → W be H-homomorphism. We define G-homomorphism f? :
V → IndG

Hσ by sending v to g 7→ f (π(g)v). The map f 7→ f? is inverse of
canonical map mentioned in the theorem. Indeed, the map in the theorem will
send f? to H-homomorphism aσ ◦ f? : V → IndG

Hσ→W which sends

v 7→ (g 7→ f (π(g)v)) 7→ f (π(1)v) = f (v).

Question 2.2.4.3. What does functoriality in π, σ mean? Addition?

A simple consequence is that aσ(V) 6= 0, for any nonzero G-subspace V of
IndG

Hσ.

Proof. First, IndG
H : Rep(H) → Rep(G) is a functor. In particular, the morphisms

between two categories via this functor is as follows: If f : (σ, V) → (τ, W) a
H-homomorphism. Under IndG

H, σ, τ are sent to X(σ), X(τ). We define IndG
H f :

X(σ)→ X(τ) as for f ′ ∈ X(σ), f ′ 7→ f ◦ f ′.
For smooth representation (σ, W) of H, temporarily let I(σ) denote the space of

functions G → W satisfying the first condition f (gh) = σ(h) f (g) of the definition
above. Thus I is a functor to the category of abstract representation of G, sending
(σ, W) to (∑, I(σ)). We check that I is exact and additive:

1it is smooth because for any f ∈ X, there is compact open subgroup K of G such that f (gx) =
f (g) for g ∈ G, x ∈ K, implying ∑(g) f = f for all g ∈ K
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1. Note Rep(G) is preadditive as Hom(A, B) where A, B (abstract or smooth)
representation of G is abelian group under usual addition in vector spaces
A, B.

2. For (σ, A), (τ, B) representation of H. Under I, these two are sent to (∑σ, I(σ))
and (∑τ, I(τ)). We need to show I : Hom(A, B)→ Hom(I(σ), I(τ)) is group
homomorphism. Recall I sends f ∈ Hom(A, B) to I( f ) : f ′ 7→ f ◦ f ′. For
f , g ∈ Hom(A, B), we have I( f + g) : ( f ′ : G → A) 7→ ( f + g) ◦ f ′ and since
( f + g) ◦ f ′ = f ◦ f ′ + g ◦ f ′ so I( f + g) = I( f ) + I(g), as desired. Thus, I is
additive.

3. ... I guess it’s not hard to show I is also exact based on the definition. Later
...

We find IndG
H(σ) = I(σ)∞. It’s not hard to show IndG

H(σ) is additive and
exercise 5 shows it is left-exact.

To prove it is right-exact, let (σ, W), (τ, U) be smooth representations of H and
let f : W → U be H-surjection, i.e. W → U → 0 an exact sequence. We want to
show I(σ)∞ → I(τ)∞ → 0 is an exact sequence.

Take φ ∈ I(τ)∞ and choose compact open subgroup K of G which fixes φ, i.e.
φ(x) = φ(xK) for all x ∈ G. The support of φ : G → U is the union of cosets HgK
(so φ(hgk) = τ(h)φ(g) and as τ : H → AutC(U) we have φ(hgk) 6= 0 as long as
φ(g) 6= 0), and φ(g) ∈ U must be fixed by τ(H ∩ gKg−1) (since H ∩ gKg−1 ∈ H
so τ(H ∩ gKg−1)φ(g) = φ((H ∩ gKg−1)g) and recall φ(x) = φ(xK)). By

section2.3section2.3
2.2.3

corollary 1, applied to exact sequence W → U → 0 (since f : W → U is surjective)
as representations of H and compact open subgroup gKg−1 ∩ H of H (it is closed
as intersection of closed subgroups and is in compact gKg−1 so it is compact;
gKg−1 is open relative to H?), we obtain exact sequence WgKg−1∩H → UgK−1∩H →
0. As φ(g) ∈ UgK−1g∩H, there exists wg ∈ W, fixed by σ(gKg−1 ∩ H), such that
f (wg) = φ(g). We define a function Φ : G → W to have the same support as
φ and Φ(hgk) = σ(h)wg, for each g ∈ H\suppφ/K. This function is fixed by K,
i.e. ∑(k)Φ = Φ ⇐⇒ Φ(xk) = Φ(x) and hence lies in I(σ)∞. Its image is φ, as
required.

Question 2.2.4.4. Why proving right-exactness only to W → U → 0 but not V →
W → U → 0?

2.2.5 Smooth induction with compact supports
section2.5

With (σ, W) and X as in
section2.4section2.4
2.2.4, consider the space Xc of functions f ∈ X which are

compactly supported modulo H: this means that the image of support supp f ⊂ G
2 of f in H\G is compact or, equivalently, supp f ⊂ HC, for some compact set C

2As f ∈ X which is left K-invariant for some open K, set of x ∈ G so f (x) 6= 0 is union of open
sets xK, hence open, hence closed. This means we don’t have to take closure to obtain supp f in
this case
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in G 3. The space Xc is stable under action of G and provides another smooth
representation of G. It is denoted c-IndG

Hσ, and gives a functor

cIndG
H : Rep(H)→ Rep(G).

One calls it compact induction, or smooth induction with compact supports.

Exercise 6. Check Xc provides smooth representation of G.

Exercise 7. Show that the functor c-IndG
H is additive and exact.

In all cases, there is a canonical G-embedding c-IndG
Hσ→ IndG

Hσ, or morphism
of functors c-IndG

H → IndG
Hσ. This is an isomorphism if and only if H\G is com-

pact 4. On the other hand, for specific H, G, σ, the map c-IndG
Hσ → IndG

Hσ can be
isomorphism even when H\G is not compact, which will be considered in later
section.

This construction is mainly of interest when the subgroup H is open in G: In
this case, there is a canonical H-homomorphism

αc
σ : W → cIndσ, w 7→ fw.

where fw ∈ Xc is supported in H and fw(h) = σ(h)w, h ∈ H.

Exercise 8. Suppose H is open in G. Let φ : G → W be a function, compactly supported
modulo H, such that φ(hg) = σ(h)φ(g), h ∈ H, g ∈ G. Show that φ ∈ Xc.

To show this, it suffices to prove that there is a compact open subgroup K of G such
that φ(gx) = φ(g) for all g ∈ G, x ∈ K.

φ is compactly supported modulo H implies supp(φ) = {g ∈ G : φ(g) 6= 0} is com-
pact in H\G. Since H is open, H\G is a discrete topology, and as φ(hx) = σ(h)φ(x) 6=
0 ⇐⇒ φ(x) 6= 0, we know {c ∈ H\G, φ(c) 6= 0} is an open (disjoint) cover of image
of supp(φ) in H\G. Hence, from our condition, we know that {c ∈ H\G, φ(c) 6= 0} is
finite, i.e. we can write this as {ci : 1 ≤ i ≤ n, ci ∈ G}. As G → H\G is an open map,
we know {Hci : 1 ≤ i ≤ n, ci ∈ G} is an open subcover of supp(φ). Since W is a smooth
representation of H, for each φ(ci) ∈ W, there exists compact open subgroup Ki of H
such that σ(k)φ(ci) = φ(ci) for all k ∈ Ki. Take K =

⋂
Ki, we obtain that K is nonempty

compact open subgroup (as 1 ∈ K) such that φ(kci) = φ(ci) for all 1 ≤ i ≤ n, k ∈ K. Let
K̂ =

⋂
c−1

i Kci is also a nonempty compact open subgroup such that φ(ci k̂) = φ(ci) (so
here we switch from left to right locally constant).

We show that K̂ is our desired compact open subgroup. For any g ∈ G, φ(g) 6= 0 then
g = hci for some h ∈ H, 1 ≤ i ≤ n. Hence, for any k ∈ K̂, we have φ(gx) = σ(h)φ(cik) =
σ(h)φ(ci) = φ(g). On the other hand, if φ(g) = 0 then we show φ(gx) = 0 for all x ∈ K̂.
Indeed, if not, then gx = hci and as x ∈ K̂ ⊂ c−1

i Kci so exists k ∈ K so g(c−1
i kci) = hci

implying g = hk−1ci. But that means φ(g) = σ(h)φ(k−1ci)σ(h)φ(ci) 6= 0, a contradiction.
Thus, φ(gx) = 0 = φ(g).

3If image of supp f in H\G has representative sets C ⊂ G then supp f ⊂ HC. Consider open
cover {Bi} of C in G, then {HBi} covers {Hc : c ∈ C} in H\G, implying {Hc : c ∈ C} has finite
cover in H\G from the definition, and then going backward to G via π−1 to get that C has finite
open cover

4If H\G is compact, as supp f is open since f ∈ X in section 2.2.4, open π(supp f ) ⊂ H\G is
open, hence closed, hence compact, hence the condition of being compactly supported modulo H is
vacuous. Conversely, if the embedding is an isomorphism, meaning space X = Xc, i.e. every f ∈ X
is compactly supported modulo H show the converse
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Lemma 2.2.5.1. Let H be open subgroup of G, and let (σ, W) be smooth repre-
sentation of H.

1. The map αc
σ : w 7→ fw is an H-isomorphism of W with the space of

functions f ∈ c-IndG
Hσ such that supp f ⊂ H.

2. Let W be C-basis of W, and G a set of representations for G/H. The set
{g fw : w ∈ W , g ∈ G} is a C-basis of c-IndG

Hσ.

Proof. αc
σ is an H-homomorphism since we have

∑(h) fw(x) = fw(xh) =

{
0 x 6∈ H,
σ(xh)w

= fσ(h)w(x).

It has the inverse map f 7→ f (1) as αc
σ( f (1))(h) = σ(h) f (1) = f (h).

As argue similarly in the exercise, the support of function f ∈ c-IndG
Hσ is finite

union of cosets Hg−1, for g ∈ G, and the restriction of f to any one of these cosets
also lies in c-Indσ. With this then f is written as finite sum of these restrictions. If
supp f = Hg−1 then g−1 f has support contained in H so from part (1), it is a finite
linear combination of fw, w ∈ W . This follows such f is finite linear combination
of g fw, w ∈ W . Such set of functions g fw, w ∈ W , g ∈ G is linearly independent
(may need to elaborate this, but later), so we are done.

For open subgroups, compact induction has its own form of Frobenius Reci-
procity:

Proposition 2.2.5.2. Let H open subgroup of G, let (σ, W) be a smooth repre-
sentation of H and (π, V) a smooth representation of G. The canonical map

HomG(c-Indσ, π)→ HomH(σ, π|H), f 7→ f ◦ αc
σ

is an H-isomorphism that is functorial in both variables.

Proof. Not hard to figure out the inverse map.

2.2.6 Schur’s lemma
section2.6

It is convenient to introduce technical restriction o group G. From now on, we
assume that:

For any compact open subgroup K of G, set G/K is countable.

Remark if G/K is countable for one compact open subgroup K of G, then
G/K′ is countable for any compact open subgroup K′ of G. For, K ∩K′ is compact,
open, and of finite index in K (Proposition 1.2.2.2). Thus, the surjection G/(K ∩
K′) → G/K has finite fibres, and since G/K is countable, so is G/(K ∩ K′). Then
surjection G/(K ∩ K′)→ G/K′ also has finite fibres, implying G/K′ is countable.

The main effect of the above assumtion is
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Lemma 2.2.6.1. Let (π, V) irreducible smooth representation of G. The dimen-
sion dim CV is countable.

Proof. Let v ∈ V, v 6= 0 and choose compact open subgroup K of G such that
v ∈ VK. Since V is irreducible, the countable set {π(g)v : g ∈ G/K} spans V.

This enables us to generalize familiar result:

Lemma 2.2.6.2 (Schur). If (π, V) irreducible smooth representation of G, then
EndG(V) = C.

Proof. Let φ ∈ EndG(V), φ 6= 0. The image and kernel of φ are G-subspaces of V,
so φ is bijective and invertible. Therefore, EndG(V) is complex division algebra.

If we fix v ∈ V, v 6= 0, the G-translates of v span V so an element φ ∈ EndG(V)
is determined uniquely by φ(v) ∈ V. Since dim CV is countable, we deduce that
EndG(V) has countable dimension (under addition +).

For any φ ∈ EndG(V), φ 6= C, is transcendental over C. Indeed, if we have
∑n

i=0 aiφ
i = 0 where φi denotes composition i times, since it’s over C, one obtain

linear factorization ∑n
i=1(φ − bi) = 0. Take any v ∈ V, v 6= 0 and apply to this

linear map, one finds that at some point, there must exists some i such that (φ−
bi)w = 0 for nonzero w ∈ V. Since {gw : w ∈ V} spans V and note φ(gw) =
gφ(w) = bi(gw) so φ = C, a contradiction.

