
A walk through Combinatorics

Toan Q. Pham
mathtangents@gmail.com

Friday 16th November, 2018

Todo list

1



1 CHAPTER 5: DIVIDE AND CONQUER. PARTITIONS Toan Quang Pham

1 Chapter 5: Divide and Conquer. Partitions

Some terminology. Partition of [n] into blocks. Partition of n into parts. Notation for partition of
n is π = (π1, . . . , πt).

Ferrers diagram: conjugate, hook.
Useful table 5.1 from

bona_walk_to_com
[1].

Definition 1.0.1 (Set partitions). A partition of set [n] is a collection of non-empty blocks so that
each element of n belongs to exactly one of these blocks. The number of partition of n into k
nonempty blocks is denoted by S(n, k). The number S(n, k) is called the Stirling number of the
second kind.

Definition 1.0.2 (Integer partitions). Let a1 ≥ a2 ≥ · · · ak ≥ 1 be integers so that a1 + · · · ak = n.
Then the sequence (a1, . . . , ak) is called a partition of the integer n. The number of all partitions
of n is denoted by p(n). The number of partitions of n into exactly k parts is denoted by pk(n).

Problem 1.0.3. (a) Let h(n) be the number of ways to place any number (including zero) non-
attacking rooks on the Ferrers shape of the "staircase" partition (n− 1, n− 2, . . . , 1). Prove that
h(n) = B(n).

(b) In how many ways can we place k non-attacking rooks on this Ferrers shape.

Proof. (a) We label the rows and columns of the Ferrers diagram as follow:

1 · · ·

2 · · ·

3 . . .
...

...
...

...
...

n−2

n−1

n−1 n−2 n−3 · · · · · · 2 1

In other words, each box has a coordinate (i, j) where 1 ≤ i ≤ j ≤ n− 1. We will create a bijection
f from "h(n)" to "B(n)" (they technically are not sets but for the sake of convenience).

Consider an arbitrary partition of [n], consider the parts that don’t contain n. In each such
part, we can order the elements in increasing order: a1 < a2 < · · · < ak. Now for each i in [k− 1],
we put a rook in (ai, ai+1). For parts that have only one element i 6= n, we put a rook in (i, i).

We need to show that this can map to "h(n)". Indeed, from the mapping f , we can see that
there exists at most one rook that has the coordinate (i, j). Thus, f does indeed map to "h(n)".

Next, we show that f is bijective. This is quite obvious since for any different partitions of
[n], there exists one coordinate that cannot belong to both partitions, which results in different
ways of putting the rooks.

2



1 CHAPTER 5: DIVIDE AND CONQUER. PARTITIONS Toan Quang Pham

We show that f is surjective. Indeed, if there is a rook in (i, j) then we put two elements i, j
in same part that does not contain n. If there is no rook in row i then that implies i and n are in
the same part.

Thus, h(n) = B(n).
(b) It seems the bijection in (a) does not yield nice result as S(n, n − k). See the bijection

from the book for this answer. (It’s essentially the same as (a) except the label for the columns is
n, n− 1, . . . , 2 instead of n− 1, n− 2, . . . , 1). The bijection of the book is able to do this since for
each rook drawn, two blocks are combined. This is not true for the bijection in part (a).

Problem 1.0.4. Let m, n be positive integers such that m ≥ n. Prove that the Stirling number
of the second kind satisfy the recurrence relation

S(m, n) =
m

∑
i=1

S(m− i, n− 1)ni−1.

S(m − i, n − 1)ni−1 is number of ways to partition [m] into m parts where the block π that
contains i does not contain other numbers less than i and the remaining n− 1 blocks each must
have one number less than i. Summing all up, the statement follows.

Problem 1.0.5. Prove that the number of partitions of n into exactly k parts is equal to the
number of partitions of n in which the largest part is exactly k.

This is just Ferrers diagram taking conjugate.

Problem 1.0.6. Prove that the number of partitions of n into at most k parts is equal to that of
partitions of n + k into exactly k parts.

Consider a Ferrer diagram/shape of the partition of n into at most k parts, we add a column
of k boxes into the left side of this diagram then we’ve created a Ferrers diagram of partition of
n + k into exactly k parts.

Problem 1.0.7. The Durfee square of a partition p is the largest square that fits in the top left
corner of the Ferrers shape of p. If we know the parts of a partition p, how can we figure out
the side length of its Durfee square without drawing the Ferrers shape of p?

For a partition p = (p1, . . . , pt). The length of the Durfee square is the largest i such that
pi ≥ i.

Problem 1.0.8. Let k be a positive integer, and let q be a non-negative integer such that q < k.
Define pk,q(r) = pk(rk + q). Prove that pk,q(r) is a polynomial function of r.

Proof. Consider a partition p = (p1, . . . , pk) of n into k parts. Since q < k so 1 ≤ pk ≤ r If pk = i
then there are pk−i,q(r− i) such partitions

3



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

2 Chapter 6: Cycles in Permutations.
Definition 2.0.1 (Stirling number of the first kind). The number of n-permutations with k cycles
is called a signless Stirling number of the first kind, and is denoted by c(n, k). The number
s(n, k) = (−1)n−1c(n, k) is called a Stirling number of the first kind.

Definition 2.0.2. k-cycle means cycle of length k.
If an n-permutation p has ai cycle of length i, for i = 1, 2, . . . , n then we say (a1, . . . , an) is the

cycle type of p.
For a permutation p = p1 p2 · · · pn of [n], then q = q1 · · · qn where qi = n + 1− pi is called the

complement of p.
Canonical form: Entries of permutation q of [n] that are larger than all entries on their left

are called left-to-right maxima. This corresponds to the leading entry in the canonical form of
permutations.

Interesting relation between Stirling numbers of fist kind and of second kind.

remk:perm_intepretation Remark 2.0.3 (Ways to view permutation). Different ways to view permutation have interesting
application. Two types of notation learned from the book is: canonical cycle notation and one-line
notation.

One advantage of using canonical form for permutations is that we know the positions of the
numbers and that help for reference, e.g. create procedure that involves certain positions. How-
ever, it relies on the comparison between numbers which we usually don’t need when talking
about permutation. Hence, there is a second interpretation of permutations:

Each cycle from p can be seen as a circle with numbers on the circle in the same order as the
cycle. For example, if 1 is on a circle then p(1) will be the number on the right of 1 on that circle.
Note that for counting permutation, the order of the numbers in each circle matters but the order
of the circles does not matter.

Remark 2.0.4. Symmetry: Permutation has a bunch of "symmetry". Hence, if you want to prove
some local property (i.e. in certain structure or sets) about permutations then such property may
also true globally (i.e. for any such structures or sets). Indeed, this can be seen from following
example

prop:bona_chap6_18 Proposition 2.0.5. Let i and j be two elements of [n]. Then i and j are in the same cycle in
exactly half of all permutations of [n].

Slick proof. WLOG, suppose i < j. For each n-permutation such that i and j are in the same cycle,
we can define a bijective mapping f by swapping i with n− 1 and j with n to get a n-permutation
with n− 1 and n being in the same cycle.

On the other hand, consider the canonical form of permutation then n and n− 1 in the same
cycle iff n− 1 is on the right of n, which happens for exactly half number of permutations.

Counting proof. WLOG, suppose j < i. We will use the canonical cycle notation. Note that the
first element of the cycle that contains j must be at least j.

If that first element is some k > i. In order for k to be the first element of a cycle, all numbers
at the left of k must be less than k. In order for i, j to be in the same cycle whose first element is

4



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

k, the numbers i, j must be in between k and a number that is larger than k and is closest to k. In
order to satisfy these conditions, here are our procedure:

1. Arrange n− k + 1 numbers k, . . . , n such that k is first position. There are (n− k)! ways to
do that.

2. Put i, j right after k. There are 2! = 2 ways do that.

3. We left with k− 3 numbers that are less than k. There are (n− k + 4) · · · n ways to put these
numbers in.

Hence, there are (n− k)! · 2 · (n− k + 4) · · · n = 2n!
(n−k+1)(n−k+2)(n−k+3) permutations such that i, j

are in the same cycle whose first element is some k > i.
If k = i then similarly, we obtain (n− i)! · 1 · (n− i + 3) · · · n = n!

(n−i+1)(n−i+2) .
Summing up, we obtain

n!
(n− i + 1)(n− i + 2)

+
n

∑
k=i+1

2n!
(n− k + 1)(n− k + 2)(n− k + 3)

=
1
2

n!.

def:perm_gap_position Definition 2.0.6 (Gap positions). For a permutation p of [n] in canonical form, p has n + 1 gap
positions, one after each element in each cycle, and one at the very beginning of the permuta-
tion, before all entries and cycles. For example, permutation (42)(513) has six gaps positions,
indicated by the bars in the following array: |(4|2|)(5|1|3|).

One can see gap positions in a different view: Each cycle of the permutation p can be repre-
sented as a circle with the numbers of the cycle written in order on that circle. For each such circle
of length i we see i gaps between any consecutive numbers in the cirle. Furthermore, there is an
extra gap that does not belong to any circle. Summing up, we get n + 1 gaps for a permutation
of length n.

The first interpretation allows us to label the gap positions as 1, 2 to n + 1. The second
interpretation emphasises the "balance" between the gap positions, i.e. each gap position is
essentially between two (not necessarily the same) numbers. This helps us to construct new
permutations using gap positions. For example, if we replace a gap position between a1 and a2
with b then we can create new permutation p with p(a1) = b, p(b) = a2.

Lemma 2.0.7 (Transition lemma). Let p : [n] → [n] be the permutation written in canonical
cycle notation. Let g(p) be the permutation obtained from p by omitting the parentheses by
reading the entries as a permutation in the one-line notation. Then g is the bijection from the
set Sn of all permutations of [n] onto Sn.

lem:bona_chap6_20 Problem 2.0.8 (From
bona_walk_to_com
[1], lemma 6.20). Let ODD(m), resp. EVEN(m) be the set of m-

permutations with all cycle lengths odd, resp. even.
For all positive integer m, the equality |ODD(2m)| = |EVEN(2m)| holds.

5



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

Since it’s 2m so any 2m-permutation in ODD(2m) has even number of cycles. With this
information, we know more about ODD(2m) than EVEN(2m). As a result, we decide to find a
bijection from ODD(2m) to EVEN(2m) in the hope that this fact can be useful.

Let C1, . . . , C2k be the cycles of odd length in canonical form. We want to make a change
to these cycles so that each has even length. Observe that a local change (i.e. to certain cycles)
cannot cause a global change to all the cycles. For example, vaguely, if you pick an element in Ci
and put it in a position in some Cj then the cycles Ck’s (k > max{i, j}) remain unchange.

Hence, we need a global change (i.e. for each cycle).

Attempt 2.0.9. One thought comes to mind is to take out one element from each cycle and
combine these elements to create a new cycle. This of course will create a new permutation with
all cycle lengths even. However, does this gives us an injection to EVEN(2m)? To answer that,
we need to specify our bijection.

How would you choose an element from each cycle Ci? Let’s try to guess some simple way
to choose the element: If we choose largest element in each Ci, i.e. the first element in each Ci
(canonical form) then we would break the arrangement of the cycle and hence, we don’t know if
the remaining elements form a cycle of even length in canonical form or not. What if we choose
the smallest element in each Ci? Since we don’t know if this is valid or not, let’s turn to the
second question:

How would you order the chosen elements to create a new cycle in canonical form? There
are many ways to arrange the elements to create a new cycle. On the other hand, we can’t seem
to extract any information that can help us to pick a particular permutation. After taking some
trials and errors for small m, we notice that it’s quite hard to give an injective map. For any
procedure you choose to arrange the elements, the resulting map is likely not injective.

Thus, this idea will likely not work.