Thus, φ is transcendental over C, which generates field C(φ) ⊂ EndG(V). The
subset {(φ− a)−1 : a ∈ C} of C(φ) is linearly independent over C (why?), so the
C-dimension of C(φ) is uncountable, and this is impossible. Thus, we conclude
EndG(V) = C.

Corollary 2.2.6.3. Let (π, V) be irreducible smooth representation of G. The
centre Z of G acts on V via a character ωπ : Z → C×, that is, π(z)v = ωπ(z)v
for v ∈ V and z ∈ Z.

Proof. By Schur’s lemma, since V is irreducible, there is a homomorphism ωπ :
Z → C× such that π(z)v = ωπ(z)v, z ∈ Z, v ∈ V. If K is compact open subgroup
of G such that VK 6= 0, then there exists v ∈ V, v 6= 0 such that π(z)v = v for
z ∈ Z∩K, implying ωπ(z) = 1 for all z ∈ Z∩K. Thus ωπ is trivial on the compact
open subgroup K ∩ Z of Z, implying ωπ is continuous or ωπ is a character of
Z.

One calls ωπ the central character of π.

Corollary 2.2.6.4. If G is abelian, any irreducible smooth representation of G is
one-dimensional.

Remark 2.2.6.5. If G is compact, the converse of Schur’s lemma holds: a smooth
representation (π, V) of G is a direct sum of irreducible representations, so EndG(V)
is one-dimensional iff π is irreducible.
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2.2.7 G-semisimple iff H-semisimple for open subgroup H of finite in-
dex

section2.7

Lemma 2.2.7.1. Let G be locally profinite group, and let H open subgroup of G
of finite index.

1. If (π, V) is a smooth representation of G, then V is G-semisimple if and
only if V is H-semisimple.

2. Let (σ, W) be semisimple smooth representation of H. The induced rep-
resentation IndG

Hσ is G-semisimple.

Proof. Suppose that V is semisimple, and let U be G-subspace of V. By hypothesis,
there is H-subspace W of V such that V = U ⊕W. Let f : V → U be the H-
projection with kernel W. Consider the map

f G : v 7→ (G : H)−1 ∑
g∈G/H

π(g) f (π(g)−1v), v ∈ V.

This definition is independent of the choice of cosets representatives and it follows
that f G is a G-projection V → U. Indeed, we check those:

1. It is independent of choice of cosets representatives, as

π(gh) f (π(gh)−1v) = π(g)π(h) f (π(h)−1π(g)−1v) = π(g) f (π(g)−1v)

as f is H-homomorphism.

2. It is G-projection. Firstly, it is G-homomorphism as

π(g′) f G(v) = (G : H)−1 ∑
g∈G/H

π(g′g) f (π(g)−1v), v ∈ V,

= (G : H)−1 ∑
g∈G/H

π(g) f (π(g′−1g)−1v),

= f G(π(g′)v).

Why f G projection? It seems I couldn’t show ( f G)2 = f G?

We then have V = U⊕ ker f G and ker f G is a G-subspace of V. Thus V is semisim-
ple (

section2.2section2.2
2.2.2).

Conversely, suppose V is G-semisimple. Thus G is direct sum irreducible G-
subspace (

section2.2section2.2
2.2.2), and it is enough to treat case where V is irreducible over G. As

representation of H, the space V is finitely generated (V is irreducible over G so
{π(g)v : g ∈ G} spans V, and since G/H is finite so V H-finitely generated by
{π(g)v : g ∈ G/H}) so it admits irreducible H-quotients U (i.e. H-subspace of V
that is irreducible over H). Suppose for the moment that H is normal subgroup of
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G. By Frobenius Reciprocity
section2.4section2.4
2.2.4, the H-map V → U gives a nontrivial, hence in-

jective (since V is G-irreducible) G-map V ↪→ IndG
HU. As representation of H, the

induced representation IndG
HU = c-IndG

HU (since G/H is finite) is a direct sum of
G-conjugates of U (from lemma in

section2.5section2.5
2.2.5, U isomorphic to space C of functions sup-

ported in H, and then as G/H begin finite, c-IndG
HU is direct sum of gC, g ∈ G/H

which is spanned by {g fw : w ∈ W}). These are all irreducible over H (first, it is
indeed a representation of H isomorphic to U and then U is irreducible) so IndU
is H-semisimple. Proposition 2.2.2.1 then implies V ⊂ IndU is H-semisimple.

In general, we set H0 =
⋂

g∈G/H gHg−1 which gives us open compact nor-
mal subgroup of G of finite index. We have just shown that G-space V is H0-
semisimple. The first part of the proof (turning a H0-projection into H-projection)
shows V is H-semisimple.

We apply the lemma in following context. Let Z center of G, and fix character
χ of Z. Consider class of smooth representations (π, V) of G which admits χ as
central character, that is,

π(z)v = χ(z)v, z ∈ Z, v ∈ V.

Proposition 2.2.7.2. Let (π, V) be smooth representation of G, admitting χ as
central character. Let K open subgroup of G such that KZ/Z is compact.

1. Let v ∈ V. The KZ-space spanned by v is of finite dimension, and is sum
of irreducible KZ-spaces.

2. As representation of KZ, the space V is semisimple.

Proof. The vector v ∈ V is fixed by a compact open subgroup K0 of K (indeed,
say v fixed by compact open K′ ⊂ G as G is locally profinite so v also fixed
by K0 = K′ ∩ K which is compact (as it is closed in K′) open subgroup of K).
KZ/K0Z is finite as K0 is compact of K, so the space W spanned by π(KZ)v has
finite dimension. Indeed, note π(k0z)v = χ(z)v so π(K0Z)v is 1-dimensional), as
desired. This also implies W is K0Z-semisimple. The lemma above implies W is
KZ-semisimple. Since v was chosen arbitrarily, the second assertion follows.

In practice, open subgroup K will contain Z, with K/Z compact. The discus-
sion is equally valid if Z closed subgroup of the center Z(G) of G.

2.2.8 Contragedient/Smooth dual

ssection2.8

Let (π, V) smooth representation of locally profinite group G. Write V∗ =
HomC(V, C), and denote by

V∗ ×V → C, (v∗, v) 7→ 〈v∗, v〉 = v∗(v),
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the canonical evaluation pairing. The space V∗ carries a representation π∗ of G
defined by

〈π∗(g)v∗, v〉 = 〈v∗, π(g−1)v〉, g ∈ G, v∗ ∈ V∗, v ∈ V.

That is not, in general, smooth. We accordingly define

V̌ = (V∗)∞ =
⋃
K

(V∗)K,

where K ranges over compact open subgroup of G. exercise 5 shows V̌ is G-table
subspace of V∗, and provides smooth representation

π̌ = (π∗)∞ : G → AutC(V̌).

The representation (π̌, V̌) is called the contragedient, or smooth dual, of (π, V). We
continue to denote the evaluation pairing V̌×V → C by (v̌, v) 7→ 〈v̌, v〉. Therefore,

〈π̌(g)(v̌), v〉 = 〈v̌, π(g−1)v〉, v̌ ∈ V̌, g ∈ G, v ∈ V. (2.2.8.1) {contragedient_evaluation}

Let K be compact open subgroup of G. We recall VK has unique K-complement
V(K) in V (

section2.3section2.3
2.2.3). If v̌ ∈ V̌ is fixed underK, we have 〈v̌, V(K)〉 = 0. Indeed, we

have π̌(g)v̌ = v̌ for g ∈ K, implying

〈π̌(g)v̌, v〉 = 〈v̌, v〉 ⇐⇒ 〈v̌, π(g−1)(v)− v〉 = 0, g ∈ K, v ∈ V.

As g ∈ K, we know π(g)v− v = 0 when v ∈ VK. Hence, π(g)v− v ∈ V(K) for
v ∈ V. This type of elements certainly span V(K) (need to check this, note V is
not necessarily finite dimensional). In the end, we obtain 〈v̌, V(K)〉 = 0. Thus,
v̌ ∈ V̌K is determined by its effect on VK.

Proposition 2.2.8.1. Restriction to VK induces an isomorphism V̌K ∼= (VK)∗.

Proof. We already obtained a map V̌K → (VK)∗. For the inverse map, one can
extend a linear functional on VK to an element of V̌K by letting it be trivial on
V(K).

Corollary 2.2.8.2. Let (π, V) be smooth representation of G, and let v ∈ V, v 6=
0. There exists v̌ ∈ V̌ such that 〈v̌, v〉 6= 0.

Proof. Since (π, V) is smooth, for any v ∈ V, v 6= 0, there exists open compact
subgroup K so v ∈ VK. One can define a linear functional f on VK that is nonzero
at v. By the proof of above proposition, f can be extended to an element v̌ of
V̌K.

Remark 2.2.8.3. Subspace V̌ of V∗ does depend on G in the following sense: Let H
closed subgroup of G, and let Ṽ space of H-smooth vectors in V∗. Then certainly
V̌ ⊂ Ṽ, but there can be situation where Ṽ 6= V̌.
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2.2.9 Isomorphism with double smooth dual iff admissible
section2.9

Let (π, V) smooth representation of locally profinite group G. We can form the
smooth dual ( ˇ̌π, ˇ̌V) of (π̌, V̌). There is a G-canonical map δ : V → ˇ̌V by

〈δ(v), v̌〉V̌ = 〈v̌, v〉V , v ∈ V, v̌ ∈ V̌.

It is injective (from corollary
section2.8section2.8
2.2.8).

Proposition 2.2.9.1. Let (π, V) smooth representation of locally profinite group
G. The canonical map δ : V → ˇ̌V is an isomorphism if and only if π is admis-
sible.

Proof. The map δ induces a map δK : VK → ˇ̌VK for each open compact subgroup
K of G. Indeed, for v ∈ VK, we need to show δ(v) ∈ ˇ̌VK, which holds since

〈 ˇ̌π(g)δ(v), v̌〉V̌ = 〈δ(v), π̌(g−1)v̌〉V̌ ,
= 〈π̌(g)v̌, v〉V ,
= 〈v̌, π(g)v〉V ,
= 〈v̌, v〉V ,
= 〈δ(v), v̌〉V̌

for all v̌ ∈ V̌, g ∈ K. Thus, δ is surjective iff δK is surjective for all K (exact-
ness property in corollary in

section2.3section2.3
2.2.3). From proposition in

section2.9section2.9
2.2.9, we know δK is the

canonical map VK → (VK)∗∗, which is surjective iff dimCVK < ∞.

2.2.10 Admissible rep V irreducible iff V̌ is
section2.10

Let (π, V), (σ, W) be smooth representations of G, and let f : V →W be a G-map.
We define a map f̌ : W̌ → V̌ by the relation

〈 f̌ (w̌), v〉W = 〈w̌, f (v)〉, w̌ ∈ W̌, v ∈ V.

The map f̌ is a G-homomorphism, and (π, V) → (π̌, V̌) gives a contravariant
functor of Rep(G) itself.

Lemma 2.2.10.1. The contravariant functor Rep(G) → Rep(G) sending (π, V)
to (ǧ, V̌) is exact.

Proof. If we have an exact sequence of smooth representations (πi, Vi) of G:

0 V1 V2 V3 0

the sequence

0 VK
1 VK

2 VK
3 0
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is exact according to
section2.3section2.3
2.2.3. The sequence of dual spaces (VK

i )∗ is then exact (noth-

ing about smoothness is involved here), and note (VK
i )∗ ∼= V̌i

K and the result
follows from

section2.3section2.3
2.2.3.

We deduce:

Proposition 2.2.10.2. Let (π, V) be admissible representation of G. Then (π, V)
is irreducible if and only if (π̌, V̌) is irreducible.

Proof. If (π, V) has irreducible subspace U then we have projection V → U so
V = U ⊕W where W is G-space of V. We obtain exact sequence 0 → U → V →
W → 0. From above lemma, we find 0 → Ǔ → V̌ → W̌ → 0 also exact sequence,
implying V̌ is reducible.

Conversely, if (π̌, V̌) not irreducible then so is ( ˇ̌π, ˇ̌V) ∼= (π, V̌).

Exercise 9. Let (π, V) and (σ, W) be smooth representation of G. Let P(π, σ) be space of
G-invariant bilinear pairing V ×W → C. Show that there are canonical isomorphism

HomG(π, σ̌) ∼= P(π, σ) ∼= HomG(σ, π̌).

2.3 Measures and Duality

2.3.1 Haar integral on C∞
c (G)

section3.1
Let G be locally profinite group. Let C∞

c (G) space of functions f : G → C which
are locally constant and of compact support.

Let f ∈ C∞
c (G). Local constancy and compactness of support together imply

that there exist compact open subgroup K1, K2 of G such that f (k1g) = f (g) =
f (gk2), for all g ∈ G, ki ∈ Ki. Taking K = K1 ∩ K2 one sees that f is a finite linear
combination of characteristic functions of double cosets KgK.

Explanation. The proof for this mimics the one in section 2.2.5. Here locally constant
f ∈ C∞

c (G) means for every g ∈ G, there exists compact open subgroup Ug ⊂ G
such that f (gUg) = f (g). Support of f on topological space G with values on
some vector space is the closure of the set {x ∈ G : f (x) 6= 0}. For locally constant
function f on locally profinite group G, this set is closed.

Locally constant functions with compact support from G to vector space S are
smooth functions.

The characteristic function of KgK means function ιKgK : G → C that is 1 on KgK
and 0 everywhere else.

The group G acts on C∞
c (G) be left translation λ and by right translation ρ:

λg f : x 7→ f (g−1x), ρg f : x 7→ f (xg); x, g ∈ G, f ∈ C∞
c . (2.3.1.1) {measure_translation}

Both of the G-representations (C∞
c (G), λ), (C∞

c (G), ρ) are smooth.
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Definition 2.3.1.1. A right Haar integral on G is nonzero linear functional I : C∞
c →

C such that

1. I(ρg f ) = I( f ), g ∈ G, f ∈ C∞
c (G),

2. I( f ) ≥ 0 for any f ∈ C∞
c , f ≥ 0.

One defines left Haar integral similarly, using left translation λ instead of right
translation. We now show that G prossesses only one right Haar integral.

Proposition 2.3.1.2. There exists a right Haar integral I : C∞
c → C. Moreover,

a linear functional I′ : C∞
c → C is a right Haar integral iff I′ = cI, for some

constant c > 0.

Proof. Let K compact open subgroup of G. We denote KC∞
c (G) the space of func-

tions in C∞
c (G) fixed by λ(K). We view KC∞

c (G) as G-space via right translation.It
is then identical to the representation of G compactly induced from the trivial
representation 1K of K: KC∞

c (G) = c-IndG
K 1K. We check this first:

1. We need to show for f ∈K C∞
c (G) then ρg( f ) ∈K C∞

c (G), i.e. λk(ρg f ) = ρg f
for all k ∈ K. Indeed, we have

λk(ρg f ) : x 7→ (ρg f )(k−1x) = f (k−1xg)

Since f ∈K C∞
c (G) so λ(K) f = f , meaning f (k−1xg) = f (xg) = (ρg f )(x), as

desired.

2. We need to show ρ : G → AutC(
KC∞

c (G)) is a smooth group homomor-
phism. It is group homomorphism as

ρg1g2( f ) : x 7→ f (xg1g2) = ρg2( f )(xg1) = (ρg1(ρg2 f ))(x).

Since (C∞
c (G), ρ) is smooth so (ρ,K C∞

c (G)) is also smooth.

3. We show KC∞
c (G) = c-IndG

K 1K by assuming that C is 1K. The action of G
on these two sets are defined the same. Suppose f ∈ c-IndG

K 1K so following
the definition, f (kg) = f (g) for all k ∈ K, g ∈ G, meaning f is fixed under
λ(K). f is locally constant according to definition. f is compactly supported
modulo open compact K, i.e. supp f ⊂ KC for compact C of G, and since KC
is compact, supp f is also compact. Thus, f ∈K C∞

c (G).

Conversely, if f ∈K C∞
c (G) then the fact that f fixed under λ(K) and f

locally constant implies f ∈ IndG
K 1K. To show f ∈ c-IndG

K 1K, we need f to
be compact support modulo K. Since supp f is compact on G so supp f
compact on G/K via continuous map G → G/K, as desired.

Lemma 2.3.1.3. Viewing C as the trivial G-space, we have

dimCHomG(
KC∞

c (G), C) = 1.

There exists nonzero element IK ∈ HomG(
KC∞

c (G), C) such that IK( f ) ≥ 0
whenever f ≥ 0. If hK is the characteristic function of K, then IK(hK) > 0.
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Proof of lemma. The first assertion is given by proposition in section 2.2.5, saying
that HomG(

KC∞
c (G), C) ∼= HomK(1K, C).

For g ∈ G, let fg denote the characteristic function of Kg then the set of func-
tions fg, K\G, then forms a C-basis of space KC∞

c (G) (lemma from section 2.2.5
with the note that 1K = C). The functional IK : fg → 1 has the required properties,
noting that hK = f1.

We choose a descending sequence {Kn}n≥1 of compact open subgroups Kn of
G such that

⋂
n Kn = 1. As (ρ, C∞

c (G)) is a smooth representation, we have

C∞
c (G) =

⋃
n≥1

Kn C∞
c (G).

For each n ≥ 1, from the above lemma, there exists a unique right G-invariant
functional In on Kn C∞

c (G) which maps the characteristic function of Kn to (K1 :
Kn)−1 (this number exists due to Proposition 1.2.2.2). We have In+1 restricted
to Kn C∞

c (G) is In. Indeed, since Kn+1 ⊂ Kn so Kn C∞
c (G) ⊂Kn+1 C∞

c (G). With
In+1 restricted to Kn C∞

c (G), we obtain an element of HomG(
Kn C∞

c (G), C), so in
order to show it is precisely In, we need to show this map sends hKn to (K1 :
Kn)−1. Following proof of above lemma, we now that In+1 is defined by sending
characteristic function hg on Kn+1g to (K1 : Kn+1)

−1. Hence, the characteristic
function hKn on Kn =

⋃
g∈Kn/Kn+1

Kn+1g is hKn = ∑g∈Kn/Kn+1
hg. As hg 7→ (K1 :

Kn+1)
−1 under In+1, hKn 7→ (Kn : Kn+1)/(K1 : Kn+1) = (K1 : Kn)−1, as desired.

Thus, the family {In} gives a functional on C∞
c (G) of the required kind. The

unique statement is immediate, as any right Haar integral I′ when restricted to
Kn C∞

c (G) must satisfy uniqueness condition as in lemma.

Remark 2.3.1.4. The lemma also implies that, if we view C∞
c (G) as smooth repre-

sentation of G under right translation, then dim HomG(C∞
c (G), C) = 1. The proof

follows by applying the lemma and by decomposing C∞
c (G) as in previous proof.

The functional I of the proposition is a right Haar integral on G. One can pro-
duce a left Haar integral in exactly the same way. Alternatively, one can proceed
as follows:

Corollary 2.3.1.5. For f ∈ C∞
c (G), define f̌ ∈ C∞

c (G) by f̌ (g) = f (g−1), g ∈ G.
The functional

I′ : C∞
c (G)→ C, I′( f ) = I( f̌ ),

is a left Haar integral on G. Moreover, any left Haar integral on G is of the form
cI′, for some c > 0.

The uniqueness statement follows by observing that if J left Haar integral, then
f 7→ J( f̌ ) is a right Haar integral.

Let I be a left Haar integral on G. Let S 6= ∅ be compact open subset of G and
ΓS be its characteristic function. We define

µG(S) = I(ΓS).
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Then µG(S) > 0 (based on what we define I previous proposition) and the mea-
sure µG satisfies µG(gS) = µG(S), g ∈ G (since λgΓS = ΓgS and I being left Haar
measure implies I(λg f ) = I( f )). One refers to µG as left Haar measure on G. The
relation with the integral is expressed via traditional notation

I( f ) =
∫

G
f (g)dµG(g), f ∈ C∞

c (G).

So right invariance under this notation is∫
G

f (xg)dµG(x) =
∫

G
f (x)dµG(x), g ∈ G.

Further traditional abbreviations are frequently permitted, in particular,∫
G

ΓS(x) f (x)dµG(x) =
∫

S
f (x)dµG(x).

Definition 2.3.1.6. The group G is unimodular if any left Haar integral on G is a
right Haar integral.

2.3.2 Haar integral on some extensions of C∞
c (G)

section3.2
One can extend the domain of Haar integration, much as in the classical case of
Lebesgue measure. We outline examples of what we will need.

First, one can integrate more general functions. For example, let f function on
G invariant under left translation by a compact open subgroup K of G. Let µG be
left Haar measure on G. If the series

∑
g∈K\G

∫
Kg
| f (x)|dµG(x)

converges, so does the series without the absolute value, and we put∫
g

f (x)dµG(x) = ∑
g∈K\G

∫
Kg

f (x)dµG(x).

The result does not depend on the choice of K, and this extended Haar integral
has the translation invariance property of the original.

Question 2.3.2.1. How to construct such extension? I.e. how to define
∫

Kg | f (x)|dµG(x)
when f 6∈ C∞

c (G)?

Next, let G1, G2 be locally profinite groups, and set G = G1 × G2. Then G
is locally profinite. An element ∑1≤i≤r f 1

i ⊗ f 2
i of the tensor product C∞

c (G1) ⊗
C∞

c (G2) gives a function on G

Φ(g1, g2) = ∑
i

f 1
i (g1) f 2

i (g2).
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Then Φ ∈ C∞
c (G) and this process gives an isomorphism C∞

c (G1)×C∞
c (G2)→ C∞

c .
Let µj be left Haar mesure on Gj, j = 1, 2. There is then a unique left Haar measure
µG on G such that∫

G
f1 ⊗ f2(g)dµG(g) =

∫
G1

f1(g1)dµ1(g1)
∫

G2

f2(g2)dµ2(g2),

for fi ∈ C∞
c (Gi). One writes µG = µ1 ⊗ µ2.

For a general f ∈ C∞
c (G), the function

f (g1) =
∫

G2

f (g1, g2) f µ2(g2)

lies in C∞
c (G1). We have∫

g
f (g)dµG(g) =

∫
G1

f1(g1)dµ1(g1),

and symmetrically (indeed, if f is of the form f1⊗ f2 then this is obvious, but note
such functions span C∞

c (G)).
Next, let V complex vector space, and consider space C∞

c (G; V) of locally
constant, compactly supported functions f : G → V. This space is isomor-
phic to C∞

c (G) ⊗ V in the obvious way: a tensor ∑j fi ⊗ vi gives the function
g 7→ ∑i fi(g)vi. If µG is left Haar measure on G, there is a unique linear map
IV : C∞

c (G; V)→ V such that

IV( f ⊗ v) =
∫

G
f (g)dµ(g) · v.

We write
IV(φ) =

∫
G

φ(g)dµG(g), φ ∈ C∞
c (G; V).

This has the same invariance properties as the Haar integral on scalar-valued
functions.

2.3.3 Modular character
section3.3

Remark 2.3.3.1. This remark is served for quick referencing. Essentially what you
learn after this section on modular character is just that:∫

G
δG(x)−1 f (xg)dµG(x) =

∫
G

δG(x)−1 f (x)dµG(x),

where µG is left Haar measure.

Let µG be a left Haar measure on G. For g ∈ G, consider the functional
C∞

c (G)→ C:

f 7→
∫

G
f (xg)dµG(x).
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This is a left Haar integral on G, so there is a unique δG(g) ∈ R×+ such that

δG(g)
∫

G
f (xg)dµG(x) =

∫
G

f (x)dµG(x),

for all f ∈ C∞
c (G) 5. The function δG is a homomorphism G → R×>0. It is trivial if G

is abelian; more generally, δG is trivial if and only if G is unimodular. Furthermore,
δG is a character of G. One calls δG the modular/module character of G.

Check the above. We show δG is a group homomorphism. It suffices to show δG(g2)δG(g1) =
δG(g1)δG(g2) = δG(g1g2). We have

δG(g2)δG(g1)
∫

G
f (xg1g2)dµG(x) = δG(g2)δG(g1)

∫
G
(ρg2 f )(xg1)dµG(x),

= δG(g2)
∫

G
(ρg2 f )(x)dµG(x),

=
∫

G
f (x)dµG(x).

Next, we show δG is continuous by showing that δ−1
G (1) is open. Take f to be a

characteristic function of some open compact subgroup K of G then f (xg) = f (x)
for all g ∈ K implying ∫

G
f (xg)dµG(x) =

∫
G

f (x)dµG(x)

for all g ∈ K and hence, δG(g) = 1 for all g ∈ K, as desired. Thus, δG is a character
of G.