Observation 2.0.10. One of our main idea to create cycles of even length is to move elements from
one cycle Ci to the other. We don’t want to move more than 2 elements in each cycle, because
this implies that there are cycles of length at least 2, which is not always possible. Hence, we can
move at most one element from each cycle.

Observation 2.0.11. If we move one element from one cycle to the other then there must be half
of the cycles that receive element and the other half giving out elements. This agrees with our
observation that there are even number of cycles in each permutation in ODD(2m). This makes
us more confident about this method.

What we left with is to find a systematic way to move the elements. There are some ways
to do that and you just have to choose the simplest way, i.e. move an element from C2i−1 to C2i.
Even more specific, we take the last element from C2i−1 and put it in the end of C2i. Checking
with some small examples of m, we are more confident that this is a bijection.

In the end, we obtain the following proof.

Proof. See
bona_walk_to_com
[1], page 121. We construct a bijection Φ : ODD(2m)→ EVEN(2m).

theo:bona_chap6_24 Problem 2.0.12. Let ODD(m), resp. EVEN(m) be the set of permutation for [m] with all cycle
lengths odd, resp. even. For all positive integer m then

|ODD(2m)| = |EVEN(2m)| = 12 · 32 · · · (2m− 1)2.

6



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

Thoughts and proof. Since the right-hand side looks quite nice so let’s try to find an elegent pro-
cedure for this.

First, observe that the right-hand side is the product of 2m numbers. What does 2m refers
to? It’s is the number of elements in the set [2m] or the number of positions that we can put the
elements in. Hence, we can predict that our procedure will involve either choosing one element
at a time or choosing one position at a time.

Before going into the details, let’s list all the permutation in EVEN(2m) for m = 2 first:

(4321) (4312) (4213)
(4231) (4123) (4132)
(32)(41) (21)(43) (31)(42)

We want |EVEN(4)| = 32. We want to use the multiplication rule so the answer 32 motivates us
to partition EVEN(4) into three sets of equal size. How would you partition the sets?

Let’s go back to our first observation. If our procedure is to choose one element at a time,
let’s check if this gives you the desired partition EVEN(4). If we choose 1 first, then there are
three possible positions for 1 (1 cannot be in the first position), which parition EVEN(4) into
three unequal sets

{4123, 4231, 2143, 3142}, {4321, 4231}, {4312, 4213}.

Hence, we don’t want "choosing 1" as our first step in the procedure. If you check with "choosing
2" or "choosing 3" or "choosing 4", you will find that it does not give what we want. Thus, we
will temporary abandon the idea of choosing the elements for our procedure.

Let’s go to the next possible idea for the procedure, which is to choose one position at a time.
If you our first step is to choose element for the first position then there are 3 possible elements
for the first positions (1 cannot be in the first position) which parition EVEN(4) into three sets of
unequal size

{4321, 4312, 4213, 4231, 4123, 4132}, {3241, 3142}, {2143}.

Similarly, you can check to set what happens when when we find element for the ith position
first. Finally, we notice that "choosing element for the 4-th position" gives the desired partition.
Element in the 4-th position cannot be 4 so we can partition EVEN(4) into three sets

{4321, 3241, 4231}, {4213, 4123, 2143}, {4312, 4132, 3142}.

Within each set, with a completely similar argument as above, we find the next step for the
procedure: "choose element for the 3-th position" (observe that after putting an element in the
last position, there are 3 choices for the 3-th position).

From the example, we find that this idea can be generalized which gives us the factor (2m−
1)2 for EVEN(2m). On the other hand, we know that 12 · 32 · · · (2m− 3)2 = |EVEN(2m− 2)|. This
suggests that the idea of after choosing elements for 2m− 1th and 2mth position, the remaining
2m − 2 positions can be an element from EVEN(2m − 2). This is indeed true. This solves the
problem.

Proof in a different view. We can see the cycles of a permutation p in EVEN(2m) as circles with
numbers labelled on each circle as mentioned in remark

remk:perm_intepretationremk:perm_intepretation
2.0.3. With 1 in some circle, there are

2m − 1 choices (except 1 itself) for p(1), which is an element next to 1. After choosing 1, p(1)

7



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

(with 1 6= p(1)), since p ∈ EVEN(2m) so p2(1) can be equal to 1 so there are 2m − 1 choices
(except p(1)) for p2(1). With this, we’ve identified the factor (2m− 1)2. We can proceed similarly
from here.

theo:bona_chap6_25 Problem 2.0.13 (
bona_walk_to_com
[1], theorem 6.25). Show that for all positive integers m then

|ODD(2m + 1)| = (2m + 1) · |ODD(2m)| = 12 · 32 · · · (2m− 1)2(2m + 1).

The thinking for this problem is completely similar to the previous example. By listing all
elements in ODD(5), we observe that the event "choose element for the last position" gives a
good partition to ODD(5). Here is the final proof:

Proof. We prove by induction on m. Consider the canonical form of permutations. For ODD(2m+
1), there are 2m + 1 ways to an element for the last position. If the last position is 2m + 1 then
the first 2m positions will be a permutation in ODD(2m), which is what we want.

If the last position is not 2m + 1, then the 2m-th position cannot be 2m, which follows there
are 2m − 1 ways to choose an element for the 2m-th position. After doing this, the first 2m −
1 positions will form a permutation in ODD(2m − 1). This gives (2m − 1)ODD(2m − 1) =
ODD(2m) ways to choose the first 2m positions given that the last position is not 2m + 1.

Thus, if we add all the cases, we obtain |ODD(2m + 1)| = (2m + 1) · |ODD(2m)|.

Remark 2.0.14. In the previous three problems, when using canonical form of permutations, we
noticed that our procedure always involve "choosing one position at a time" rather than "choosing
one element at a time". The main reason for our option is that the event of "choosing one element
at a time" does not give a nice partition for our set so that we can see the symmetry. This can
be vaguely explained from the canonical form of permutations. In particular, the canonical form
of permutations orders the elements by comparing them to each other. This follows that if we
partition our set depending on some particular element, the symmetry may not hold.

Alternative bijective proof. This is given in
bona_walk_to_com
[1, Theorem 6.25].

Our main idea is to use bijection Φ : ODD(2m) → EVEN(2m) defined in problem
lem:bona_chap6_20lem:bona_chap6_20
2.0.8 to

construct a bijection Ψ from ODD(2m)× [2m + 1]→ ODD(2m + 1).
Here are the steps:

1. Pick π ∈ ODD(2m) and k ∈ [2m + 1].

2. Apply Φ to π to get Φ(π) ∈ EVEN(2m).

3. Put 2m+ 1 in the k-th gap position of Φ(π) (use the first intepretation
def:perm_gap_positiondef:perm_gap_position
2.0.6 for gap positions

to label the positions, but then use the second intepretation to put 2m + 1 in). The cycle C
containing 2m + 1 will then have odd length.

4. Keep C the same but apply Φ−1 to the remaining even cycles of Φ(π) to obtain a new
permutation p of all odd cycles (including C). Hence, p ∈ ODD(2m + 1).

Thus, for each (π, k) ∈ ODD(2m)× [2m + 1], we are able to construct p ∈ ODD(2m + 1).
It’s obvious Ψ is injective. It suffices to show Ψ is surjective. This can be achieved by identi-

fying Ψ−1, which is essentially the reverse of above steps. In particular, we have

8



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

1. Given π ∈ ODD(2m + 1) and identify cycle C in π that has entry 2m + 1.

2. The remaining cycles form a element in ODD(2`) for some `. Run the remaining cycles
through Φ to obtain an new permutation π′ with all even cycles.

3. Remove 2m + 1 from C (but remember the gap position). Combining with π′, we get a new
permutation from EVEN(2m). Record the gap position k (where 2m + 1 was previously
put) with respect to π′.

4. Run π′ through Φ−1 to get Ψ−1(π).

5. Obtain Ψ−1(π) and gap position k ∈ [2m + 1].

Remark 2.0.15. Observe the importance of applying Φ to switch back and forth ODD and EVEN.

2.1 Exercises

lem:polynomial_degree Lemma 2.1.1. Let p(k) be a polynomial of degree d. Prove that q(n) = ∑n
k=1 p(k) is a polyno-

mial of degree d + 1. Prove that this polynomial satisfies q(0) = 0.

This follows that a function f (n) is a polynomial of degree d iff the function g(n) = f (n)− f (n−
1) is a polynomial of degree d− 1.

Problem 2.1.2. Prove that for any fixed k, the function c(n, n− k) is a polynomial function of
n. What is the degree of that polynomial.

Proof. Induction on k. It suffices to show that c(n, n − k) − c(n − 1, n − 1− k) is a polynomial
of n. We have c(n, n − k)− c(n − 1, n − 1− k) = (n − 1)c(n − 1, k − 1). The right-hand side is
a polynomial of n so the left-hand side is also a polynomial of n. From lemma

lem:polynomial_degreelem:polynomial_degree
2.1.1, we find

c(n, n− k) is a polynomial of n. To find the degree of c(n, n− k), say the degree is f (k). From the
above identity, we find f (k)− 1 = 1 + f (k− 1) so f (k) = 2k.

Problem 2.1.3. Let r(n) be the number of n-permutations whose square is the identity permu-
tation. Prove that if n ≥ 1 then r(n + 1) = r(n) + nr(n− 1) where r(0) = 1.

Proof. Observe that r(n) is the number of n-permutations with cycles of lengths 1 or 2. This
follows in canonical form for permutations, in r(n + 1), the element n + 1 must be in the last two
positions.

If n + 1 is in the last position then there are r(n) ways to arrange n elements in the first n
positions.

If n+ 1 is in the n-th positions then there are n ways to choose an element for the last position
and r(n− 1) ways to arrange elements in the first n− 1 positions.

9



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

Problem 2.1.4. Find a recursive formula for the number t(n) of n-permutations whose cube is
the identity permutation.

Completely similar to previous problem. For such permutations, all cycles must be 1-cycles
or 3-cycles. If the entry n + 1 forms a 1-cycle then the remaining n entries can form a good
permutation in t(n) ways. If the entry n + 1 is part of a 3-cycle, then there are n(n− 1) choices
for other two entries of that 3-cycle, then there are r(n− 2) ways for the remaining n− 2 entries
to form a good permutation. We obtain t(n + 1) = t(n) + n(n− 1)t(n− 2).

Problem 2.1.5. Prove that on average, permutations of length n have Hn cycles, where Hn =

∑n
i=1

1
i .

Proof. For a given k-cycle, there are (n − k)! permutations that contains this cycle. There are
(n

k)(k− 1)! possible k-cycles, so the average number of cycles for a permutation of length n is

1
n!

n

∑
k=1

(
n
k

)
(k− 1)!(n− k)! = Hn.

Problem 2.1.6. How many n-permutations contain entries 1, 2, 3 in the same cycle?

Proof. Let T(1, 2, 3) be the set of permutations. If f be a mapping from T(1, 2, 3) to T(n− 2, n−
1, n) by swapping 1 with n− 2, 2 with n− 1 and 3 with n. Note that f is a bijection.

It suffices to find T(n − 2, n − 1, n). We back to our canonical form. This happens when
n− 2, n− 1 are positioned on the right of n. There are 3! ways to permute {n− 2, n− 1, n} and
we want two permutations (n, n− 1, n− 2) and (n, n− 2, n− 1). This gives n!

3! · 2 = n!/3.

Problem 2.1.7. An alpine ski team has n members. They descend a particular slope one by
one every day, and no two of them ever record identical times. On an average day, how many
times will the best record of that day be broken?

Proof. Record the times for n members as a permutation of [n], with n indicating the best record
after that day. If n members ski one by one, number of times the best record of that day be
broken is the number of left-to-right maximas for the permutation on that day. By canonical
form of permutations, this is the number of cycles for that permutation. From previous exercise,
a permutation of length n has on average Hn cycles.