Next, we show the functional

f 7→
∫

G
δG(x)−1 f (x)dµG(x), f ∈ C∞

c (G),

is a right Haar integral on G. Indeed, note that f /δG ∈ C∞
c (G) so by definition of

δG, we have

δG(g)
∫

G
δG(xg)−1 f (xg)dµG(x) =

∫
G

δG(x)−1 f (x)dµG(x).

As δG(xg) = δG(x)δG(g) so we obtain∫
G

δG(x)−1(ρg f )(x)dµG(x) =
∫

G
δG(x)−1 f (x)dµG(x),

showing that the desired funtional is right Haar integral on G. Hence, if δG is
trivial then every left Haar integral is a right Haar integral on G. Conversely, if G
is unimodular, How to show that δG is trivial?

5 Just want to take note how other source define δG. Daniel Bump in his Lie Groups’ book
defined δG via

∫
G f (g−1xg)gµG(x) = δG(g)

∫
G f (x)dµG(h). In this case δG(x)dµG(x) is the right

Haar measure, while in our case, it’s δG(x)−1dµG(x), which will be proved later
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The mnemonic dµG(xg) = δG(g)dµG(x) may be found helpful. How?

Remark 2.3.3.2. We have already observed that δG is trivial on any compact open
subgroup of G. In particular, if G is compact, then δG = 1 and G is unimodular.
In the general case, any character G → R×>0 is trivial on compact subgroups, since
R×>0 has only the trivial compact subgroup.

2.3.4 Haar measure on H\G
section3.4

Let H be closed subgroup of G, with module δH. Let θ : H → C× be character of
H. We consider the space of functions f : G → C which are G-smooth under right
translation, compactly supported modulo H and satisfy

f (hg) = θ(h) f (g), h ∈ H, g ∈ G.

We call this space C∞
c (H\G, θ), and view it as a smooth G-space via right transla-

tion ρ. (Note C∞
c (H\G, θ) = c-IndG

Hθ, but this characterization is not helpful).
To spell this out (since I already forgot about these conditions), we have

1. From section 2.2.5, f being compactly supported modulo H means supp f =

{g ∈ G : f (g) 6= 0} is compact in H\G, i.e. supp f ⊂ HC for some compact
set C in G.

2. In section 2.3.1 C∞
c (H\G, θ) is G-smooth under right translation ρ where the

translation is defined as: ρ f : x 7→ f (xg); x, g ∈ G; f ∈ C∞
c (H\G, θ).

3. Last condition is f (hg) = θ(h) f (g), h ∈ H, g ∈ G.

Proposition 2.3.4.1. Let θ : H → C× be character of H. The following are
equivalent:

1. There exists a non-zero linear functional Iθ : C∞
c (H\G, θ) → C such that

Iθ(ρg f ) = Iθ( f ), for all g ∈ G.

2. θδH = θG|H.

With these conditions hold, the functional Iθ is uniquely determined up to
constant factor.

Proof. Let µG, µH be left Haar measure on G, H respectively. We define G-map
C∞

c (G)→ C∞
c (H\G, θ), denote f 7→ f̃ , by

f̃ (g) =
∫

H
θδH(h)−1 f (hg)dµH(h).

This map satisfies λ̃k f = δHθ(k)−1 f̃ , for k ∈ H and f ∈ C∞
c (G). It is surjective. We

check these first:
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1. First, we show f̃ ∈ C∞
c (H\G, θ). First, we check f̃ is compactly supported

modulo H. Indeed, note f being compactly support so supp f ⊂ C for some
open compact C of G, implying supp f̃ ∈ HC.

2. To show C∞
c (H\G, θ) is G-smooth representation, we will skip this step.

3. To show f̃ (h′g) = θ(h′) f̃ (g) for h ∈ H, g ∈ G, we have

f̃ (h′g) =
∫

H
θδH(h)−1 f (hh′g)dµH(h),

= θ(h′)
∫

H
δH(h)−1θ(hh′)−1 f (hh′g)dµH(h),

= θ(h′) f (g) (since δH modular character).

4. Finally, we check λ̃k f = δHθ(k)−1 f̃ . We have

λ̃k f (g) =
∫

H
θδH(h)−1(λk f )(hg)dµH(h),

=
∫

H
θδH(h)−1 f (k−1hg)dµH(h),

= θδ(k)−1
∫

H
θδH(k−1h)−1 f (k−1hg)dµH(h),

= θδH(k)−1 f̃ (g)

We prove the map is surjective. If K compact open subgroup of G, the space
C∞

c (G)K is spanned by characteristic functions of cosets gK, g ∈ G/K (since each
f ∈ C∞

c (G)K is compactly supported, and supp f is disjoint union of gK for g ∈
G/K so f (g) 6= 0, implying supp f is finite union of gK for g ∈ G/K so f (g) 6= 0;
this shows that f is span by characteristic function fgK on cosets gK, g ∈ G/K).
One the other hand, each coset HgK supports, at most, a one-dimensional space
of functions in C∞

c (H\G, θ)K and these subspaces span C∞
c (H\G, θ)K 6. The map

f 7→ f̃ is surjective on K-fixed functions. It is therefore surjective.
Suppose that the space C∞

c (H\G, θ) admits a functional Iθ of the required kind.
The map f 7→ Iθ( f̃ ) is then a nontrivial G-homomorphism (C∞

c (G), ρ)→ C 7.
However, the space HomG(C∞

c (G), C) has dimension 1 (remark from section 2.3.1),
and it is spanned by a right Haar integral. Hence, up to constant factor of Iθ , the
right Haar integral δ−1

G dµG : C∞
c (G) → C must factors through quotient map

(since it’s surjective as proven) C∞
c (G) → C∞

c (H\G, θ). Hence, the kernel of

6 To explain this in details: With similar argument, note that for f ∈ C∞
c (H\G, θ)K then

f (HgK) 6= 0 iff f (g) 6= 0, meaning supp f is finite union of HgK so each f ∈ C∞
c (H\G, θ)K is

spanned by f̃HgK with g ∈ H\G/K ( f̃HgK(g) = 1 and 0 everyelse in H\G/K). Finally, note that
for fix g ∈ H\G/K, a linear combination of characteristic functions fhgK ∈ C∞

c (G), h ∈ H must be
mapped to C f̃HgK ⊂ C∞

c (H\G, θ)
7Here’s a quick check: if we call this map ϕ then we need ϕ(ρg f ) = ρg ϕ( f ). Note it’s C so

ρg ϕ( f ) = ϕ( f ). Hence, we need Iθ(ρ̃g f ) = Iθ( f̃ ) but ρ̃g f = ρg f̃ since f 7→ f̃ is a G-map and from
knowing Iθ , we are done.
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C∞
c (G) → C∞

c (H\G, θ) must lie inside kernel of δ−1
G dµG. By universal property

for the quotient map C∞
c (G)→ C∞

c (H\G, θ), we have

C∞
c (G)

C∞
c (H\G, θ) C

f 7→ f̃
δ−1

G dµG

∃!ϕ

where ϕ is defined as ϕ( f̃ ) =
∫

G δG(g)−1 f (g)dµG(g). This follows

δHθ(h−1)ϕ( f̃ ) = ϕ(λ̃h f ),

=
∫

G
δG(g)−1(λh f )(g)dµG(g),

= δG(h−1)
∫

G
δG(h−1g)−1 f (h−1g)dµG(g),

= δG(h−1)ϕ( f̃ )

As this is true for all f ∈ C∞
c (G) and all h ∈ H so we obtain (2), as desired.

For the converse, we take function f ∈ C∞
c (G) such that f̃ = 0. The function f

is fixed by a compact open subgroup K (see section 2.3.1), and it is enough enough
to treat the case where supp f ⊂ HgK for some g ∈ K. Thus, f is finite linear
combination of the characteristic function on cosets higK, hi ∈ H. The condition
f̃ = 0 then amounts to

µH(H ∩ gKg−1)∑
i

θδH(hi)
−1 f (hig) = 0.

since θδH is trivial on the compact subgroup H ∩ gKg−1 of H. On the other hand,∫
G

f (x)δG(x)−1dµG(x) = ∑
i

∫
K

θδ(higk)−1 f (higk)dµG(k),

= µG(K)δG(g)−1 ∑
i

δG(hi)
−1 f (hig).

If (2) holds then we find the kernel of quotient map C∞
c (G) → C∞

c (H\G, θ) lies
in the kernel of the right Haar integral δ−1

G dµG so by universal property of the
quotient map, we obtain a nonzero G-map from C∞

c (H\G, θ)→ C.

When the conditions of the proposition hold, the character θ takes only positive
real values (since δH, δG only take positive real values). Let f ∈ C∞

c (G) satisfy
f (g) ≥ 0, for all g ∈ G; we then have f̃ (g) ≥ 0 for all g. Consequently:

Corollary 2.3.4.2. Suppose the condition of the proposition holds. There is then
a non-zero linear functional Iθ on C∞

c (H\G, θ) such that

1. Iθ(ρg f ) = Iθ( f ) for f ∈ C∞
c (H\G, θ), g ∈ G;

2. Iθ( f ) ≥ 0 for f ∈ C∞
c (H\G, θ), f ≥ 0.

These conditions determine Iθ uniquely, up to a positive constant factor.
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One habitually uses a notation like

Iθ( f ) =
∫

H\G
f (g)dµH\G(g), f ∈ C∞

c (H\G, θ),

and calls µH\G a semi-invariant measure on H\G. (Since θ = δ−1
H δG|H is uniquely

determined, there is no real need to refer to it again).

2.3.5 Duality theorem of induced rep with compact induction

Let G be locally profinite group and H closed subgroup of G. Put

δH\G = δ−1
H δG|H : H → R×+.

Theorem 2.3.5.1 (Duality theorem). Let µ̇ be a positive semi-invariant measure
on H\G. Let (σ, W) be smooth representation of H. There is a natural isomor-
phism (

c-IndG
Hσ
)∨ ∼= IndG

HδH\G ⊗ σ̌.

depending only on the choice of µ̇.

Proof. We view the δH\G⊗ σ̌ on the same space W̌ as σ̌. Let (w̌, w) 7→ 〈w̌, w〉 be the
evaluation pairing W̌ ×W → C. Let φ ∈ c-Indσ, Φ ∈ IndδH\G ⊗ σ̌, and consider
the function

f : g 7→ 〈Φ(g), φ(g)〉, g ∈ G.

DO THIS PART

2.3.6 The Hecke Algebra

If G is a finite group, the concept of a representation of G is essentially identical
to that of module over group algebra C[G]. This relation extends to smooth repre-
sentations of locally profinite group, but only with a suitable definition of ’group
algebra’.

To avoid technical complications, we impose the following:

Hypothesis. Unless otherwise stated, we assume that G is unimodular.

We fix a Haar measure µ on G. For f1, f2 ∈ C∞
c (G), we define

( f1 ∗ f2)(g) =
∫

G
f1(x) f2(x−1g)dµ(x).

The function (x, g) 7→ f1(x) f2(x−1g) lies in C∞
c (G× G) (section 2.3.2) so f1 ∗ f2 ∈

C∞
c (G). Similarly, for fi ∈ C∞

c (G), the integral expressing f1 ∗ ( f2 ∗ f3)(g) is that of
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function from C∞
c (G× G), so we can manipulate formally

f1 ∗ ( f2 ∗ f3)(g) =
∫ ∫

f1(x)( f2 ∗ f3)(x−1g)dµ(x)

=
∫ ∫

f1(x) f2(y) f3(y−1x−1g)dµ(y)dµ(x)

=
∫ ∫

f1(x) f2(x−1y) f3(y−1g)dµ(y)dµ(x)

=
∫ ∫

f1(x) f2(x−1y) f3(y−1g)dµ(x)dµ(y)

= ( f1 ∗ f2) ∗ f3(g).

The binary operation ∗, called convolution is thus associative. The pair

H(G) = (C∞
c (G), ∗)

is an associative C-algebra called Hecke algebra of G. In general, H(G) has no unit
element; it is commutative if G is commutative.

Remark 2.3.6.1. The algebra structure on H(G) with ∗ depends on the choice of
Haar measure µ. However, suppose we have two Haar measures µ, ν, giving rise
to two algebra structures Hµ(G),Hν(G) on C∞

c (G). There is a constant c > 0 such
that ν = cµ. The map f 7→ c−1 f is then an algebra isomorphism Hµ(G)→ Hν(G).

While, in general,H(G), has no unit element, it does have family of idempotents
elements. For example, let K be compact open subgroup of G, define function
eK ∈ H(G) by

eK(x) =

{
µ(K)−1 if x ∈ K,
0 if x 6∈ K.

Proposition 2.3.6.2. 1. The function eK satisfies eK ∗ eK = eK.

2. A function f ∈ H(G) satisfies eK ∗ f = f iff f (kg) = f (g) for all k ∈ K, g ∈
G.

3. The space eK ∗ H(G) ∗ eK is a subalgebra of H(G), with unit element eK.

Proof. First, consider integral

eK ∗ eK(g) =
∫

G
eK(x)eK(x−1g)dµ(x)

If g 6∈ K then either x 6∈ K or x−1g 6∈ K. Hence, the integral is 0. If g ∈ K, then the
integral is 0 when x 6∈ K and is µ(K)−2 when x ∈ K.

For (2), for f ∈ H(G), k ∈ K, g ∈ G, we have

eK ∗ f (kg) =
∫

G
eK(x) f (x−1kg)dµ(x),

=
∫

G
eK(kx) f (x−1g)dµ(x),

=
∫

G
eK(x) f (x−1g) = (eK ∗ f )(g).
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If eK ∗ f = f then we find f (kg) = f (g) from this. Conversely, if f is left K
invariant, then (eK ∗ f )(g) = f (g), which implies f (kg) = f (g) from the above.

For (3), it is not hard to see that eK ∗ H(G) ∗ eK is a subalgebra of H(K). eK ∗
H(G) ∗ eK consists of biinvariant functions (from above identity) so (2) implies eK
is the identity.

We note that eK ∗H(G) ∗ eK is the space of f ∈ H(G) satisfying f (k1gk2) = f (g)
for g ∈ G, k1, k2 ∈ K. The often write H(G, K) = eK ∗ H(G) ∗ eK.

Let M be a left H(G)-module: it will be convenient to denote the module
action by ( f , m) 7→ f ∗ m, for f ∈ H(G), m ∈ M. We say that M is smooth if
H(G) ∗ M = M. Since H(G) is the union of its subalgebras eK ∗ H(G) ∗ eK, the
module

48



Chapter 3

Representation of GL2(Fq)

We work out irreducible representations of GL2(Fq) of intertible 2× 2 matrices
over finite field k

3.1 Linear groups GL2(F)

F denotes arbitrary field. We recall some basic facts about group G = GL2(F).

3.1.1 Subgroups N, B, T, Z
section5.1

G has some important subgroups:

B =

{(
a b
0 c

)
∈ G

}
, N =

{(
1 b
0 1

)
∈ G

}
, T =

{(
a 0
0 b

)}
, Z =

{(
a 0
0 a

)}
.

(3.1.1.1) {subgroups_gl2}

B called standard Borel subgroup of G, N is unipotent radical of B, T is the standard
split maximal torus in G. Z is the center of G, canonically isomorphic to F×.

Question 3.1.1.1. Explain above terminologies.

We have B = T n N with N normal subgroup of B, implying B/N ∼= T. This

is due to
(

a b
0 c

)
=

(
a 0
0 c

)(
1 b/a
0 1

)
.

3.1.2 Bruhat decomposition

The Bruhat decomposition G = G ∪ BwB where w denotes the permutation matrix

w =

(
0 1
1 0

)
. That is, {1, w} is set of representatives for coset space B\G/B. This

is true since (
a b
c d

)
=

(
1 a/c
0 1

)
w
(
−c −d
0 b− ad/c

)
, c 6= 0.
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BwB are precisely matrices in G with nonzero (2, 1)-entry. Since B = NT = TN
and w normalizes T (i.e wT = Tw), we have BwB = N(Tw)TN = N(wT)TN =
NwTN = NwB and similarly BwB = BwN. Moreover, the map

B× N → BwN, (b, n) 7→ bwn,

is bijective (obviously surjective, to show injective, solve for bwn = w to find
b = n = 1).

3.2 Representations of GL2(Fq)

Denote Fq finite field with q elements. We classify the irreducible (complex) rep-
resentations of finite group G = GL2(Fq). (I will follow Etingof’s book Represen-
tation theory for this part).

3.2.1 Conjugacy classes of GL2(Fq)

Consider a matrix A ∈ G = GL2(Fq). If A has two distinct eigenvalues x, y then

by Jordan canonical form, A is conjugate (or similar) to
(

x 0
y 0

)
. If A has repeated

eigenvalue x then by Jordan canonical form, A is conjugate to either
(

x 0
0 x

)
or(

x 1
0 x

)
.

If A doesn’t have eigenvalues in Fq, i.e. it has characteristic polynomial irre-
ducible over Fq. Here we suppose q has characteristic other than 2, then every
quadratic extension of Fq can be written as Fq(

√
ε) where ε ∈ Fq \ F2

q. Over this
field, A will have eigenvalues α = x +

√
εy and α = x−

√
εy with x, y ∈ Fq, y 6= 0

and corresponding eigenvectors v, v where Av = αv, Av = α. Note that conjugacy
(simiarity) of matrices indicates they represent the same linear map, which means

if we change basis e1 = v + v, e2 = ε(v− v) then A is conjugate to
(

x εy
y x

)
∈ G.

Due to the steps above, if A, B ∈ G are matrices with irreducible characteristic
polynomial fA, fB over Fq, then A is conjugate to B iff fA = fB, i.e. they have
same set of eigenvalues over Fq(

√
ε), which determines x,±y uniquely (where

(x, y) and (x,−y) are considered the same since set of eigenvalues of the two are
the same). Therefore, the number of conjugacy classes of such type of matrices is
equal to number of pairs (x,±y) with y 6= 0. There are q ways for x and q−1

2 ways
for y, giving 1

2 q(q− 1) such conjugacy classes.
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Representatives Size of class Number of class

Scalar
(

x 0
0 x

)
1 q− 1 (one for ev-

ery nonzero x)

Parabolic(
x 1
0 x

) q2 − 1 (elements com-
muting with this one

are
(

t u
0 t

)
, t 6= 0)

q− 1 (one for ev-
ery nonzero x)

Hyperbolic(
x 0
0 y

)
, x 6= y

q2 + q (elements com-
muting with this one

are
(

t 0
0 u

)
, t, u 6= 0)

1
2 (q − 1)(q − 2)
(x, y 6= 0 and x, y)

Elliptic(
x εy
y x

)
, x ∈

Fq, y ∈ F×q , ε ∈
Fq\F2

q (i.e. those
whose character-
istic polynomial
over Fq is irre-
ducible)

q2 − q (reason de-
scribed below)

1
2 q(q − 1) (matri-
ces with y and
−y are conjugate)

Table 3.1: Conjugacy classes of GL2(Fq)table_conjugacyClass_GL2

To calculate size of conjugacy class, note that for conjugacy class C with x ∈ C
then |CG(x)| · |C| = |G| where CG(x) centralizer of x, i.e. elements commuting
with x. We know |G| = (q2− 1)(q2− q) so it suffices to count number of elements
commuting with x.

For the case where A has irreducible characteristic polynomial over Fq, to
count number of elements in conjugacy class of A, we use the basis {v, v} (i.e. A

is then
(

α 0
0 α

)
), then matrices commuting with A will have the form

(
λ 0
0 λ

)
for

all λ ∈ F×q2 , implying that number of matrices commuting with A is q2− 1. Hence,

size of conjugacy class of A is |G|
q2−1 = q2 − q.

See https://www3.nd.edu/~sevens/gl2f.pdf for another discussion about con-
jugacy classes or https://www.imsc.res.in/~amri/html_notes/notesap1.html#
x8-28000A for general GLn(Fq).

3.2.2 Characters of N in representation of B
section6.2

First, characters χ : N → C× produces a 1-dimensional representation of N as
χ(n)v = χ(n)v for all n ∈ N. Consider representation π of B that contains a
1-dimensional representation of N obtained via character χ. Note that taking T-
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conjugation gives gNg−1 = N, more precisely

gncg−1 =

(
a 0
0 b

)(
1 c
0 1

)(
a−1 0
0 b−1

)
=

(
1 acb−1

0 1

)
.

This follows π(gncg−1)v = χ(acb−1)v or π(nc)w = χ(acb−1)w where w = π(g−1)v,
meaning we have found (may be another) 1-dimensional representation of N
within π. The question is how many distinct 1-dimensional representation of
N can appear in π?

Group N of upper triangular unipotent matrices in G is isomorphic to additive

group of k, via the map x 7→
(

1 x
0 1

)
. Hence we study characters of N by studying

characters of k. If we fix a non-trivial character ψ of k, the function aψ : x 7→
ψ(ax), x ∈ k, ranges over all characters of k as a ranges over k. This point of
view implies that if π contains a non-trivial character of N then it contains all
non-trivial characters of N.

3.2.3 1-dimensional representations

3.2.4 Principal series representation

We first consider a method of constructing irreducible representation of G.
Let χ1, χ2 be characters of F×q . We form the character

χ = χ1 ⊗ χ2 :
(

a 0
0 b

)
7→ χ1(a)χ2(b)

of T, which we then regard this as character of B, trivial on N via the quotient

B → B/N ∼= T. In other words, χ

(
a b
0 c

)
= χ1(a)χ2(c). Define Vλ1,λ2 = IndG

B Cχ

where Cχ is 1-dimensional representation of B in which B acts by λ. We have
dim Vλ1,λ2 = |G|/|B| = q + 1.

Irreducible components in IndG
B Cχ are classified as follow:

Lemma 3.2.4.1. Let π irreducible representation of G. The following are equiv-
alent:

1. π is equivalent to a G-subspace of IndH
B χ, for some character χ of T;

2. π contains the trivial character of N, i.e. when view π as representation
of N then there exists trivial subrepresentation of N.

Proof. The representation π contains the trivial character of N if and only if there
exists v ∈ V so π(N)v = v. This v generates representation σ of B which is
irreducible. Its character χ is trivial on N. By Frobenius Reciprocity, we have
HomG(π, IndG

B σ) ∼= HomB(ResG
B π, σ). Note that σ is contained in π when view-

ing π as representation of B. Therefore, HomB(ResG
B π, σ) is nontrivial, implying

there’s a copy of π inside IndG
B σ.
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Thus, we classify irreducible representaions of V that contains trivial represen-
tation of N by analyzing IndG

B Cχ:

Theorem 3.2.4.2. 1. λ1 6= λ2 =⇒ Vλ1,λ2 is irreducible.

2. λ1 = λ2 = µ =⇒ Vλ1,λ2 = Cµ ⊕Wµ where Wµ is a q-dimensional
irreducible representation of G.

3. Wµ
∼= Wν iff µ = ν; Vλ1,λ2 = Vλ′1,λ′2

iff {λ1, λ2} = {λ′1, λ′2} (in the second
case λ1 6= λ2, λ′1 6= λ′2).

Proof. From formula to characters of induced representation, we have

TrVλ1,λ2
(g) =

1
|B| ∑

a∈G,aga−1∈B

λ(aga−1).

• If g =

(
x 0
0 x

)
, the RHS is λ(g) |G||B| = λ1(x)λ2(x)(q + 1) as aga−1 = g.

• If g =

(
x 1
0 x

)
, the RHS equals to λ(g) · 1 since aga−1 ∈ B =⇒ a ∈ B.

• If g =

(
x 0
0 y

)
, the RHS is (λ1(x)λ2(y) + λ1(y)λ2(x)) · 1 since aga−1 ∈ B

implies a ∈ B or a is an element of B multiply by the transposition matrix(
0 1
1 0

)
.

• If g =

(
x εy
y x

)
, 0 6= y, the RHS evaluates to 0 because matrices of this type

do not have eigenvalues over Fq and thus cannot be conjugated into B (B is
upper-triangular matrix so has eigenvalue in Fq).

By using the above and the fact that χi(x) is a root of unity, i.e. |χi(x)| = 1 (as
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χi : F×q → C× and elements of F×q have finite degree), we obtain

|G|〈χVλ1,λ2
, χVλ1,λ2

〉 = ∑
g∈G

χVλ1,λ2
(g)χVλ1,λ2

(g),

= ∑
x∈F×q

1 · |λ1(x)|2|λ2(x)|2(q + 1)2 + ∑
x∈F×q

(q2 − 1)|χ1(x)|2|χ2(x)|2

+ ∑
x 6=y,{x,y}∈(F×q

2
)

(q2 + q) · |λ1(x)λ2(y) + λ1(y)λ2(x)|2 · 1,

= (q− 1)(q + 1)2 + (q2 − 1)(q− 1)

+ (q2 + q) ∑
x 6=y,{x,y}∈(F×q

2
)

(
|λ1(x)|2|λ2(y)|2 + |λ1(y)|2|λ2(x)|2

+λ1(x)λ2(y)λ1(y)λ2(x) + λ1(x)λ2(y)λ1(y)λ2(x)
)

,

= (q− 1)(q + 1)2 + (q2 − 1)(q− 1),

+ 2(q2 + q)
(

q− 1
2

)
+ (q2 + q) ∑

(x,y)∈(F×q )2,x 6=y

λ1(x)λ2(y)λ1(y)λ2(x).