Problem 2.1.8. An airplane has n seats, and all of them have been sold for a particular flight,
with no overbooking. When the last passenger arrives, he finds that his seat is taken. When
he shows his reservation to the passenger at his seat, that passenger stands up, and goes to
her own assigned seat. If that seat is empty, she seats down, and the seating procedure is over.
If not, she shows her reservation to the person seating at that seat. That person stands up,
and goes to his assigned seat, and so on. This procedure continues until someone finds his
or her assigned seat empty. Tom was not the last passenger to board the plane. What is the
probability that he has to move during this procedure?

10



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

Proof. The assigned seat for the i-th passenger is i but that passenger but actually seats at the
p(i)-th seat where p is a permutation of [n].

If π is the cycle of p containing n then the procedure involves this cycle π. In particular, the
n-th passenger will move to seat p(n), the passenser that seats on seat p(n) will move to his/her
assigned seat p2(n), ... Therefore, Tom has to move when Tom is in the same cycle as n. If Tom
is the i-th passenger, in canonical form of permutations, this happens when i is on the left of n,
which happens with probability 1

2 .

Problem 2.1.9. Let p be a n-permutation. We associate a permutation matrix Ap to p such that
Ap(i, j) = 1 if p(i) = j and Ap(i, j) = 0 otherwise. Then |det(Ap)| = 1.

Induction on n.

Problem 2.1.10. Prove that if p and q are two n-permutations of [n], then Ap Aq = Aq◦p.

Show (Ap Aq)(i, j) = Aq◦p(i, j).

Problem 2.1.11. The inverse of an n-permutation p is the permutation q for which p ◦ q =
q ◦ p = 12 · · · n. We then write q = p−1. Prove each permutation has a unique inverse.

The condition q ◦ p = 12 · · · n uniquely defines q. From this, we show q is the inverse.

Problem 2.1.12. Prove that f and f−1 are of the same type.

If p1 · · · pk is a k-cycle of f then pk pk−1 · · · p1 is a k-cycle of f−1. This follows f and f−1 are of
the same cycle type.

Problem 2.1.13. What is the combinatorical meaning of AT
p ?

It is the permutation matrix of p−1.

Problem 2.1.14. Assume that we know the cycle type (a1, . . . , an) of an n-permutation. Deter-
mine the smallest positive integer d such that pd = 12 · · · n.

Proof. For an entry i in a k-cycle of p, we have pd(i) = i when k | d. Since this is true for any k,
we find the smallest d is the least common divisor of i’s so ai > 0.

Problem 2.1.15. For a prime number t. Let T(n) be number of n-permutations such that
pt = 12 · · · n for some prime t. Then T(n) ≡ 0 (mod p) for all n ≥ t.

Proof. We have T(n) = 1 for all 1 ≤ n < t.
Next, we will calculate T(t). If entry t forms a 1-cycle then all remaining entries also form

a 1-cycle, which will give the identity permutation. If t forms a t-cycle then we have (t − 1)!
choices for other entries of that t-cycle. This gives T(t) = (t − 1)! + 1, which is divisible by t
according to Wilson’s theorem.

Next, we will find a recursive formula for T(n + 1) with n ≥ t. From the previous problem,
for such permutations, all cycles must be 1-cycle or t-cycles. If entry n + 1 is part of a 1-cycles

11



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

then the remaining n entries can form a good permutation in t(n) ways. If the entry n + 1 is part
of a t-cycle, then there are n(n− 1) · · · (n− t + 2) choices for other t− 1 entries of that t-cycle,
then there are r(n + 1− t) ways to the remaining n + 1− t entries to form a good permutation.
Thus, we obtain

T(n + 1) = T(n) + n(n− 1) · · · (n− t + 2)T(n + 1− t), n ≥ t.

Using this recursive formula, we find that 0 ≡ T(t) ≡ T(t + 1) ≡ · · · ≡ T(2t− 2) (mod t).
Therefore, by induction on n ≥ t, we find T(n) ≡ 0 (mod t) for all n ≥ t.

Problem 2.1.16. Let n ≥ 2. Prove that det Ap = 1 for exactly one half of all n-permutations p.

Proof. Let q = (21)(3) · · · (n) then we have Ap Aq = Aq◦p so det Ap det Aq = det Aq◦p. Since
det Aq = −1 so Ap and Aq◦p have determinants of opposite signs. On the other hand, since
q ◦ (q ◦ p) = p so the pairs of permutation (p, q ◦ p) is uniquely defined. Exactly one permutation
from this pair has determinant 1.

exer:bona_chap6_21 Problem 2.1.17. We say that a permutation p ∈ Sn has a square root if there is a permutation
q ∈ Sn so that q2 = p. Find a sufficient and necessary condition of p having a square root, in
terms of its cycle lengths.

Proof. For k ≥ 0, if (a1 · · · a2k+1) is a (2k + 1)-cycle of q then (a1a3 · · · a2k+1a2 · · · a2k) is a (2k + 1)-
cycle of q2. For k ≥ 1, if (a1, . . . , a2k) is a (2k)-cycle of q then (a1, a3, · · · a2k−1) and (a2, a4, · · · , a2k)
are two k-cycles of q2.

From these two observations, we find that for each 1 ≤ i ≤ n, p = q2 must have even number
of cycles with even length 2i. This is a necessary condition for p to have a square root.

We show that the above condition is also a sufficient condition for p to have a square root q. To
do this, we reverse the action from q to q2. Indeed, for any (2k + 1)-cycle (b1, · · · , bk+1, a1, · · · , ak)
in p then let (b1, a1, b2, a2, . . . , bk, ak, bk+1) be a cycle in q. For any pair of (2k)-cycles (a1, . . . , a2k)
and (b1, . . . , b2k), let (a1, b1, a2, b2, . . . , a2k, b2k) be a cycle in q. With this, we can obtain q2 = p.

exer:bona_chap6_23 Problem 2.1.18. Construct a bijection τ : ODD(2m + 1)× [2m + 1]→ ODD(2m + 2).

Proof. The proof is similar to Bona’s proof for theorem
theo:bona_chap6_25theo:bona_chap6_25
2.0.13. From lemma

lem:bona_chap6_20lem:bona_chap6_20
2.0.8, we know a

bijection Φ from ODD(2m) to EVEN(2m).
For any π ∈ ODD(2m+ 1), add 1 to each element to get a new permutation of {2, . . . , 2m+ 2}.

Next, we put 1 in kth gap position where 2 ≤ k ≤ 2m + 2 which will change one cycle π′ from
odd to even. The remaining cycles will form a permutation in ODD(2`) where 2` is the length of
such cycles. Run the remaining cycles through Φ to get even cycles. Combine this will π′, we will
get a permutation in EVEN(2m + 2), which when applying Φ−1, you will get ODD(2m + 2).

exer:bona_chap6_24 Problem 2.1.19. Let SQ(n) be the set of n-permutations having at least one square root. Prove
that for all positive integers n, we have |SQ(2n)| · (2n+ 1) = |SQ(2n+ 1)|. Note that this means
p(2n) = p(2n + 1), where p(m) denotes the probability that a random chosen m-permutation
has a square root.

12



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

From exercise
exer:bona_chap6_21exer:bona_chap6_21
2.1.17, we know that a permutation p has a square root if it has even number

of cycles with each even length 2i. We try to impose this condition on establishing the relation
between SQ(2n + 1) and SQ(n).

Attempt 2.1.20. We look at SQ(5). Note that the event "element at the last position" gives a nice
partition of SQ(5) into 5 disjoint subsets of equal size. However, it’s difficult to figure out what
to do after that, since the remaining elements do not form permutations in SQ(4) (which is what
we want). After some failed attempts for this approach, I decided to find a new approach.

After few other attempts in applying procedures "choose elements for each position" and
"choose positions for each element" for SQ(n), I got nowhere. The reason for the failure lies in
the property of SQ(n), which is hard to use comparing to the sets ODD(n) or EVEN(n). Hence,
an idea is to first apply some mapping Φ on SQ(n) to remove properties of SQ(n), then we can
apply our familiar procedures.

Here is one way we can do that:

Attempt 2.1.21. What can our Φ be here? Well, since SQ(n) is the set of permutations that has
square root, Φ may be the inverse of that procedure, i.e. map p to a square root of p. However,
note that a permutation p may have multiple square roots (look at the proof of exercise

exer:bona_chap6_21exer:bona_chap6_21
2.1.17

to see why). For example, (1)(2)(3)(4) has four square roots (1)(2)(3)(4), (21)(43), (31)(42) and
(41)(32). For Φ to be well defined, we need to specify our procedure of changing permutation p
to its square root. From here, we can apply familiar procedures to the square roots of SQ(2n+ 1).
In particular, the steps from here are similar to proof of problem

exer:bona_chap6_23exer:bona_chap6_23
2.1.18.

First, we will go and define Φ which maps p ∈ SQ(2n + 1) to square root of p. For p ∈
SQ(2n + 1). If (a1a3 · · · a2k+1a2 · · · a2k) is odd (2k + 1)-cycle of p then assign (a1, · · · , a2k+1) to be
(2k + 1)-cycle of square root of p. Let C1, . . . , C2k be (2i)-cycle of p in that order when writing p
in canonical form. Any pair C2j−1, C2j of (2i)-cycles will form a (4i)-cycles for q (as demonstrated
in exercise

exer:bona_chap6_21exer:bona_chap6_21
2.1.17). However, what does Φ actually map to? ... After a few trials, I found that this

attempt does not work for me. Maybe a different Φ could work?

Attempt 2.1.22. Observe that from theorem
theo:bona_chap6_25theo:bona_chap6_25
2.0.13, we know that |ODD(2m)| · (2m+ 1) = |ODD(2m+

1)|, which resembles our relation |SQ(2m)| · (2m + 1) = |SQ(2m + 1)|. Furthermore, we find that
ODD(n) ⊂ SQ(n). Hence, this suggests that if Ω is a bijective map from SQ(2m)× [2m + 1] to
SQ(2m + 1), then it may also map ODD(2m)× [2m + 1] to ODD(2m + 1). We then suspect that
Ψ : ODD(2m) × [2m + 1] → ODD(2m + 1) defined in the second proof of theorem

theo:bona_chap6_25theo:bona_chap6_25
2.0.13 may

be part of our Ω. Hence, in this attempt, we will try to imitate Ψ for Ω. As it turns out, this
approach works perfectly.

I read the proof from
bona_walk_to_com
[1, Exercise 24, chapter 6] and rewrote the proof as below (with better

motivation I believe):

Proof and thoughts. As pointed out in previous, we will try to copy each step in the bijection Ψ
from the second proof

theo:bona_chap6_25theo:bona_chap6_25
2.0.13 and see if it works for Ω.

Consider (π, k) ∈ SQ(2m)× [2m + 1].
The first step in Ψ is to apply Φ to the permutation, but our permutation π 6∈ ODD(2m).

However, if we break π into two parts, one with even cycles (called even part E) and the other

13



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

with odd cycles (called odd part O) then the odd part O is completely in ODD(2`) for some `.
Hence, we could apply Φ to the odd part of π.

The second step in Ψ is to put 2m + 1 in the k-th gap position in p. Observe that if the k-th
gap position is in some even cycle then by adding an extra entry to that cycle, we would mess
up the even part E in a way that it’s difficult to recover its property

exer:bona_chap6_21exer:bona_chap6_21
2.1.17. However, if the k-th

gap position is in some even odd cycle, we can consider this gap as the gap position for the odd
part O and can absolutely apply Ψ to the odd part O and this gap position. In the end, we left
the even part E untouched and obtain a new odd part with one more element. The combination
of these two parts is a permutation in SQ(2m + 1). Furthermore, observe that 2m + 1 is always
in the odd cycle in this case.