If λ1 = λ2 = µ then the last term is equal to (q2 + q)(q− 2)(q− 1), and the
total in this case is 2|G|, so 〈χVλ1,λ2

, χVλ1,λ2
〉 = 2. We have Cµ ⊂ IndG

B Cµ since

HomG(Cµ, IndG
B Cµ) = HomB(Cµ, Cµ) = C.

due to Frobenius reciprocity. Therefore, combining with 〈χVµ,µ , χVµ,µ〉 = 2, we find
IndG

B Cµ = Cµ ⊕Wµ where Wµ is irreducible; and the character of Wµ is different
for distinct values of µ, proving that Wµ are distinct. 1

If λ1 6= λ2 then let z = xy−1. Note that χ(x−1) = χ(x) so the last term in the
summation equals to

(q2 + q) ∑
x∈F×q ,z 6=1

λ1

λ2
(z) = (q− 1)(q2 + q) ∑

z 6=1

λ1

λ2
(z).

Since ∑z∈F×q
λ1
λ2
(z) = 0 because sum of all roots of unity (since λ1 6= λ2) of given

order m > 1 is zero, which makes the last term to be

−(q2 + q)(q− 1)
λ1

λ2
(1) = −(q2 + q)(q− 1).

This gives 〈χVλ1,λ2
, χVλ1,λ2

〉 = 1 so Vλ1,λ2 is irreducible. To show Vλ1,λ2
∼= Vλ2,λ1 , ob-

serve that we only change the character of hyperbolic element up to permutation
of λi.

Any quick way to show Wµ 6∼= Wν and Vλ1,λ2 6∼= Vλ′1,λ′2
? Look for Maschke’s

theory.

The representations Wµ, Vλ1,λ2 , λ1 6= λ2 are called principal series representations.

1Here is a bit abuse of notation, at the beginning we mention λ1 = λ2 = µ so µ : F×q → C× but
later on µ : G → C× viewed as µ⊗ µ.
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3.2.5 Cuspidal representations

An irreducible representation of G not containing the trivial character of N is
called cuspidal. Such a representation must contain some non-trivial character of
N.

Let l/k quadratic extension. The only non-trivial k-automorphism of field l
is the Frobenius automorphism x 7→ xq. A character θ of l× is called regular if
θq 6= θ.

By choosing a k-basis of l, we identify G with k-linear invertible endomor-
phism on l. The natural action of l× on l (i.e. for a ∈ l× then f : l → l defined
as v 7→ av is an invertible linear map) thus gives an embedding of l× in G. We
hence identify l× with subgroup E of G. Note that any element of G with irre-
ducible characteristic polynomial is conjugate to an element of E. Indeed, for q
odd, l = Fq(

√
ε) with ε ∈ Fq \ F2

q and we choose 1,
√

ε to be the basis, which

immediately identify x + y
√

ε ∈ l× with
(

x εy
y x

)
. So essentially, one can view E

as
{(

x εy
y x

)
; (x, y) 6= (0, 0)

}
(at least when computing character later on).

Let θ be regular character of E and ψ a non-trivial character of N. We define a
character θψ of ZN by

θψ :
(

a 0
0 a

)
u 7→ θ(a)ψ(u), a ∈ k×, u ∈ N.

We observe that, by section 3.2.2, the representation IndG
ZNθψ is, up to equivalence,

independent of the choice of ψ, hence the name θψ. Explain this

Theorem 3.2.5.1. Let θ regular character of E and ψ a nontrivial character of N.

1. The virtual representation

πθ = IndG
ZNθψ − IndG

E θ

is an irreducible representation of G, of dimension q− 1.

2. Let θ1, θ2 be regular characters of E; then πθ1
∼= πθ2 if and only if θ2 = θ1

or θ2 = θ
q
1.

3. Every irreducible cuspidal representation of G is of the form πθ , for some
regular character θ of E.

Proof. Part (3) follows from first two parts by counting dimensions. We prove the
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first two parts by computing characters. We find:

trπθ

(
x 0
0 x

)
= (q− 1)θ(x), x ∈ k×;

trπθ

(
x 1
0 x

)
= −θ(x), x ∈ k×;

trπθ

(
x 0
0 y

)
= 0, x 6= y, xy 6= 0;

trπθ

(
x εy
y x

)
= θ(x + y

√
ε) + θ(x + y

√
ε)q.

We will check the mentioned character table: First, we have by character formula
for induced representation:

trπθ(g) =
1
|ZN| ∑

a∈G,aga−1∈ZN

θψ(aga−1)− 1
|E| ∑

a∈G,aga−1∈E

θ(aga−1).

1. If g =

(
x 0
0 x

)
then aga−1 = g for all a ∈ G. This implies

trπθ(z) =
|G|
|ZN| θψ(z)−

|G|
|E| θ(z) =

(
|G|
|ZN| −

|G|
|E|

)
θ(z).

Count |E| = |l×| = q2 − 1; ZN = q(q − 1) since |N| = q, |Z| = q − 1;
|G| = (q2 − 1)(q2 − q) so we obtain (q− 1)θ(z), as desired.

2. If g =

(
x 1
0 x

)
then

aga−1 ∈ ZN ⇐⇒
(

a b
c d

)(
x 1
0 x

)(
a b
c d

)−1

=

(
y 0
0 y

)(
1 z
0 1

)
,

⇐⇒
(

a b
c d

)(
x 1
0 x

)
=

(
y 0
0 y

)(
1 z
0 1

)(
a b
c d

)
,

⇐⇒ x = y, a = xzd, c = 0.

As
(

a b
c d

)
=

(
xzd b
0 d

)
invertible so a = xzd 6= 0. For given g =

(
x 1
0 x

)
,

we find y = x and z 6= 0, there are q(q− 1) choices for b, d, giving

∑
a∈G,aga−1∈ZN

θψ(aga−1) = q(q− 1)θ(x) ∑
z 6=0

ψ(z) = −q(q− 1)θ(x),

as {ψ(z) : z ∈ k} is set of all roots of unity of some degree m > 1 so their
sum is 0, which means when we exclude z = 0, we get the above result.

On the other hand, aga−1 6∈ E since element of E is conjugate to an element
of irreducible characteristic over k, so it is not conjugate of parabolic element
g.

56



CHAPTER 3. REPRESENTATION OF GL2(FQ) Toan Quang Pham

3. If g =

(
x 0
0 t

)
with x 6= t. With same argument, aga−1 6∈ E. We have

aga−1 ∈ ZN ⇐⇒
(

a b
c d

)(
x 0
0 t

)(
a b
c d

)−1

=

(
y 0
0 y

)(
1 z
0 1

)
,

⇐⇒
(

a b
c d

)(
x 0
0 t

)
=

(
y 0
0 y

)(
1 z
0 1

)(
a b
c d

)
,

=⇒ t = x.

Thus, trπθ(g) = 0.

4. If g =

(
x εy
y x

)
with y 6= 0. Since ZN ⊂ B so no conjugate of g will be in ZN.

On the other hand, as aga−1 ∈ E for all a ∈ G. Why 1
|E| ∑a∈G,aga−1∈E θ(aga−1) =

θ(x + y
√

ε) + θ(x + y
√

ε)q

This character table gives part (2) straight away.
To prove (1), we have

1
|G| ∑

g∈G
|trπθ(g)|2 = ∑

z∈Z
(q− 1)
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Chapter 4

Representations of GL2(F)

Some reference:

1. https://www.math.ucla.edu/~jonr/eprints/padic.pdf

2. http://www.math.ubc.ca/~cass/research/pdf/godement-ias.pdf

3. http://www.ims.nus.edu.sg/Programs/liegroups/files/sing.pdf

4. http://www-users.math.umn.edu/~garrett/m/v/toy_GL2.pdf

4.1 GLn over local fields

4.1.1 Haar measure on F, F×
section7.4

We describe Haar measures attached to various locally profinite groups. We start
with field F.

Lemma 4.1.1.1. The vector space C∞
c (F) is spanned by the characteristic func-

tions of sets a + pm, a ∈ F, m ∈ Z.

Proof. The characteristic functions a + pm lies in C∞
c (F). Let Φ ∈ C∞

c . Since Φ has
compact support, which means it can be finite cover of pk, implying there exists
n ∈ Z such that suppΦ ⊂ pn. Also Φ is locally constant, meaning Φ is fixed
under translation by a compact open subgroup of F, hence by pm, for some m ∈ Z

(the argument follows similar in section 2.3.1). Thus, Φ is a linear combination of
characteristic functions of a + pm, a ∈ pn/pm.

If Φ0 denotes the characteristic function of o and µ is Haar measure on F,
we have µ(o) =

∫
F Φ0(x)dµ(x) = x0 for some c0 > 0. If Φ1 is the characteristic

function of coset a + pb, a ∈ F, b ∈ Z then∫
F

Φ1(x)dµ(x) = c0q−b.
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Proof of this claim. Note that we have a sequence of open compact subgroups o ⊃
p ⊃ p2 ⊃ · · · of F such that

⋂
n p

n = 0. Following proof of existence of Haar
integral in section 2.3.1, we know that if µ(o) = c0 then there exists right Haar
integral sending characteristic function of pn to c0(o : pn)−1 = c0q−n where q =
(o/p) = |o/p|. Note the Haar integral is invariant under translation so it also send
characteristic functions of a + pn to c0q−n.

Now take Φ ∈ C∞
c (F) and y ∈ F×. Using the identity above, we find

∫
F

Φ(xy)dµ(x) = ‖y‖−1
∫

F
Φ(x)dµ(x),

where, we recall, ‖y‖ = q−vF(y).

Check this. Since Φ is linear combination of characteristic functions of a + pn, it
suffices to show the above identity for Φ characteristic function of pn. As y ∈ F×

so y = uvm for u ∈ o× and m = vF(y). Therefore, Φ(xy) is a characteristic
function of pn−m, resulting the integral as c0qm−n = ‖y‖−1

∫
F Φ(x)dµ(x). This is

also right-invariant since F is abelian.

We accordingly define a measure µ× on F× by dµ×(x) = dµ(x)/‖x‖, meaning
the following. If Φ ∈ C∞

c (F×), the function x 7→ ‖x‖−1Φ(x) (vanishing at 0) lies
in C∞

c (F) check this later, so we can put

∫
F×

Φ(x)dµ×(x) =
∫

F
Φ(x)‖x‖−1dµ(x), Φ ∈ C∞

c (F×).

Check this define Haar integral on F×.

4.1.2 Haar measure on G = GL2(F)
section7.5

Matrix ring A = M2(F) (as additive group) is product of 4 copties of F and so
Haar measure is obtained by taking tensor product of 4 copies of Haar measure
on F (as mentioned in section 2.3.2).

Proposition 4.1.2.1. Let µ be a Haar measure on A. For Φ ∈ C∞
c (G), the func-

tion x 7→ Φ(x)‖detx‖−2 (vanishing A \ G) lies in C∞
c (A). The functional

Φ 7→
∫

A
Φ(x)‖det(x)‖−2dµ(x), Φ ∈ C∞

c (G),

is a left and right Haar integral on G. In particular, G is unimodular.

Prove this later
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4.1.3 Haar measure on B, N, T
section7.6

Since N ∼= F and T ∼= F× × F× there is nothing more to say about them. We have
B = T n N, we define a linear functional on space C∞

c (B) = C∞
c (T)⊗ C∞

c (N) by

Φ 7→
∫

N

∫
T

Φ(tn)dµT(t)dµN(n), Φ ∈ C∞
c (B),

where µT, µN are Haar measure on T, N, respectively Here Bushnell and Henniart
wrote

∫
T

∫
N dµTdµN instead of

∫
N

∫
T dµTdµN as above. One verifies that this func-

tional is left B-invariant, so is left integral on B. We will denote this functional
as

Φ 7→
∫

B
Φ(b)dµB(b).

Check the integral is left-invariant. For c = sm ∈ B where s ∈ T, m ∈ N. We need
to show

∫
N

∫
T Φ(smtn)dµT(t)dµN(n) =

∫
N

∫
T Φ(tn)dµT(t)dµN(n). Indeed, note

smtn = (sms−1)(st)n where sms−1 ∈ N, st ∈ T. View Φ(sms−1stn) as functional
f (st) (evaluated at st) so when integrate with respect to t, due to invariance of µT,
we have∫

T
Φ(smtn)dµT(t) =

∫
T

f (st)dµT(t) =
∫

T
f (t)dµT(t) =

∫
T

Φ(sms−1tn)dµT(t).

Next, we view
∫

T Φ(n′tn)dµT(t) as functional f (n′n) evaluated at n′n so due to
invariance of µN , we have∫

N
Φ(sms−1tn)dµT(t)dµN(n) =

∫
N

f (sms−1n)dµN(n),

=
∫

N
f (n)dµN(n),

=
∫

N

∫
T

Φ(tn)dµT(t)dµN(n).

Thus, µB is indeed left-invariant.

The Haar measure µB may be thought as tensor product, µB = µT⊗µN , but the
two factors do not commute. This reflects the fact that group B is not unimodular,
i.e. it has nontrivial modular character δB (section 2.3.3). Recall that ‖y‖ = qvF(y).

Proposition 4.1.3.1. The modular character δB of group B is given by

δB : tn 7→ ‖t2/t1‖, n ∈ N, t =
(

t1 0
0 t2

)
∈ T. (4.1.3.1) {eq:modularChar_borel}

Proof. Setting c = sm, m ∈ N, s =
(

s1 0
0 s2

)
∈ T, we get

∫
B

Φ(bc)dµB(b) =
∫

N

∫
T

Φ(tss−1nsm)dµT(t)dµN(n).
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We use the obvious isomorphism N → F to identify µN with certain Haar measure
µF on F. For φ ∈ C∞

c (N), we then have∫
N

φ(s−1ns)dµN(n) =
∫

F
φ

(
1 s−1

1 xs2
0 1

)
dµF(x),

= ‖s1s−1
2 ‖

∫
N

φ(n)dµN(n).

where the last part follows from discussion in section 4.1.1. Following the same
argument as when we show µB is left-invariant, we have∫

N

∫
T

Φ(tss−1nsm)dµT(t)dµN(n) =
∫

N

∫
T

Φ(ts−1ns)dµT(t)dµN(n),

= ‖s1s−1
2 ‖

∫
N

∫
T

Φ(tn)dµT(t)dµN(n).

From the definition of modular character, the result follows, i.e.∫
B

Φ(bc)dµB(b) = δB(c)−1
∫

B
Φ(b)dµB(b).

4.2 Representations of Mirabolic Group

4.3 Jacquet Modules and Induced Representations

4.3.1 Jacquet functor
section8.1

Let (π, V) be smooth representation of N and let ϑ be a character of N. We denote
V(ϑ) the linear subspace of V spanned by the vector π(n)v− ϑ(n)v, n ∈ N, v ∈ V.
We set Vϑ = V/V(ϑ).

If ϑ0 is the trivial character of N, we denote V(ϑ0) = V(N) and we write
Vϑ0 = VN . In this case, we find that V(N), and hence VN , are T-modules, as
π(t)(π(n)v− v) = π(n′)v′ − v′ where n′ = t−1nt ∈ N, v′ = π(t)v. This action of
T defines a smooth representation (πN , VN), which is called Jacquet module of V 1.

On the other hand, if ϑ0 nontrivial then Vϑ is only Z-module of GL2(F).

Lemma 4.3.1.1. Let µN be a Haar measure on N and ϑ a character of N.

1. Let (π, V) be smooth representation of N and v ∈ V. The vector v lies in
V(ϑ) if and only if there is a compact open subgroup N0 of N such that∫

N0

ϑ(n)−1π(n)vdµN(n) = 0. (4.3.1.1) {eq:jacquet}

2. The process (π, V) 7→ Vϑ is an exact functor from Rep(N) to Rep(Z) (or
Rep(T) if ϑ is the trivial character). This is called Jacquet functor.

1some places define (π, V) to be representation of G or of B
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Proof. We assume first that ϑ is the trivial character of N. The group N ∼= F is the
union open compact subgroups, so if

v =
r

∑
i=1

vi − π(ni)vi ∈ V(N)

then there is a compact open subgroup N0 of N containing all ni’s (union of finite
compact is also compact). It suffices to show

∫
N0

π(n)(π(n′)v− v)dµN(n) = 0 for
n′ ∈ N0, v ∈ V, which is true since µN is Haar measure on N.

Conversely, if v ∈ V and suppose
∫

N0
π(n)vdµN(n) holds. There is open nor-

mal subgroup N1 of compact N0 such that v ∈ VN1 2. The space VN1 carries a
representtion of the finite group N0/N1 (since π(n1)v = v for all v ∈ VN1 , n1 ∈ N1
so π(gN1)v = π(g)v is well-defined). Therefore, in the obvious notation, VN1 =
VN1(N0/N1)⊕VN0 (see section 2.2.3, here VN0 as elements in VN1 fixed by action
of N0/N1) and the map

π(eN0) : w 7→ µN(N0)
−1
∫

N0

π(n)wdµN(n), w ∈ VN1 ,

(here µN(N0) =
∫

N0
1dµN(n)) is the N0-projection VN1 → VN0 (is it is N0-homomorphism

as µN is invariant, it is surjective as any v ∈ VN0 , as π(n)v = v for n ∈ N0 so
v 7→ µN(N0)−1

∫
N0

π(n)vdµN(n) = v so it is indeed a projection). Its kernel is then
VN1(N0/N1) ⊂ V(N) (i.e. as defined, VN1(N0/N1) is span of v − π(n0N1)v =
v− π(n0)v for v ∈ VN1). We have proved (1) for the trivial character ϑ of N.

Now let ϑ be arbitrary character of N, and consider representation (π′, V ′) of
N, where V ′ = V and π′(n) = ϑ(n)−1π(n). We then have V(ϑ) = V ′(N) and so
(1) follows in general.

We prove (2) for the case ϑ is trivial character. If ϑ is nontrivial, the proof is
similar (Later): First, we check that if f : V → W is N-module homomorphism
then f (v− πV(n)v) = f (v)− πW(n) f (v), implying f (V(N)) ⊂ W(N) so the in-
duced map VN →WN is well-defined. Next, let

0 V ′ V V ′′ 0i p

be short exact sequence of N-modules. We show that the induced sequence

0 V ′N VN V ′′N 0
iN pN

is exact. First, we show iN is injective. Without loss of generality, suppose V ′

is submodule of V and i is the inclusion map. Suppose v′ ∈ ker iN , v′ 6= 0 then
v′ = i(v′) ∈ V(N). According to part (1), there exists open compact subgroup N0
of N such that π(eN0)(v

′) = 0, and by applying part (1) again, we find v′ ∈ V ′(N).
Thus, iN is indeed injective. On the other hand, pN is surjective as p is surjective.

2since (π, V) smooth so exists open compact subgroup K′ of N0 so v ∈ VK′ and since N0 is
compact so N0/K′ finite so N1 =

⋂
g∈N0/K′ gK′g−1 is open normal subgroup of N1 where v ∈ VN1
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To show exactness at VN , i.e. imiN = ker pN . If v ∈ V has image 0 in V ′′N ,
i.e. p(v) ∈ V ′′N . From part (1), there exists compact open subgroup N0 of N
such that π′′(eN0)p(v) = 0. Note that π′′(eN0) : V ′′ → (V ′′)N0 is a N0-projection,
and since p is a N-morphism, we find 0 = π′′(eN0)p(v) = p (π(eN0)v)

3. Due to
exactness at V, as π(eN0 v) ∈ ker p = im i, there exists v′ ∈ V ′ so i(v′) = π(eN0)v.
To show v ∈ im i, it suffices to show π(eN0)v = v in VN , which is true since
we have V = VN0 ⊕ V(N0) according to section 2.2.3 and the fact that π(eN0) is
N0-projection map.

Remark 4.3.1.2. A better way to show exactness is first prove exactness of

0 V ′(N) V ′(N) V ′′(N) 0

then use Snake lemma, as in Bump’s book.

Proposition 4.3.1.3. Let (π, V) be smooth representation of N, and let v ∈
V, v 6= 0. There exists a character ϑ of N such that v 6∈ V(ϑ).

Proof. We write

Nj =

(
1 pj

0 1

)
, j ∈ Z. (4.3.1.2)

Take v ∈ V, v 6= 0. We choose Nj0 such that Nj0 fixes v. For j ≤ j0, let Vj denote
the Nj-space generated by v. Since Nj is compact, Vj is the direct sum of isotypic
components Vη

j where η ranges over characters of Nj trivial on Nj0 (since Nj is
abelian so any irreducible smooth representation of Nj is one-dimensional, as in
section 2.2.6). As v ∈ Vj, v can be writte as linear combination of ∑η αηvη over all
η such that αη 6= 0. Since v 6= 0 so there exists character ηj such that Vηj 6= 0 and
αηj 6= 0. With this and note that π(n)vη = η(n)vη for all n ∈ Nj, we find that the
integral

∫
Nj

ηj(n)−1π(n)vdn contains αηj

∫
Nj

ηj(n)−1π(n)vηj vdn = αηj µN(Nj)vηj 6=
0 so ∫

Nj

ηj(n)−1π(n)vdn 6= 0.

The Nj−1-space generated by V
ηj
j ⊂ Vj = span {π(nj)v : nj ∈ Nj} is contained in

Vj−1 (as Nj ⊂ Nj−1), so we may choose ηj−1 such that ηj−1|Nj = ηj (i.e. apply above
argument for Nj−1-space generated by V

ηj
j since action of Nj on this space is via

ηj). Since F can be written as union of pn where n can range over all integers at
most some M, we find that there exists a character ϑ of N such that for all j ≤ j0,
we have ∫

Nj

ϑ(n)−1π(n)vdn 6= 0.

Therefore, from previous lemma, we find v 6∈ V(ϑ).
3Since p is N-morphism, it will send VN0 → (V′′)N0 . Hence, if v = u⊕ w where u ∈ VN0 (this

is possible since N0 compact open, meaning V is N0-semisimple) then p(v) = p(u) ⊕ p(w) with
p(u) ∈ (V′′)N0 . We have π(eN0 )(v) = u.
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Corollary 4.3.1.4. Let (π, V) be smooth representation of N. If Vϑ = 0 for all
characters ϑ of N, then V = 0.

Let (σ, W) be smooth representation of T. We view σ as smooth representation
of B which is trivial on N, and form the smooth induced representation IndG

B σ. If
(π, V) is a smooth representation of G, Frobenius Reciprocity from section 2.2.4
gives an isomorphism

HomG(π, IndG
B σ) ∼= HomB(π|B, σ).

However, σ is trivial on N so any B-homomorphism π → σ factors through quo-
tient map π → πN (recall πN is the Jacquet module). We deduce

HomG(π, Indσ) ∼= HomT(πN , σ). (4.3.1.3) {eq:Frobenius_jacquet}

This has the following consequence:

Proposition 4.3.1.5. Let (π, V) be an irreducible smooth representation of G.
The following are equivalent:

1. The Jacquet module VN is nonzero.

2. The representation π is isomorphic to a G-subspace of a representation
IndG

B χ for some character χ of T.

Proof. Suppose (2) holds. From
eq:Frobenius_jacqueteq:Frobenius_jacquet
4.3.1.3 we get

HomT(πN , χ) ∼= HomG(π, Indχ) 6= 0,

so πN 6= 0.
To prove (1) =⇒ (2), choose v ∈ V, v 6= 0. Since V irreducible over G,

any element of V is finite linear combination of π(g)v of v, for various g ∈ G.
Write K = GL2(o). The vector is fixed by a compact subgroup K′ of K of finite
index (since K is compact); let {v1, . . . , vr} be the distinct elements of the form
π(k)v, k ∈ K/K′. In particular, r ≤ (K : K′). Since G = BK, the elements v1, . . . , vr
generate V over B, and their images under π → πN generate VN over T.

Thus, VN is finitely generated as representation of T. We choose minimal
generating set {u1, . . . , ut}, t ≥ 1, then the T-subspace U containing u1, . . . , ut−1
is maximal T-subspace of VN and therefore, VN/U is irreducible representation
of T. Since T is abelian, section 2.2.6 implies that VN/U is a character χ. Thus,
HomT(πN , χ) 6= 0 (as there is projection with kernal U to χ) implying HomG(π, IndG

B χ) 6=
0 and since π is irreducible, π is isomorphic to G-subspace of representation
IndG

B χ.