We back at the case where the k-gap position is in some even cycle. Again, we wish to leave
the structure of even part E unchanged so we cannot add any extra element to the gap position.
Instead, we can think such k-th gap position as pointing to the entry x right after that position
in that even cycle 1. In previous case, we put 2m + 1 in an odd cycle so this time we want to
put 2m + 1 in a even cycle. This suggests us to replace x with 2m + 1 and we can interpret x as
the gap position in the odd part. In particular, if there are i− 1 entries in the odd part that are
less than x then we will mark the i-th gap position in the odd part 2. It’s clear now that we have
ourselves an odd part O and a gap position in O so we wish to apply Ψ. However, in Ψ, it’s not
quite clear which number we will add in the gap position. Note that we want the process to be
reversible, i.e. from the new odd part, we want to be able to identify the gap position. This works
best if the gap position is the position of the largest entry in the new odd part. Hence, we can
do as follow: When running Ψ to the odd part O and the gap position, we label the new entry
added as B which will be the largest number in the new odd part. We then shift all elements in
odd part O that are larger than X down by one notch 3. B will automatically replaced with the
largest number in the old odd part.

Now, after defining Ω, we will show that Ω is a bijection from SQ(2m)× [2m + 1] to SQ(2m +
1). Indeed, the above procedure proves that Ω is injective. Hence, it suffices to find Ω−1. Indeed,
for each π ∈ SQ(2m + 1), we locate 2m + 1. If 2m + 1 in some even cycle of π then below are the
steps:

1. Run the odd part O of π through Ψ−1 to identify gap position k in O and at the same time
remove the largest entry in O.

2. In canonical form, count how many entries in Ψ−1(O) that are on the left of k-th gap
position. Say there are i such entries in Ψ−1(O).

3. Identify (i + 1)-th smallest entry in Ψ−1(O) and denote such entry as x.

4. Shift entries in Ψ−1(O) that are at least x up one notch. In particular, if in Ψ−1(O), we have
x < a1 < a2 < · · · < ak then x → a1, a1 → a2, . . . , ak−1 → ak while ak maps to the largest
element in the old odd part O. By doing this, we left out entry x.

1the k-th gap position lies between entries x, y in such even cycle so that y→ x for the permutation
2Note that x is orginally from an even cycle so if we want to refer to x as the gap position of the odd part O, it’s

better if we did as above mentioned.
3The smallest element in O that is larger than x will be changed to x, the second smallest is changed to the first

smallest, etc.

14



2 CHAPTER 6: CYCLES IN PERMUTATIONS. Toan Quang Pham

5. Replace 2m + 1 with x to obtain Ω−1(π) ∈ SQ(2m) (combines new odd part and new even
part). Write π′ in canonical form and locate the gap position that lies before x.

If 2m + 1 is in some odd cycle of π then below are the steps:

1. Run the odd part O of π through Ψ−1 to identify the gap position in O and at the same
time remove 2m + 1 from O.

2. Combine the new odd part with the unchanged even part to get Ω−1(π) and locate the gap
position with respect to Ω−1(π).

Example 2.1.23. We have π = |(2|1|)(3|)(5|)(6|4|) ∈ SQ(6) with | refers to the gap position.
If the chosen gap position is k = 2 which is in the even cycle (21) then we select entry 1. We
replace 1 with 7 to get (27)(3)(5)(64). The odd part O is (3)(5) so entry 1 refers to the 1st
gap position in O since 1 < 3, 1 < 5. We have Ψ(O, 1) = (B)(3)(5) and by shifting each entry
down by one notch, we get (5)(1)(3). Hence, we obtain Ω(π, 1) = (1)(3)(5)(64)(72).

Let’s try reverse back using Ω−1. Consider π′ = (1)(3)(5)(64)(72). We find 7 is in an even
cycle so we first run the odd cycle O = (1)(3)(5) through Ψ−1 and obtain (1)(3) and 1st gap
position of |(1|)(3|). According to the second step, we find that 1, 3 are on the right of 1st gap
postiion. In step 3, we find that x = 1. In step 4, we shift (1)(3) → (3)(5) up one notch. In
step 5, we replace 7 with x = 1 to obtain (21)(3)(5)(64) in canonical form and obtain 2nd gap
position which is located before entry 1. Thus, Ω−1(π′) = ((21)(3)(5)(64), 2) ∈ SQ(6)× [7].

Problem 2.1.24. Let k, m and r be positive integers and let kr = m. Prove that the number of
m-permutations all of whose cycle lengths are divisible by k is

1 · 2 · · · (k− 1)(k + 1)2(k + 2) · · · (2k− 1)(2k + 1)2(2k + 2) · · · (m− 1)

=
m!
krr!
· (k + 1)(2k + 1) · · · ((r− 1)k + 1).

Take k = 2, we get theorem
exer:bona_chap6_24exer:bona_chap6_24
2.1.19. The idea for this is completely similar to the proof of

theorem
exer:bona_chap6_24exer:bona_chap6_24
2.1.19.

Proof. Consider the canonical form for permutations. Let DIVk(m) be number of m-permutations
all of whose cycle lengths are divisible by k. For π ∈ DIVk(m), then the m-th position in π cannot
be m so there are m− 1 choices for the m-th position. Similarly, there are m− 2 choices for the
(m − 1)-th position (cannot be m and cannot be the same entry as m-th position),..., m − k + 1
choices for the (m − k + 2)-th position. For the (m − k + 1)-th position, this time m can be in
this position so there are m − (k − 1) = m − k + 1 choices for this position (excluding those
we’ve chosen for previous positions). By doing this, we obtain the product (m− k + 1)2(m− k +
2) · · · (m− 1). The remaining m− k positions form a permutation in DIVk(m− k) so by induction
on r, we are done.

Read more about permutations with roots at
bona_mclenna_white
[2].

15



3 CHAPTER 7: YOU SHALL NOT OVERCOUNT. THE SIEVE Toan Quang Pham

3 Chapter 7: You Shall Not Overcount. The Sieve

Theorem 3.0.1 (Sieve Formula). Let A1, . . . , An be finite sets. Then∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ = n

∑
j=1

(−1)j−1 ∑
i1,i2,...,ij

∣∣∣∣∣
j⋂

k=1

Aik

∣∣∣∣∣ .

The alternating signs is explained by the fact that we have to correct the overcounts.
Here is a formula for the Stirling number of second kind.

Theorem 3.0.2. For all positive integers n and k, the equality

S(n, k) =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(k− i)n.

holds.

Note k! · S(n, k) is number of surjections from [n] to [k]. A different version of sieve formula:

theo:sieve_2nd_version Theorem 3.0.3. Let f and g are functions that are defined on the subsets of [n], and whose
range is the set of real numbers. Let us assume that f and g are connected by

g(S) = ∑
T⊆S

f (T).

Then
f (S) = ∑

T⊆S
g(T)(−1)|S−T|.

3.1 Exercises

Problem 3.1.1. Let p = p1 · · · pn be a n-permutation. We say that i is a descent of p if pi > pi+1.
The descent set of p is the set of all its decents.

(a) How many 8-permutations have descent set T that is subset of {1, 4, 6}?

(b) How many 8-permutations have descent set {1, 4, 6}?

(c) How many 8-permutations have descent set {1, 2, 4, 5, 7}?

Proof. (a) If the descent set of p is a subset of {1, 4, 6} then pi < pi+1 for i ∈ [8] \ {1, 4, 6}. This
follows p2 < p3 < p4, p5 < p6, p7 < p8. A 8-permutation p satisfying the previously mentioned
condition will imply that 2, 3, 5, 7, 8 are not descents of p, which means the descent set of p is a
subset of {1, 4, 6}. Hence, we obtain (8

1)(
7
3)(

4
2)(

2
1) number of such permutations.

16



3 CHAPTER 7: YOU SHALL NOT OVERCOUNT. THE SIEVE Toan Quang Pham

(b) We can use theorem
theo:sieve_2nd_versiontheo:sieve_2nd_version
3.0.3 where f (S) is number of 8-permutations whose descent set is

S while g(S) is number of 8-permutations whose descent set is a subset of S. We know that
g(S) = ∑T⊆S f (T) and from (a), we can calculate g(S) easily. Hence, we can apply theorem

theo:sieve_2nd_versiontheo:sieve_2nd_version
3.0.3

to find f ({1, 4, 6}).
(c) The sets looks quite big {1, 2, 4, 5, 7} for us to apply theorem

theo:sieve_2nd_versiontheo:sieve_2nd_version
3.0.3 as in (b). However, we

have the following familiar the bijective map Φ so Φ(p1 · · · pn) = (n+ 1− p1)(n+ 1− p2) · · · (n+
1− pn) (entry in i-th position of Φ(p) is n + 1− pi). With p ∈ f ({1, 2, 4, 5, 7}), we have p1 > p2 >
p3, p3 < p4, p4 > p5 > p6, p6 < p7, p7 > p8 Hence, Φ(p) = p′1 p′2 · · · p′8 with be the reverse of above
signs, i.e. p′1 < p′2 < p′3, p′3 > p′4, p′4 < p′5 < p′6, p′6 > p′7, p′7 < p′8. This implies Φ(p) has descent
set {3, 6}. Therefore, f ({1, 2, 4, 5, 7}) = f ({3, 6}).

We have f (∅) = 1, f ({3}) = (8
3) = 56, f ({6}) = (8

6) = 28, f ({3, 6}) = (8
3)(

5
3) = 560 so

f ({3, 6}) = 560− 28− 56 + 1 = 477. This implies f ({1, 2, 4, 5, 7}) = 477.

Remark 3.1.2. Bóna
bona_walk_to_com
[1, Exercise 11, chapter 7] gives a different bijection for (c). In particular, for

a permutation p1 · · · p8 we take the reverse p8 p7 · · · p1 and the reverse of p will have descent set
{2, 5}. This implies f ({1, 2, 4, 5, 7}) = f ({2, 5}). Interestingly, from our proof for (c), we obtain
f ({2, 5}) = f ({3, 6}).

Problem 3.1.3 (Dual version of theorem
theo:sieve_2nd_versiontheo:sieve_2nd_version
3.0.3). Let h and r be functions that are defined on the

subsets of [n], and whose range is the set of real numbers. Assume h and r are connected by
r(S) = ∑S⊆T h(T). Prove that then

h(S) = ∑
S⊆T

r(T)(−1)|T−S|.

Proof. For all set V such that S ⊆ V, the number of times h(V) will appear once for each set T so
S ⊆ T ⊆ V is (−1)|T−S|. Hence, the total number of times h(V) will appear is ∑T,S⊆T⊆V(−1)|T−S|.
Number of sets T so |T − S| = i is (|V−S|

i ). Therefore, we have

∑
T,S⊆T⊆V

(−1)|T−S| =
|V−S|

∑
i=0

(−1)i
(
|V − S|

i

)
= (1− 1)|V−S|.

This number is always zero, except when |V − S| = 0, i.e. when V = S. Thus, the only term on
the right-hand side that does not cancel out is h(S), as desired.

Problem 3.1.4. Let f (n, k) be the number of ways to select a subset of [n], and then select
an involution on that subset that has k fixed points. (The empty set has one involution, and
that involution has no fixed points). let g(n) = ∑n

k=0 f (n, k)(−1)k. Prove that g(n) is equal to
number of fixed point-free involutions on [n].

Involution here is a permutation p mapping [k] to [k] such that p2 = 12 · · · k.

Proof. Let g(n) be number of fixed-point-free involutions on [n]. We first count number of in-
volutions with k fixed points on a set S ⊆ [n]. There are (|S|k ) ways to choose k elements in S
to be a fixed point. The remaining elements form a fixed-point-free involutions on set of |S| − k

17



3 CHAPTER 7: YOU SHALL NOT OVERCOUNT. THE SIEVE Toan Quang Pham

elements. The number of such involutions is g(|S| − k) so there are a total (|S|k )g(|S| − k) desired
involutions on S. Thus, we obtain

f (n, k) = ∑
S⊆[n]

(
|S|
k

)
g(|S| − k).

We want to show that g(n) = ∑n
k=0 f (n, k)(−1)k or

g(n) =
n

∑
k=0

(−1)k ∑
S⊆[n]

(
|S|
k

)
g(|S| − k). (3.1.1) eqn:sieve_exer_involution

Fix 0 ≤ t, k ≤ n, the number of subsets S of [n] with t + k elements is ( n
t+k). This follows g(t) will

appear (t+k
k )( n

t+k) times for every k. This follows g(t) will appear ∑n
k=0(−1)k(t+k

k )( n
t+k) times on

the right-hand side of (
eqn:sieve_exer_involutioneqn:sieve_exer_involution
3.1.1). We have

n

∑
k=0

(−1)k
(

t + k
k

)(
n

t + k

)
=

(
n
t

) n

∑
k=0

(−1)k
(

n− t
k

)
=

(
n
t

)
(1− 1)n−t.

The above expression is equal to 0 if t 6= n and is equal to 1 if n = t, as desired.

Bijective proof from
bona_walk_to_com
[1]. It suffices to prove that

∑
2|k

f (n, k)−∑
2-k

f (n, k) = g(n).

We define a map F. Let S ⊆ [n] and let p be a involution on S. Let M be the largest element of M
such that is either a fixed point of p or is not in S. If M is a fixed point of p then remove M from
S and remove M from p. The result is a new involution F(p) that has one less fixed point than p.
If M 6∈ S then add M to S and add M as a fixed point to p. The result is a new involution with
one more fixed point than p.

Hence, F matches involutions with even number of fixed points to involutions with odd
number of fixed points. The only time F is not defined is when M is not defined, which happens
when S = [n] and p has no fixed point.

Let E is a set of involutions with even number of fixed points and excluding those involutions
on [n] with no fixed points. Let O is a set of involutions with odd number of fixed points then
from the above argument, we find F is an injective map from E to O. To show F is surjective, it
suffices to find the inverse of F, which is completly similar to F itself. This proves the identity.

18



4 CHAPTER 8: A FUNCTION IS WORTH MANY NUMBERS. GENERATING FUNCTIONS.Toan Quang Pham

4 Chapter 8: A Function is Worth Many Numbers. Gener-
ating Functions.

What’s the point of generating functions? The generating function of a sequence contains a lot
of information about the sequence, sometimes even more than an exact formula.

4.1 Exercises

Problem 4.1.1 (Example 8.14, Exercises 5,6 from
bona_walk_to_com
[1]). All n soldiers of a military squadron

stand in a line. The officer in charge splits the line at several places, forming smaller (non-
empty) units. Then he names one person in each unit to be the commander of that unit. Let
hn be the number of ways he can do this.

(a) Find ordinary generating function of {hn} and closed formula for hn

(b) Show that hn+2 = 3hn+1 − hn for n ≥ 1.

(c) Let Fn be the n-th Fibonacci number. Prove combinatorially that F2n = hn.

Proof. (a)
bona_walk_to_com
[1, Example 8.14] shows that if H(x) is the ordinary generating function of {hn}n≥0

then H(x) = 1 + x
1−3x+x2 and also hn = 1

2n
√

5

[
(3 +

√
5)n − (3−

√
5)n
]
.

(b) If one use generating function A(x) to find {an} where an+2 = 3an+1 − an for n ≥ 1 and
a0 = 1 then one can obtain H(x) = A(x), which proves the claim.

Here is a different proof: We can view the problem as n points on a line and we want to split
the line into smaller units and then choose one point from each unit. Consider a good set of n+ 2
points, i.e. ways to plit n + 2 points and choose one for each unit. If the last unit has exactly one
point which is also the chosen point (for that unit) then we can remove such unit. This gives us
a bijection between a good set of n + 2 points where the last unit has only one point and a good
set of n + 1 points.

If the last unit has more than one points and the last point in the line (which belongs to the
last unit) is not the chosen point then we can remove such point out. This gives a bijection to a
good set of n + 1 points.

If the last unit has more than one points and the last point in the line is the chosen point. We
remove this last point and choose the second last point (which is also from the last unit). This
gives a bijection to a good set of n + 1 points where the last point is chosen. If a good set of n + 1
points where the last point is not chosen then from previous paragraph, we find this to be equal
to hn. Hence, by complementary counting, the size of a good set of n + 1 points where the last
point is chosen is hn+1 − hn.

In the end, we obtain hn+2 = 3hn+1 − hn.
(c) One can prove combinatorially (or algebraically) that F2n is number of compositions (i.e.

ordered partitions) of 2n − 1 points into parts of size 1 or 2. Say a composition of 2n − 1 has
2k − 1 parts equal to 1 and n− k parts equal to 2. From left to right of the composition, every
time we encounter a 2, we replace it with a non-chosen point. If we encounter 1 for the i-th

19



4 CHAPTER 8: A FUNCTION IS WORTH MANY NUMBERS. GENERATING FUNCTIONS.Toan Quang Pham

time, if i is odd, then we replace it with a chosen point; if i is even, we replace it with a bar that
seperates two units. This will give us k units of n points and each unit has a chosen point. For
example, with n = 8 and the composition α = 2 + 2 + 1 + 1 + 2 + 1 + 2 + 2 + 1 + 1 = 15 which
will give us ◦ ◦ •| ◦ • ◦ ◦|• where ◦ is a non-chosen point and • is a chosen point.

20



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

5 Chapter 9: Dots and Lines. The Origins of Graph The-
ory

Here are a bunch of definitions:
A diagram made up of points and lines connecting pairs of points is called a graph. The dots

are the vertices and the lines are the edges of the graph. Number of edges connecting vertex A
is called the degree of A. Loops are edges that start and end at the same vertex. There can be
multiple edges joining the same pair of points. A simple graph is a graph with no loops and no
multiple edges.

A walk is a sequence of alternating vertices and edges so that you can walk through the edges
in the order of the sequence. The length of a walk is number of edges in the sequence. A walk
can be closed, where you arrive that the vertex you begin with or it can be open.

A trail is a walk with no repeated edges. A trail can also be closed (called circuit) or open. A
path is a walk/trail that with no repeated vertices. A path can be closed (called cycle, where there
is only one repeated vertex, which is the first vertex). If a cycle has k vertices then it has k edges.

From these definitions, we have the following summary:

cycle ⊆ circuit ⊆ trail ⊆ walk; path ⊆ trail ⊆ walk.

A degree sequence of a graph G is the sequence of non-negative integers whose terms are the
degrees of of vertices in G. A degree sequence is usually written in decreasing order. A sequence
of non-negative integers is graphical if it is the degree sequence of some graph.

Theorem 5.0.1 (Graphical sequence). Let ∆ = d1, d2, . . . , dp be a sequence S of nonnegative
integers with ∆ = d1 ≥ d2 ≥ · · · ≥ dp and with p ≥ 2, ∆ ≥ 1. Then S is graphical if and only
if the sequence

d2 − 1, d3 − 1, . . . , d∆+1 − 1, d∆+2, d∆+3, . . . , dp

is graphical.

Essentially we just throw out vertex with degree ∆ and edges incident to it.

Proof. The if part is not hard. If we have the graphical sequence d2 − 1, . . . , d∆+1 − 1, d∆+2, . . . , dp
then from the graph whose degree sequence is this sequence, we can add a new vertex of degree
∆ by connecting it with ∆ vertices of original degree d2 − 1, . . . , d∆+1 − 1.

The "only if" part is a bit more difficult. We are given that ∆ = d1, d2, . . . , dp is a degree
sequence that corresponds to vertices v1, . . . , vp, respectively. It is not necessary that v1 is adjacent
to v2, . . . , v∆+1 so we cannot always obtain the desired degree sequence by just removing v1.
However, we can try to convert this graph into a different one whose v1 is adjacent to other ∆
vertices with highest degree. We also want our new graph to have the same degree sequence as
the original one.

Aiming for these two goals, say if v1 is not adjacent to a vertex vi with 2 ≤ i ≤ ∆ + 1 then
we want our new graph has v1vi as an edge. We also want the degree of v1 to be the same so
an idea is to remove some edge v1vk incident to v1 and add a new one v1vi. Here vk satisfies
∆ + 1 < k ≤ n, i.e. it is not one of the ∆ vertices other than v1 with highest degrees. On the other
hand, we also want the degrees of vi, vk in a new graph to be the same. This suggests us to find

21



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

a new vertex v` so v` is adjacent to vi but not to vk. That way we can remove edge v`vi and add
new edge vkv`. Such vertex v` exists because deg vk = ∆k ≤ ∆i = deg vi.

Figure 1: Keep the degrees of v1, vi, vk, v` unchange. fig:DegreeSeq

The above algorithm creates a graph with vertices v1, . . . , vp with corresponding degrees ∆ =
d1, . . . , dp such that v1 is adjacent to v2, . . . , v∆+1. Hence, we can remove v1 and edges incident to
it to create the graph with desired degree sequence.

5.1 Eulerian trail and Hamiltonian cycle
A graph is Eulerian if it contains a closed trail that includes every edge, such trail is called an
Eulerian trial. A graph is semi-Eulerian if it contains an open trail that includes every edge, such
trail is called semi-Eulerian trail.

theo:graphtheory_eulerian Theorem 5.1.1. A connected graph is Eulerian iff each vertex has an even degree and is semi-
Eulerian if iff it has exactly two vertices of odd degree.

Sketch of proof. =⇒ If G is Eulerian then each vertex has even degree: You starts at some vertex
v and every time you enter a new vertex u 6= v from some edge then you must leave v from
different edge (since G is a trail). Since the the Eulerian trial covers all edges so the degree of
each vertex u 6= v must be even. Since this is a closed trial so the degree of v must be even.
⇐= If each vertex of G has even degree then G is Eulerian: We starts from a vertex and keep

walking until it creates the first circuit (closed trail) C1. This is possible because: G is finite; every
vertex has even degree, which means every time you enter one vertex then you can get out of it
with different edge.

If C1 is G then we are done. If not, there exists vertex A not in G and since G is connected (as
a closed trail), there exists vertex v in C1 adjacent to some u 6∈ C1. This means we can get out of
this circuit C1 through v.

Omit all edges of C1 from G and we obtain a graph with all vertices having even degree.
Starting at the mentioned vertex v from C1 and take another closed trail C2. We can then unite
C1 and C2 into one closed trail by: start walking at C1, stops at v then walk through C2 then
complete the trail by using remaining edges of C1.

Thus, C1 ∪ C2 is a closed trail. We proceed similar from here.

22



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

For semi-Eulerian graph, add an extra edge between two vertices with odd degree then we
obtain an Eulerian trail. If we delete the added edge we will get a semi-Eulerian trail (see the trail
as a sequence of vertices, and see how deleting an edge between consecutive vertices changes to
an semi-Eulerian trail).

(Input diagram)

A cycle that includes all vertices of a graph is called a Hamiltonian cycle, whereas a path that
includes all vertices of a graph is called a Hamiltonian path.

Eulerian trail is a closed trail that includes all edges in G. Hamiltonian cycle is a cycle
(in some sense "closed path") that includes all vertices (called spanning subgraph) of G.

Theorem 5.1.2. If there exists a subset S of the vertices of a graph G such that G \ S has more
than |S| components then G has no Hamiltonian cycle.

Proof. We proceed by contradiction (as this will give us a Hamiltonian cycle to work with). As-
sume the contrary, G has one Hamiltonian cycle H. Let the components of G \ S be G1, . . . , Gt
where t > |S|.