An irreducible smooth representation (π, V) of G is called supercuspidal (or
absolutely cuspidal) if VN is zero. On the other hand, if VN 6= 0, one says π is the
principal series.
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4.3.2 One-dimensional representation

4.3.3 Decomposing principal series

In previous section, we know irreducible representtions (π, V) of G with nonzero
Jacquet module has a copy in IndG

B χ for some character χ of T. Hence, our task
now is to try to decompose IndG

B χ into irreducible representations.
Let µN be Haar measure on N and t ∈ T. The measure S 7→ µN(t−1St) is the

Haat measure δB(t)µN , for δB modular character, as proved in proof of (
eq:modularChar_boreleq:modularChar_borel
4.1.3.1):∫

N
f (txt−1)dµN(x) = δB(t)

∫
N

f (x)dµN(x), f ∈ C∞
c (N).

As before, let w =

(
0 1
0 1

)
be the permutation matrix. If σ is a smooth represen-

tation of T, we can form the representation σw : t 7→ σ(wtw−1), and view it as
representation of B which is trivial on N.

As in section 2.2.4, ασ denotes the canonical B-map IndG
B σ → σ given by f 7→

f (1). In induces canonical T-map (IndG
B σ)N → σ (since σ acts trivially on N so

the previous map must factor through Indσ → (Indσ)N), which we will continue
to denote aσ.

Lemma 4.3.3.1 (Restriction-Induction lemma). Let (σ, U) be smooth representa-
tion of T and set (∑, X) = IndG

B σ. There is an exact sequence of representations
of T:

0 σw ⊗ δ−1
B ∑N σ 0.

ασ

Proof. By definition in section 2.2.4, X is the space of G-smooth functions f : G →
U such that f (bg) = σ(b) f (g), b ∈ B, g ∈ G. The canonical map ασ : X → U
amounts to restriction of functions to B (i.e. under ασ, f 7→ f |B). Set V = kerασ

then V can be viewed as smooth representation of B.
First, we show ασ : X → U is surjective. For u ∈ U, consider function fu :

G → U defined by f (K) = u for all k ∈ K and fu(bk) = σ(b)u. As G = BK,
we have fu(gk) = fu(g) for all g ∈ G, k ∈ K. According to definition of IndG

B as
in section 2.2.4, note that K is compact, we have fu ∈ IndG

B σ = X. We also have
ασ : fu 7→ u so ασ is surjective.

Since ασ is surjective and V = kerασ, we find an exact sequence of smooth
representations of B:

0 V X U 0.
ασ

Due to exactness of Jacquet functor, and that UN = U since N acts trivially on U,
we obtain exact sequence of representations of T as follow:

0 VN (∑N , XN) (σ, U) 0.
ασ
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Thus, it suffices to identify the T-representation VN with σw ⊗ δ−1
B . We recall that

G = B∪ BwN. A function f ∈ X thus lies in V if and only if supp f ⊂ BwN. More
precisely:

Lemma 4.3.3.2. Let f ∈ X, then f ∈ V if and only if there is a compact open
subgroup N0 of N (depending on f ) such that supp f ⊂ BwN0.

Proof. A function f ∈ X lies in V if and only if f (1) = 0. As f (bg) = σ(b) f (g) so
we find f vanishes on B. The identity for x 6= 0:

(
1 0
x 1

)
=

(
1 x−1

0 1

)(
x−1 0

0 x

)
w
(

1 x−1

0 1

)
∈ Bw

(
1 x−1

0 1

)

implies that supp f ⊂ BwN0, for some compact open subgroup N0 of N. Why
this argument follows from the above identity? Also there is a typo in Bushnell,
Henniart book, where −x−1 should be x−1 instead.

Let f ∈ V; in view of the lemma how, we can define function fN : T → U by

fN(x) =
∫

N
f (xwn)dn = σ(x) fN(1), x ∈ T

By section 4.3.1, the kernel of the map f 7→ fN is V(N) 4, and so f 7→ fN(1) gives
a bijective map VN → U (injectivity follows from previous sentence, surjectivity
follows from the fact fN(1) generates f : T → U via f (x) = σ(x) fN(1)). Taking

4Let me notation-chasing to explain this sentence (it may be false though). Kernel of this map is
all f ∈ V such that fN(1) = 0.

Recall V = { f : G → U, f ∈ IndG
B σ, f (1) = 0}. We define Haar integral I on C∞

c (N, V) by (one
can see that this map is right-invariant, but what about other conditions?)

(F : N → V) 7→
(

I( f ) =
∫

N
F(n)dn ∈ V : x ∈ G 7→

∫
N

F(n)(x)dn ∈ U
)

By section 4.3.1, f ∈ V(N) iff
∫

N ∑(n) f dn ∈ V is the zero map (also note that ∑(n) f ∈ V if f ∈ V
since ∑(n) f (1) = f (n) = σ(n) f (1) = 0). From above Haar integral, this map is the map (recall
∑( f ) f : x ∈ G 7→ f (xg))

ϕ =
∫

N
∑(n) f dn : (x ∈ G) 7→

∫
N
(∑(n) f )(x)dn =

∫
N

f (xn)dn ∈ U.

If this is the zero map then
∫

N f (xn)dn = 0 for all x ∈ G, implying with x = w then fN(1) = 0, as
desired.

Conversely, if fN(1) = 0 then
∫

N f (wn)dn = 0. Note we have f ∈ V so fN(1) = 0 so
ϕ(w) = 0. Note that ϕ ∈ V so ϕ(b) = σ(b)ϕ(1) = 0 Also ϕ(bwn′) = σ(b)ϕ(wn′) and
ϕ(wn′) =

∫
N f (wn′n)dn =

∫
N f (wn)dn = ϕ(w) = 0. As G = B ∪ BwN so ϕ(G) = 0, as desired.
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t ∈ T and f ∈ V, we have

(t f )N(x) =
∫

N
f (xwnt)dn,

=
∫

N
f (x(wtw−1)wt−1nt)dn =

∫
N

f (xtww(t−1nt))dn,

= δB(t−1)
∫

N
f (xtwwn)dn,

= δ−1
B (t)σw(t) ( fN(x)) ,

= (σw ⊗ δ−1
B )(t)( fN(x)).

Hence, with x = 1, we find f 7→ fN(1) is a B-homomorphism (∑, V) → (σw ⊗
δ−1

B , U) and since (∑, V) is trivial on N so this induces T-isomorphism VN ∼=
σw ⊗ δ−1

B .

4.3.4 Principal series irrep is admissible
section9.4

The irreducible representations of G exhibit a helpful finiteness property:

Proposition 4.3.4.1. Let (π, V) be an irreducible smooth representation of G
which is not (super)cuspidal. The representation π is admissible.

Proof. By definition VN 6= 0. By section 4.3.1, π is equivalent to a subrepresenta-
tion of IndG

B χ for some character of T. It is enough to prove Indχ is admissible.
We fix compact open subgroup K of G. We want to show XK is finite dimen-

sional where IndG
B χ = (∑, X). WLOG, we may assume K ⊂ K0 = GL2(o) (as one

can shrink K to K1 = K ∩ K0 and note XK ⊂ XK1). The space XK of K-fixed points
in Indχ consists of functions f : G → C satisfying

f (bgk) = χ(b) f (g), b ∈ B, g ∈ G, k ∈ K.

We have G = BK0, so the set B\G/K is finite, and each of double coset BgK
supports, at most, a one-dimensional space of functions satisfying above condition
(?? OK need to go back and read this).
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Representations of GLn(F)

Some reference http://www.math.tifr.res.in/~dprasad/ictp2.pdf

5.1 Structure of GLn(F)

Center of GLn is denoted Z.
In matrix manners, the diagonal torus T is subgroup of all diagonal matrices,

the standard Borel subgroup B consists of all upper triangular matrices. The
unipotent radical U consists of all upper triangular unipotent matrices. Note T
normalizes U and B is semidirect product TU. Let W, the Weyl group of G, is the
group NG(T)/T where NG(T) normalizer of T. For G = GLn(F), W is subgroup
of all monomial matrices (one nonzero entry in each row and each column) so W
can be identified with Sn.

In different view, by picking n-dimensional vector space V over F, GLn(F) can
be identified with GL(V). Define a flag W• in V to be strictly increasing sequence
of subspaces W0 ⊂ W1 ⊂ · · · ⊂ Wm = V. Subgroup of GL(V) that stabilizes flag
W., i.e. with the property that gWi = Wi for all i is called parabolic subgroup of G
associated to flag W•.

If {v1, . . . , vn} basis of V then stabilizer of flag {(v1) ⊂ (v1, v2) ⊂ · · · ⊂
(v1, . . . , vn)} is called Borel subgroup. In the case of GL(V), stabilizer of any two
such (maximal) flags are conjugate under GL(V).

If W• = {W0 ⊂W1 ⊂ · · · ⊂Wm} then inside the associated parabolic subgroup
P, there exists normal subgroup N consisting of elements who operating trivially
on Wi+1/Wi for 0 ≤ i ≤ m − 1, which is called unipotent radical of P. There
is a semidirect product decomposition P = MN with M = ∏m−1

i=0 GL(Wi+1/Wi).
The decomposition P = MN is called Levi decomposition of P with M called Levi
subgroup of P.

Let K = GLn(o) denote subgroups of elements in G in o and whose determi-
nant is unit in o. This is a maximal open compact subgroup of GLn(F), as shown
in following exercise.

Exercise 10. Let V be n-dimensional vector space over F. Let L be lattice on V, i.e. o-
submodule rank n. Show that stabilizer of L is open compact subgroup of G = GL(V). If
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C is any open compact subgroup then there is lattice L such that C lies in stabilizer of L.
Hence, up to conjugacy, K is the unique maximal open compact subgroup of GLn(F).

For every integer m ≥ 1, the map o → o/pm induces map K → GLn(o/pm).
The kernel Km of this map is called principal congruence subgroup of level m. We
also define K0 to be K. For all m ≥ 1, we have Km = 1n + pm Mn(o). Km are open
compact subgroups of G and gives basis of neighborhood at the identity.

Bruhat decomposition gives G =
⊔

w∈W BwB =
⊔

w∈W BwU. Proof use row reduc-
tion (on the left) and column reduction (on the right) by elementary operations.

Cartan decomposition gives, for A = {diag(Πm1 , . . . , Πmn) : mi ∈ Z≥0, m1 ≤
· · · ≤ mn} then G =

⊔
a∈A KaK.

Iwasawa decomposition gives G = KB.
Iwahori factorization gives for m ≥ 1 then Km = (Km ∩U−)(Km ∩ T)(Km ∩U)

where U− subgroup of all lower triangular unipotent matrices.

5.1.1 In language of algebraic groups

(Very roughly, so that I can read other things)
An algebraic group is an algebraic variety G defined over some field F with

morphims m : G× G → G and inv : G → G becomes multiplication and inverse
map on G(E) making G(E) of E-rational points (i.e. G(E) = G ∩ En) into a group
when E is commutative F-algebra. Affine algebraic group is when G is affine
variety, example is multiplicative group Gm, with G(E) = E×.

A torus is group T that is isomorphic to direct product of Gk
m for some k. If the

isomorphism is defined over F we say T split (over F).
For affine algebraic group G over F. By representation we mean morphism

ρ : G → GLn for some n such that ρ : G(E) → GLn(E) group hom for any
commutative F-algebra E.

By Jordan decomposition, g ∈ G then exists gs, gu ∈ G such that g = gsgu =
gugs, gs semisimple, gu unipotent. Hence g ∈ G is called semisimple if g = gs and
unipotent if g = gu.

G is unipotent if all its elements are unipotnent. Group G has maximal normal
unipotent subgroup U, called unipotent radical. If U is trivial then G is reductive.
If it is reductive and has no nontrivial normal tori then G is semisimple. For ex-

ample group of
{(

a b
0 d

)}
is not reductive since

{(
1 x
0 1

)}
is normal unipotent

subgroup. Group SLn is semisimple. Group GLn is reductive but not semisimple.
Maximal torus T is subgroup as large as possible such that T product of mul-

tiplicative groups. If T splits over F then G is F-split. All maximal tori in G(F) are
conjugate if F algebraically closed.

If G is F-split reductive group and T is F-split maximal torus, N normalizer of
T then N/T is Weyl group W.

See Bump’s note and Fiona Murnaghan for more info.
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Chapter 6

Questions

Question 6.0.0.1. What is character of Qp and Q×p .
https://kconrad.math.uconn.edu/blurbs/gradnumthy/characterQ.pdf

Question 6.0.0.2. Give a natural G map Vλ1,λ2 to Vλ2,λ1 . Keyword: intertwiner
integral.

Question 6.0.0.3. What is the point of compact induction?
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