Figure 2: S and connected components of G \ S fig:hamiltoniancycle1

Since G has no edges joining Gi and Gj for i 6= j and G needs to be connected to have a
Hamiltonian cycle so there are edges joining each Gi to S. In fact, there are at least two edges
joining each Gi with S whose endpoints in S are different from each other. Indeed, consider the
Hamiltonian cycle where you starts at some vi from Gi (you can start anywhere you want for the
Hamiltonian cycle because it is a cycle) then you need to go to S first before returning to vi again.
Say that your first meeting with S is with vertex u1 ∈ S and your last meeting with S is with
u2 ∈ S. These two u1, u2 need to be distinct, otherwise if u = u1 = u2 then that means you’ve
gone through u two times 4 while u is not the starting point, a contradiction.

For each i = 1, . . . , t, let v1,i, v2,i be the two distinct vertices in S that corresponds to Gi as from
the previous arguments. Note that for i 6= j v1,i, v1,j or v1,i, v2,j need not to be distinct. Hence, we
obtain a multisubset T = {v1,i, v2,i : 1 ≤ i ≤ t} of set of vertices of S. Note that each vertex in

4there is a degenerate case where you return to Gi to vi right away after visiting u, which means t = |S| = 1, which
is also a contradiction

23



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

G must be incident to exactly two edges in the Hamiltonian cycle H. This follows each element
s in T appear in T for at most two times (otherwise s is adjacent to at least three edges in H).
Therefore, T must have at least t distinct elements. Thus, t ≤ |S|, which is a contradiction.

Remark 5.1.3. The converse of this is not true. Consider Petersen graph.

Theorem 5.1.4 (Dirac’s theorem). Let G be a graph with n ≥ 3 vertices. If every vertex in G
has degree at least n/2 then G has a Hamiltonian cycle.

Proof. Suppose G does not have a Hamiltonian cycle.
Consider the extreme case of the graph: We add new edge as long as we can without creating

a Hamiltonian cycle. Our new graph G′ has all vertices with degree at least n/2. G′ has no
Hamiltonian cycle but adding any extra edge to G′ will create one.

Consider vertices x, y in G that are not adjacent to each other (there must exists such pair
(x, y) because G is not Hamiltonian). Since adding edge xy to G will create a Hamiltonian
cycle so there is a Hamiltonian path in G that starts with x and ends with y. Let such path be
x = v1, v2, . . . , vn−1, vn = y.

Figure 3: Path from x to y fig:hamiltoniancycle_dirac

Since x is adjacent to at least n/2 vertices vi for 2 ≤ i ≤ n− 1 so there are at least n/2− 1
vertices vi (2 ≤ i ≤ n− 1) such that xvi+1 is edge in G. Let the set of such vertices as X. There
are also n/2 vertices vj (2 ≤ j ≤ n− 1) that are adjacent to y, let the set of such vertices as Y. This
follows |X|+ |Y| ≥ n− 1 but |X ∪ Y| ≤ n− 2 so |X ∩ Y| ≥ 1, i.e. there exists vi (2 ≤ i ≤ n− 2)
such that viy, vi+1x are edges of G. Then xv2v3 · · · viyvn−1 · · · vi+1vi is a Hamiltonian cycle, a
contradiction.

Example 5.1.5 (Exercise 14, §6 from
bona_walk_to_com
[1]). Petersen diagram has no Hamiltonian cycle.

Indeed, call the five edges joining an outer vertex to an inner vertex sticks. Any Hamilto-
nian cycle would have to contain even number of sticks (imagine you start at an outer vertex
then in order to get back to that vertex, you go in and out the region of inner vertices for even
number of times, which results in even number of sticks). Hence, there can be 2 sticks or 4
sticks. Each case will give a contradiction.

24



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

5.2 Directed graphs
Each edge in the direct graph has a unique direction so this needs to be taken into account for
the definition of trails, closed trails, paths for directed graphs.

For Eulerian trail, the condition in theorem
theo:graphtheory_euleriantheo:graphtheory_eulerian
5.1.1 no longer holds. For example, if no edge

starts at a given vertex then there will be no Eulerian trail in that graph.
A directed graph G is strongly connected if for all vertices u and v of G, there is a directed path

from u to v. The in-degree of a vertex of a directed graph is number of edges that end at that
vertex. The out-degree of a vertex is number of edges that start at that vertex. A directed graph G
is balanced if for each vertex v ∈ G, the in-degree of v equals the out-degree of v.

Theorem 5.2.1. A directed graph G has a closed Eulerian trail if and only if it is balanced and
strongly connected.

Proof. We prove the two conditions are necessary. Indeed, a closed trail of G visits each vertex
as many times it enters that vertex, which shows that G is balanced. G has a closed trial implies
that there is a trail from any two vertices in G, which impies G is strongly connected.

For the converse that the conditions are sufficient, copy theorem
theo:graphtheory_euleriantheo:graphtheory_eulerian
5.1.1 and replace edges by

directed edges.

A simple undirected graph is called complete if there is an edge between any pair of distinct
vertices. A complete graph on n vertices has (n

2) edges. If we direct each edge of a complete
graph then the resulting directed graph is a tournament. The reason for the name is that each
edge from i to j could mean i beats j in a tournament.

Theorem 5.2.2. All tournaments have a Hamiltonian path.

Proof. Induction on number of vertices.

For determining whether a tournament is a Hamiltonian cycle:

Theorem 5.2.3. A tournament T has a harmiltonian cycle if and only if it is strongly connected.

Proof. If T has Hamiltonian cycle then for any two vertices in T, there exists a directed path that
goes from one to the other. This follows T is strongly connected.

Conversely, if T is strongly connected. First we show that there exists a directed cycle in T.
Indeed, if not then for any x, y, z ∈ V(T), if xy, yz ∈ T then xz ∈ T. This follows T is a transitive
tournament, i.e. the vertices of T can be listed such that ij ∈ E(T) iff j is on the right of i in the
list. However, such tournament is not strongly connected as you can’t go from the last vertex in
the list to the first vertex in the list. Thus T does have a cycle.

Consider the cycle C = y1 · · · yk of T with the largest length. Assume that C is not a Hamil-
tonian cycle then there exists a vertex x 6∈ C. Since T is strongly connected so there exists,
WLOG say y1 ∈ C such that y1x ∈ E(T) (otherwise you can’t go from y1 to x). If xy2 ∈ E(T)
then y1xy2 · · · yk is a bigger cycle than C, a contradiction. Thus, we must have y2x ∈ E(T) and
similarly, yix ∈ E(T) for all 1 ≤ i ≤ k.

Let Z be set of vertices in T \ C such that y1z ∈ E(T) for each z ∈ Z. This follows yiz ∈ E(T)
for every 1 ≤ i ≤ k and every z ∈ Z. Since there is a directed path from z to y1 so there exists

25



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

t 6∈ Z ∪ C such that zt ∈ E(T). Since t 6∈ C ∪ Z so ty1 ∈ Z. In the end, zty1y2 · · · yk is a bigger
cycle than C, a contradiction.

Thus, C must be an Hamiltonian cycle.
(Include diagram)

5.3 The notion of Isomorphisms
Two graphs are isomorphic if they are identical as unlabeled graph:

Definition 5.3.1. We say that graphs G and H are isomorphic if there is a bijection f from the
vertex set of G onto that of H so that the number of edges between any pairs of vertices u, v in
G is equal to number of edges between vertices f (u) and f (v) of H. The bijection f is called an
isomorphism.

5.4 Exercises

Problem 5.4.1. Let G be a loopless undirected graph. Prove that the edges of G can be directed
so that no directed cycle is formed.

Proof. Label the vertices as 1, 2, . . . , |G|. If ij is an edge in G where i < j then we draw arrow
from i to j. The labels increase along any directed graph, so no directed cycle exists.

Problem 5.4.2. Let G be a simple graph on 10 vertices and 28 edges. Prove that G contains a
cycle of length 4.

Proof. Consider a general case where G has n vertices v1, . . . , vn and e edges. For each i ∈ [n],
denote Vi as set of vertices that are adjacent to vi. If G has no cycle of length 4 then for any i 6= j,
|Vi ∩Vj| ≤ 1. Therefore, ∑ |Vi ∩Vj| ≤ (n

2).
On the other hand, ∑ |Vi ∩ Vj| = ∑ (|Vi |

2 ). We know ∑ |Vi| = 2e so ∑ (|Vi |
2 ) ≥ e

( 2e
n − 1

)
. This

establishes the inequality n(n − 1) ≥ 2e
( 2e

n − 1
)
. Check with n = 10, e = 28, we find that the

graph G must contain cycle of length 4.

Problem 5.4.3 (Exercise 13 from
bona_walk_to_com
[1]). The previous exercise defines a regular graph as a sim-

ple graph in which each vertex has the same number of neighbors. Is it true that in such
graph, each vertex will have the same number of second neighbors? (The vertex X is a second
neighbor of a vertex Y if XY is not an edge, and there is a path of length 2 joining X and Y).

Proof. We predict the answer to be no. Why no? Say the degree of each vertex is 3 and we start
from one vertex v and draw out its neighbors and second neighbors. There are possible cases:

26



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

Figure 4: Possible cases for different number of second neighbors fig:exer13chap6_1

With this idea in mind, we have the following counterexample:

Figure 5: v1 has five second neighbors, labeled ◦, while v2 has four second neighbors, labeled × fig:exer13chap6_2

We are done.

Problem 5.4.4. The degree sequence of a graph G forms a partition of 2|E(G)|. This partition
is never self-conjugate.

Proof. Because if d1, . . . , dn is a degree sequence of G then the conjugate of this will have k parts,
where k is number of vertices with positive degree. On the other hand, the partition has at most
k− 1 parts as d1 ≤ k− 1.

Problem 5.4.5. How many automorphisms does the graph shown in
bona_walk_to_com
[1, Figure 9.11, §9] have?

Proof. Consider a bijection f from set of vertices to itself. There are 8 choices for f (A). After
finding f (A), let S be the set of vertices that are adjacent to f (A) then S = { f (D), f (E), f (B)}.
Hence there are 3! ways to map D, E, F to one of vertices in S. After finding f (A), f (D), f (E),
we can uniquely determine f (H) as the vertex that is adjacent to f (D), f (E) but is different
from f (A). Similarly, there is one way to choose f (F) and one way to choose f (C). After we
found out about f (C), f (H), f (F), then f (G) is uniquely determined. Thus, there are 8 · 3! = 48
isomorphisms.

27



5 CHAPTER 9: DOTS AND LINES. THE ORIGINS OF GRAPH THEORY Toan Quang Pham

Problem 5.4.6. How many automorphisms does the graph in figure
bona_walk_to_com
[1, Figure 9.12, §9] have?

Proof. Consider such isomorphism f .
Since each vertex has the same role (for example, each of them are adjacent to 4 other vertices,

that four vertices form a cycle, that four vertices are adjacent to another vertex different from the
initial one). Hence, there are 6 ways to choose f (F). Since there exists exactly one vertex not
adjacent to f (F) so there is one way to choose f (E).

Since f (A), f (B), f (C), f (D) are vertices adjacent to f (F) and they form a cycle so there are 4
ways to choose f (A) (from vertices adjacent to f (F). Since f (D), f (B) adjacent to f (A) so there
are 2 ways to choose f (D), f (B) and finally, one way to choose f (C).

Thus, we obtain 6 · 4 · 2 = 48 ways.

28



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

6 Chapter 10: Staying connected. Trees

6.1 Minimally connected graphs

theo:tree_definitions Theorem 6.1.1 (Equivalent definitions for a tree). Let G be a connected simple graph on n ver-
tices. Then the following are equivalent:

1. G is minimally connected, that is, if we remove any edge of G, then the obtained graph
G′ will not be connected.

2. G does not contain a cycle.

A simple connected graph satisfying one of three above conditions is called a tree.

Sketch. (1) =⇒ (2): If G is minimally connected while still having a cycle C, one can remove
an edge of C and obtain a new connected graph. This follows a contradiction. Thus, G does not
contain a cycle.
∼ (1) =⇒ ∼ (2): (prove by contrapositive). Assume G is not minimally connected. This

follows there exists an edge e from A to B such that G′ = G \ {e} is connected. This follows there
exists a path P from A to B in G′. This implies P ∪ {e} is a cycle in G.

corol:tree_UniquePath Corollary 6.1.2. A connected graph G is a tree if and only if for each pair of vertices (x, y),
there is exactly one path joining x and y.

Proof. If for each pair of vertices (x, y), there is exactly one path from x to y then G is minimally
connected (proof is similar to theorem

theo:tree_definitionstheo:tree_definitions
6.1.1 at the part (1) =⇒ (2).

Figure 6: Cycles create from symmetric difference of two paths P, Q fig:Tree_UniquePath

If G is a tree, but there are two paths P and Q joining vertices x and y. Take the symmetric
difference of P and Q, that is, the edges that are part of exactly one of P and Q. This symmetric
difference is a union of cycles.

theo:graph_tree_edgecounting Theorem 6.1.3. All trees on n vertices have n− 1 edges. Conversely, all connected graphs on
n vertices with exactly n− 1 edges are trees.

Vertices of tree that have degree 1 are called leaves.

29



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

Proof. First, we show that for n ≥ 2 then any tree T with n vertices has at least two leaves. Indeed,
take any path p with maximum length in T then two endpoints of p must be leaves.

Back to the problem, we use induction on n. The case n = 1 is trivial. For a tree T with n + 1
vertices, delete a leaf and its edge e of T to obtain new tree T′ with n vertices. According to
inductive hypothesis, T′ has n− 1 edges so T = T′ ∪ {e} has n edges.

A forest is a graph in which each connected component is a tree.

corol:tree_forest_edgecounting Corollary 6.1.4. Let F be a forest on n vertices with k connected components. Then F has n− k
edges.

We now interest in counting number of trees on n vertices where the vertices are distinguish-
able, i.e. counting all trees with vertex set [n].

theo:tree_counting_cayley Theorem 6.1.5 (Cayley). For any positive integer n, the number of all trees with vertex set [n]
is An = nn−2.

By André Joyal. Take An trees on [n], and in each of them, choose two not-necessarily distinct
vertices, and call one of them Start, and the other one End. We can do this n2 ways for each tree.
Call the n2 An objects obtained doubly rooted trees.

We will show that number of doubly rooted trees on [n] is nn by constructing a bijection from
the set of all functions from [n] to [n] and that of doubly rooted trees on [n].

Let f be a function from [n] to [n]. Let C be subsets of elements x ∈ [n] which are part of a
cycle under the action of f , in other words, x ∈ C if f i(x) = x for some positive integer i. Let
C = {c1 < . . . < ck}. Let di = f (ci). Note that {di} = C. We construct a path S = d1 · · · dk where
we mark d1 as Start and dk as End. If j 6∈ C then joint vertex j with vertex f (j).

We show that we’ve constructed a tree on [n] from f . Indeed, the vertex set of the new graph
T is indeed [n] as we first put in vertices from C then we put vertices not in C in. The graph T is
connected because every vertex is connected to the path d1 · · · dk.

Observe that for any i ∈ [n] then i is adjacent to f (i) and (if exists, one or more) f−1(i)’s. This
follows if T has a cycle C′ then its vertex set must be { f i(x) : 1 ≤ i ≤ `} for some x ∈ C, k ∈ Z≥1.
Since any x ∈ C lies on the path S so there does not exist such cycle. This follows T is cycle-free.
Thus, T is a doubly rooted tree on [n].

Figure 7: Assign vertices labels for doubly rooted tree fig:CayleyProof_DoublyRootedTree

Conversely, for any doubly rooted tree on [n], from corollary
corol:tree_UniquePathcorol:tree_UniquePath
6.1.2, there exists a unique path

from Start to End consisting of vertex set C. Define f on C such that the image of the smallest

30



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

i-th element in C is the i-th vertex on the Start-End path from Start. For j 6∈ C, i.e. for vertex j not
on the Start-End path, f (j) is the first neighbor of j on the unique path from j to the Start-End
path.

We can define rooted trees to be trees with one vertex called the root. So the number of rooted
trees on [n] is nn−1. A rooted forest is a forest in which each component is a rooted tree.

Second proof. This is from
bona_walk_to_com
[1, Exercise 5, §10]. Let T be a tree on [n], with n ≥ 3. Cur of the

leaf of T that has the smallest label, and write down its single neighbor. Then continue this
same procedure on the remaining tree until there are only two vertices (and one edge) left. This
procedure results in a sequence of elements of [n] that has length n − 2 (repetition allowed),
called the Prűfer sequence of T.

We show that this algorithm defines a bijection from the set of all trees on [n] onto the set Sn
of sequences of length n− 2 with elements from [n]. Indeed, it suffices to construct a tree from
each sequence in S.

We’ve already defined an injecttion from set of trees on [n] and set of Prű sequence on [n]. It
suffices to construct an injection from set of Prű sequence on [n] to set of trees on [n]. Indeed,
consider a sequence S = a1 · · · an−2 whose elements in [n]. We construct a tree T from this
sequence as follow:

1. Let b be the largest number in [n] that does not appear in S. First we add edge ban−2 to T
so T now only has b, an−2 as vertices and ban−2 as the only edge.

2. Inductively with i from n− 2 to 1: Consider ai, if ai−1 already appear in the tree or if i = 1
then let b be the largest number in [n] that is not currently in the tree, we add b to the tree
by connecting b with ai.

If ai−1 does not appear in the current tree then add ai−1 to the tree by connecting ai−1 with
ai.

The resulting graph T is a graph of n vertices on [n] because no repetition of labels is guar-
anteed in each step and since we add a new vertex for every ai, we get a total of n vertices with
pairwise different labels from [n].

The graph is connected because when we add new vertex to the graph, we make sure to con-
nect it with current graph. The graph has exactly n− 1 edges because in each step of considering
ai, we add exactly one edge to the graph, plus the original edge in step 1, we obtain a total of
n− 1 edges.

From this and theorem
theo:graph_tree_edgecountingtheo:graph_tree_edgecounting
6.1.3, we find that our graph is a tree on [n]. This mapping is obviously

an injection.
Thus, we’ve constructed a bijection. Furthermore, there are nn−2 sequences of length n− 2

with elements in [n] so this proves that number of trees on [n] is nn−2.

Corollary 6.1.6. For all positive integer n, the number of rooted forests on [n] is (n + 1)n−1

Proof. Take a rooted forest on [n], and join all roots to the new vertex n+ 1 by an edge. This gives
us an unrooted tree on [n + 1]. Conversely, given a tree on [n + 1], make all vertices adjacent
to n + 1 as roots then remove n + 1 to obtain a rooted forest. Thus, there is a bijection between

31



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

set of rooted forests on [n] and set of trees on [n + 1]. Previous theorem tells us the answer of
(n + 1)n−1.

6.2 Mimimum-weight spanning trees. Kruskal’s greedy algorithm
A spanning tree is a spanning subgraph that is a tree. Any connected graph G has at least one
spanning tree. One can always omit edges of G to obtain a minimally connected graph, which
is a tree. In general, a connected graph has many spanning trees. Cayley’s theorem

theo:tree_counting_cayleytheo:tree_counting_cayley
6.1.5 shows

that Kn has nn−2 spanning trees.
Let G be a connected simple graph. Let w : E(G) → R+ be a function. We aim to find a

spanning tree T of G such that ∑e∈T w(e) is minimal.
The function w is called the weight function or cost function of G, and w(e) is called the weight

or cost of e, while ∑e∈T w(e) is called the weight of T.
The spanning tree T can be constructed greedily: Take the edge with the smallest weight and

put it in T. Second, look for the edge that has the smallest weight among those not in T, and add
it to T. For the i-th step, we need to add an edge ei to T such that:

(a) The edge ei is not yet in T,

(b) If we add edge ei in T, the obtained graph does not contain a cycle,

(c) The weight of ei is minimal among all edges that have properties (i) and (ii).

We show that T is a spanning tree of G after exactly n − 1 steps. Note that at every step
i ≤ n− 1, T is a forest so the algorithm must terminate after at most n− 1 steps (since if more
than n− 1 steps means T is a forest with more than n− 1 edges, a contradiction). On the other
hand, we can proceed the algorithm up until n− 1 steps (i.e. until T has n− 1 edges). Indeed,
if T has at most n− 2 edges and T is a graph with n vertices so T is not connected, while G is
connected, so there exists an edge in G that joins two connected components of T and therefore,
can be added to T.

We proved that the algorithm stops after exactly n− 1 steps. After this, T is a forest with n− 1
edges so T is a tree using corollary

corol:tree_forest_edgecountingcorol:tree_forest_edgecounting
6.1.4. Thus, the greedy algorithm can find one spanning tree

T of connected graph G. The next question is whether this spanning tree T a minimum-weight
spanning tree.

lem:tree_forest Lemma 6.2.1. Let F and F′ be two forests on the same vertex set V, and let F have less edges
than F′. Then F′ has an edge e that can be added to F such that the obtained graph F ∪ {e} is
still a forest.

Proof. Assume that there is no such edge e in F′ then adding any edge of F′ to F would create a
cycle in F. This follows any edge of F′ is between vertices from the same connected component
of F. Hence, if a connected component of F (which is a tree) has k vertices then edges of F′ in
this connected component is at most k− 1 edges. Summing up, we obtain that number of edges
in F′ is at most number of edges in F, a contradiction.

32



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

Theorem 6.2.2. The Kruskal’s Greedy Algorithm always find the minimum-weight spanning
tree.

Proof. Assume the greedy algorithm gives us the spanning tree T, whereas our graph G has a
spanning tree H whose total weight is less than that of T. Let h1, . . . , hn−1 be edges of H so that
w(h1) ≤ w(h2) ≤ . . . w(hn−1) holds. Let t1, . . . , tn−1 be edges of T such that w(t1) ≤ w(t2) ≤
. . . ≤ w(tn−1) holds. Note that t1, . . . , tn−1 is also the steps for the algorithm to obtain T (if in
different order would contradict the (c) requirement for the algorithm).

Let i be the step at which H beats T, i.e. i as the smallest integer such that ∑i
j=1 w(hj) <

∑i
j=1 w(tj). Such i exists since H will eventually beats T after n− 1 steps. Also note that i > 1

since w(t1) is the minimal among all edge-weights of G according to the algorithm. Due to the
minimality of i, we have

i

∑
j=1

w(hj) <
i

∑
j=1

w(tj),
i−1

∑
j=1

w(hj) ≥
i−1

∑
i=1

w(tj).

This follows w(hi) < w(ti). We deduce the contradiction by showing that at i-th step, the algo-
rithm cannot add ti to T. Let Ti−1 be the forest that the algorithm produced at step i− 1, i.e. it
contains all edges t1, . . . , ti−1. Define Hi similarly. Applying lemma

lem:tree_forestlem:tree_forest
6.2.1 to Hi and Ti−1, there

exists hj ∈ Hi (j ≤ i) such that Ti−1 ∪ {hj} is a forest. On the other hand Ti = Ti−1 ∪ {ti} and
w(hj) ≤ w(hi) < w(ti) so this implies that the algorithm cannot add ti at step i since ti does not
give minimal weight among the edges that could be added to Ti−1 without forming a cycle.

6.3 Graphs and Matrices

6.3.1 Adjacency matrices of graphs

Definition 6.3.1. Let G be an undirected graph on n labeled vertices, and define an n × n by
A = AG by setting Ai,j equal to number of edges between vertices i and j. Then A is called the
adjacency matrix of G.

If G is directed, then we can define its adjacency matrix by setting Ai,j equal to number of
edges from i to j. Thus, the adjacency matrix of a directed graph is not necessarily symmetric,
while that of an undirected graph is.

Theorem 6.3.2 (Power of adjacency matrix). Let G be a graph on n labeled vertices, let A be its
adjacency matrix, and let k be a positive integer. Then Ak

i,j is equal to number of walks from i
to j that are of length k.

Sketch. Induction on k.

Theorem 6.3.3 (Connectivity testing with adjacency matrix). Let G be a simple graph on n
vertices, and let A be the adjacency matrix of G. Then G is connected if and only if (I + A)n−1

consists of strictly positive entries.

Sketch. There is a path from i to j iff there exists k ≤ n− 1 such that Ak
i,j > 0.

33



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

6.3.2 Number of spanning trees of a graph

H is a spanning tree of a directed graph G if H is a subgraph of G and when removing the
orientations of all edges to get H1 and G1, H1 is a spanning tree of G1.

def:graph_IncidenceMatrix Definition 6.3.4 (Incidence matrix). Let G be a directed graph without loops. Let {v1, . . . , vn}
denote the vertices of G, and let {e1, . . . , em} denote the edges of G. Then the incidence matrix of
G is the n×m matrix A defined by

• ai,j = 1 if vi is the head of ej,

• ai,j = −1 if vi is the tail of ej, and

• ai,j = 0 otherwise.

theo:graph_matrix_spanningtree_direct Theorem 6.3.5. Let G be a directed graph without loops, and let A be the incidence matrix
of G. Remove any row from A, and let A0 be the remaining matrix. Then the number of
spanning trees in G is det A0AT

0 .

Proof. Denote the incidence matrix A of G as in definition
def:graph_IncidenceMatrixdef:graph_IncidenceMatrix
6.3.4. WLOG, assume that the last row

(whose associated vertex is vn) of A was omitted so A0 is a (n− 1)× k matrix. Denote ( [k]
n−1) as

set of all subsets of size n− 1 of [k]. Then for S ∈ ( [k]
n−1), let AS be a (n− 1)× (n− 1) submatrix of

A0 whose columns are columns of A0 at indices from S. By the Cauchy-Binet formula, we have

det(A0AT
0 ) = ∑

S∈( [k]
n−1)

(det AS)(det AT
S ) = ∑

S∈( [k]
n−1)

(det AS)
2.

Let BS be the subgraph of G whose edges from columns of A0 at indices from S. Note that for
each S ∈ ( [k]

n−1), BS has n vertices and n − 1 edges corresponding to n − 1 columns of AS. We
show that |det AS| = 1 if and only if BS is a spanning tree and det AS = 0 otherwise. With this
and the above formula, we can get what we want.

To prove the above claim, we induct on n:

(a) If there is a vertex vi(i 6= n) of degree 1 in BS. Then the i-th row of AS
5 contains exactly

one nonzero element, namely 1 or −1 at j-th column. Expanding AS along this row, then
|det(AS)| = |det(CS)| where CS is (n− 2)× (n− 2) submatrix of AS by deleting i-th row
and j-th column. Also note that BS is a spanning tree iff BS \ {vi} is a spanning tree, whose
edge-set corresponds to columns of CS. By inductive hypothesis, we are done.

(b) If BS has no vertex of degree 1 (except possibly vn). Then BS is not a spanning tree 6 and
since it has n− 1 edges so there must be one with degree zero. If such vertex is not vn then
the matrix AS has a zero row, which means det AS = 0. If such vertex is vn then all edges
have endpoints in {v1, . . . , vn−1}. This follows every column of AS (corresponding to an
edge in BS) contains one 1 and one −1 as each edge has a head and a tail in {v1, . . . , vn−1}.
Hence, the sum of rows of AS is 0 so the rows is linearly dependent, so det AS = 0. Thus,
in this case, we know that BS is not a spanning tree and that det AS = 0.

5note that i 6= n so such row exists in AS as AS has n− 1 rows correspondings to vertices v1, . . . , vn−1
6a spanning tree needs at least two vertices of degree 1 according to proof of theorem

theo:graph_tree_edgecountingtheo:graph_tree_edgecounting
6.1.3 while BS has at most

one such vertex

34



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

This proves the claim.

What about undirected graph? Based on the definition of spanning tree for directed graph
and the above theorem, for a simple undirected graph G, we can just add the orientations for the
edges to create an directed graph G′ from G and use the above theorem. Using this idea, we have
the following theorem:

theo:graph_matrix_spanningtree_undirect Theorem 6.3.6 (Matrix-tree theorem). Let U be a simple undirected graph. Let {v1, . . . , vn} be
the vertices of U. Define (n− 1)× (n− 1) matrix L0 by

Li,j =


deg vi i = j,
−1 i 6= j, vi and vj are adjacent,
0 otherwise,

where 1 ≤ i, j ≤ n− 1. Then U has exactly det L0 spanning trees.

Proof. We turn U into a directed graph G by replacing each edge of U by a pair of directed edges,
one edge going in each direction.

Let A0 be the indicence matrix of G. We show that A0AT
0 = 2L0. Indeed, the (i, j) position of

A0 AT
0 is the scalar product of the i-th row and the j-th row of A0.

(a) If i = j, then every edge in G that starts or ends at vi contributes 1 to Li,i. Hence, the (i, i)-th
entry of A0AT

0 is the degree of vi in G or twice the degree of vi in U.

(b) If i 6= j, then every edge that starts at vi, ends at vj or starts at vj, ends at vi contributes −1
to Li,j. Since U is a simple graph, there is either 0 or 1 edge joining vi and vj in G. This
follows the (i, j)-th entry of A0AT

0 is −2 if vivj is an edge in G and 0 otherwise.

This proves that A0AT
0 = 2L0. This follows 2n−1 det L0 = det A0AT

0 . Since for each spanning
tree in U, one can create 2n−1 spanning trees for G by orienting its n− 1 edges. Therefore, our
statement immediately follows from theorem

theo:graph_matrix_spanningtree_directtheo:graph_matrix_spanningtree_direct
6.3.5.

Example 6.3.7. We reprove Cayley’s theorem
theo:tree_counting_cayleytheo:tree_counting_cayley
6.1.5 about Kn having nn−2 spanning trees by

using theorem
theo:graph_matrix_spanningtree_undirecttheo:graph_matrix_spanningtree_undirect
6.3.6.

The matrix L0 associated to Kn is
n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1

...
...

...
. . .

...
−1 −1 −1 · · · n− 1



35



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

Example 6.3.8. The matrix L0 associated to the complete bipartite graph Km,n is

n · · · 0 −1 · · · −1
...

. . .
...

...
. . .

...
0 · · · n −1 · · · −1
−1 · · · −1 m · · · 0

...
. . .

...
...

. . .
...

−1 · · · −1 0 · · · m


That is, the first m rows look "similar", the last n− 1 rows look "similar". The same is true for
columns. The determinant of this matrix is nm−1mn−1, which is number of spanning trees of
Km,n.

theo:graph_matrix_spanningtree_undirect_eigenvalue Theorem 6.3.9 (Eigenvalue-version of Matrix-Tree theorem). Let U be the graph as in theoremtheo:graph_matrix_spanningtree_undirecttheo:graph_matrix_spanningtree_undirect
6.3.6 and L be defined the same way as L0 in theorem

theo:graph_matrix_spanningtree_undirecttheo:graph_matrix_spanningtree_undirect
6.3.6, except that L is an n× n matrix.

Denote λ1, . . . , λnthe eigenvalues of L, with λn = 0. Then the number of spanning trees of U
is 1

n λ1 · · · λn−1.

Remark 6.3.10. 0 is always an eigenvalue of L because sum of entries in each column of L is 0 so
the rows of L add up to zero row, which means they are linear independent.

Example 6.3.11. If U is a regular graph where each vertex in U has degree d, then dI − A = L
where A is the adjacency matrix of U the L is the matrix defines in theorem

theo:graph_matrix_spanningtree_undirect_eigenvaluetheo:graph_matrix_spanningtree_undirect_eigenvalue
6.3.9. This follows

if α1, . . . , αn is the eigenvalues of A then d− α1, . . . , d− αn is the eigenvalues of L. Hence, it
suffices to find the eigenvalues of A.

For U = Kn, the eigenvalues of adjacency matrix A of Kn are n,−1, . . . ,−1 so the eigenval-
ues of L are n, . . . , n, 0 showing again that Kn has nn−2 spanning trees.

Indeed, note that A + I = J, the matrix whose entries are all equal to 1. This matrix has
rank 1 so n− 1 of its eigenvalues are 0. As the trace of J (sum of diagonal entries) is n and the
trace is also sum of all eigenvalues of J, the remaining eigenvalue must be n. Since A = J − I
so eigenvalues of A are eigenvalues of J decreased by 1, and we are done.

6.4 Exercises

Problem 6.4.1. Let n ≥ 2 be an integer, and let a1 ≥ . . . ≥ an be a sequence of positive integers
satisfying a1 + . . . + an = 2n − 2. Prove that there exists a tree T on n vertices so that the
ordered degree sequence of T is a1, . . . , an.

Proof. Induction on n. Since a1, · · · an are positive integers whose sum is 2n− 2 so an−1 = an =
1 and a1 ≥ 2. By inductive hypothesis, there exists a tree Tn−1 with degree sequence (a1 −
1, a2, . . . , an−1) (may be unordered but that does not matter). We then add a new vertex to T and
connect it with a vertex in Tn−1 whose degree is a1 − 1.

36



6 CHAPTER 10: STAYING CONNECTED. TREES Toan Quang Pham

Problem 6.4.2. Prove that for all n ≥ 3, the number of tn of non-isomorphic trees on n vertices
is at least p(n− 2).

Hint. Use previous problem.

Problem 6.4.3 (Acyclic function). A function f : [n]→ [n] is called acyclic if there are no cycles
longer than one under its action on [n]. Prove that the number of acyclic functions on [n] is
(n + 1)n−1.

Sketch. Each such function f : [n] → [n] corresponds to a rooted forests on [n] where the roots
are exactly i ∈ [n] such that f (i) = i. In particular, vertex i is adjacent to j if f (i) = j.

Problem 6.4.4 (Parking function). There are n parking spots on 1, . . . , n on a one-way street.
Cars 1, . . . , n arrive in this order. Each car i has a favourite parking spot f (i). When a car
arrives, it first goes to its favrourite spot. If the spot is free, the car will take it, if not, it goes to
the next spot. Again, if that spot is free, the car will take it, if not, the car goes to the next spot.
If a car had to leave even the last spot and did not find the space, then its parking attempt has
been unsuccessful.

If, at the end of this procedure, all cars have a parking spot, we say that f is a parking
function on [n]. Prove that number of parking functions on [n] is (n + 1)n−1.

37



REFERENCES Toan Quang Pham

References
bona_walk_to_com [1] Miklos Bona A Walk Through Combinatorics

bona_mclenna_white [2] Bóna, M. , Mclennan, A. and White, D. (2000), Permutations with roots. Random
Structure Algorithms, 17 (2000) 157-167. doi:10.1002/1098-2418(200009)17:2<157::AID-
RSA4>3.0.CO;2-2.

38


	Chapter 5: Divide and Conquer. Partitions
	Chapter 6: Cycles in Permutations.
	Exercises

	Chapter 7: You Shall Not Overcount. The Sieve
	Exercises

	Chapter 8: A Function is Worth Many Numbers. Generating Functions.
	Exercises

	Chapter 9: Dots and Lines. The Origins of Graph Theory
	Eulerian trail and Hamiltonian cycle 
	Directed graphs
	The notion of Isomorphisms
	Exercises

	Chapter 10: Staying connected. Trees
	Minimally connected graphs
	Mimimum-weight spanning trees. Kruskal's greedy algorithm
	Graphs and Matrices
	Adjacency matrices of graphs
	Number of spanning trees of a graph

	Exercises


